СООБЩЕНИЯ
 ОБЪЕАИНЕННOГO ИНСТИТУТА
 ЯAEPHЫX ИССАЕАОВАНИЙ

$\frac{c 326}{K-79}$	2724	$19 / v 11.76$
	E17.9731	

J.M.Kowalski

SIMPLE INEQUALITY
FOR THE FREE ENERGY
OF DISORDERED SYSTEMS

E17-9731

J.M.Kowalski*

SIMPLE INEQUALITY
 FOR THE FREE ENERGY
 OF DISORDERED SYSTEMS

Submitted to "Journal of Stat. Physics"

[^0]A great variety of excitations in disordered crystals may be desoribed with sufficient accuracy in terms of Hamiltonians which are simply the quadratic forms in Bose or Fermi operators with random coefficients. To this class there belong electron systems, phonons, excitons and magnons as well as some one-dimensional magnetic systems such as random XY chain ${ }^{*}$.

In spite of apparent simplicity of these Hamiltonians, the spectral problems caused by randomness are by no means trivial and were intensively investigated by many authors (see, e.g., a comprehensive review [2]).

In this note we give some estimation for the free enorgy of these systems. The proof is based on the concavily property of the function $A \rightarrow$ Indet A

$$
\begin{equation*}
\sum c_{i} \operatorname{indet} A^{(i)}<\ln \operatorname{det} \sum c_{i} A^{(i)} ; c_{i}>0, \sum c_{i}=1, \tag{1}
\end{equation*}
$$

where $A^{(1)}$ are the positive definite IVNV matrices. The inequality (1) follows äirectly from the lilinkowski inequality for determinants [3] .

Lemma
Let us consider the class of Hamiltonians

[^1]
Proof

$$
\begin{equation*}
H_{N}\left(S^{(i)}, R^{(\prime)}\right)=\sum S_{\alpha \beta}^{(i)} a_{\alpha}^{+} a_{\beta}+\frac{1}{2} \sum\left(R_{\alpha \beta}^{(i)} a_{\alpha}^{+} O_{\beta}^{+}+n . c .\right),(\alpha, \beta=1, \ldots, N) \tag{2}
\end{equation*}
$$

where a_{a}^{+}, a_{α} are Dose or Fermi operators, and $S^{(i)}, R^{(i)}$ are real random matrices with a given probability distribution and with obvious symietry properties

$$
S_{* \beta}^{(1)}=S_{\beta \alpha}^{(i)} \quad R_{\alpha \beta}= \begin{cases}R_{\beta \alpha} & \text { (Bose case) } \tag{3}\\ -R_{\beta \alpha} & \text { (Fermi case) }\end{cases}
$$

Then if we introduce the matrix

$$
\begin{equation*}
D^{(i) 2}:=\left(S^{(i)}+R^{(i)}\right)\left(S^{(i)}-R^{(i)}\right) \tag{4}
\end{equation*}
$$

assume its positive definiteness, and define the mean free enerey F_{H} of the system as

$$
\begin{equation*}
F_{N}:=-\beta^{-1}\left(\ln T r \exp \left(-\beta H_{N}\left(S^{(i)}, R^{(i)}\right)\right)\right)_{A V}, \quad\left(\beta:=\frac{1}{\kappa T}\right) \tag{5}
\end{equation*}
$$

the following inequalities

$$
\begin{aligned}
& F_{N} \leqslant-\frac{1}{2} \operatorname{Tr}\left(S^{(i)}\right)_{A V}+\beta^{-1} l n d e t 2 \sinh \frac{3}{2}\left(\left(D^{(i)^{2}}\right)_{A V}\right)^{1 / 2} \quad \text { (B.0.), (6) } \\
& F_{N} \geqslant \frac{1}{2} \operatorname{Tr}\left(S^{(1)}\right)_{A V}-\beta^{-1}\left(n d e t 2 \cosh \frac{B}{2}\left(\left(D^{(i)}\right)_{A V}\right)^{1 / 2} \quad\right. \text { (B.0.) }
\end{aligned}
$$ hold.

Here (...) Av denotes the average with a given distribution function and $\left(\left(D^{(i)^{2}}\right)_{A r}\right)^{1 / 2}$ is the positive definite quadratic root of $\left(D^{(i)}\right)_{A V}$.

As is well know, under the above assumptions the quadratic form (2) way by the Bogolubov's oanonical (u, v) transformation be transformed to

$$
\begin{equation*}
H_{N}=E_{0 . N}^{(1)}+\sum_{\nu} \varepsilon_{\nu}^{(1)} \varepsilon_{\nu}^{+} b_{\nu}, \tag{0}
\end{equation*}
$$

where $\varepsilon_{\nu}^{i j}>0$ are determined from the effenvalue problen

$$
\begin{equation*}
D^{(i, 2} n_{\nu}^{(i)}=\varepsilon_{\nu}^{(i)} n_{\nu}^{(i)} \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& E_{0, N}^{(i)}=-\frac{1}{2}\left(\operatorname{Tr} S^{(i)}-\sum_{\nu} \varepsilon_{\nu}^{(i)}\right) \tag{1.0}\\
& E_{0, N}^{(i)}=\frac{1}{2}\left(\operatorname{Tr} S^{(i)}-\sum_{\nu} \varepsilon_{\nu}^{(i)}\right) \tag{11}
\end{align*}
$$

The formula for the ground state energy $E_{0,4}^{(")}$ may be obtained simply in Fermi case from the invariance of trace H_{*} under (u, v) transformation. For the Bose case we may obtain it from the standard expression

$$
E_{0, \psi}^{(i)}=-\sum_{v, \alpha} \varepsilon_{\alpha}^{(i)}\left|v_{\alpha \nu}^{(i)}\right|^{2}
$$

(see, e.g., [4]) where $U_{\alpha \nu}, V_{\alpha \nu}$ are the coefficients of the (u, v) transfomation, if we derive, taking into account the orthonormality relations, the following intermediate result

$$
\begin{equation*}
E_{0, \gamma}^{(i)}=\frac{1}{2} \sum_{\nu} \varepsilon_{\nu}^{(i)}-\frac{1}{2} \sum_{\alpha \nu \gamma}\left(U_{\alpha \nu}^{(i)} S_{\gamma \alpha}^{(i)} U_{\alpha \nu}^{(i)}-V_{\alpha \nu}^{(i)} S_{\gamma \alpha}^{(i)} V_{\alpha \nu}^{(i)}\right) . \tag{12}
\end{equation*}
$$

For diagonal $S^{(i)}$ formula (10) is then obvious and holds In general due to the invariance of the orthonormality relations under orthogonal transformations diagonalizing the symmetric matrix $S^{\prime \prime}$.

How, after simple algebra, we may write the exact free energy in the form

$$
\begin{align*}
& F_{N}=-\frac{1}{2}\left(\operatorname{Tr} \cdot S^{(1)}\right)_{A V}+\beta^{-1}\left(\operatorname{lndet} 2 \sin n \frac{\beta D^{(0)}}{2}\right)_{A V} \tag{13}\\
& F_{N}=\frac{1}{2}\left(\operatorname{Tr} S^{(i)}\right)_{A V}-\beta^{-1}\left(\operatorname{lndet} 2 \cosh \frac{\beta D^{(i)}}{2}\right)_{A V} \quad \text { (B.c.) } \tag{14}
\end{align*}
$$

where $D^{(i)}=\left(D^{(i) 2}\right)^{1 / 2}$, $D^{(i)}$ is positive definite.
Expanding the functions sinh and cosh in (13) and (14)
in infinite products and taking the logarithm we obtain

$$
\begin{align*}
& \operatorname{lndet} 2 \sinh \frac{\beta D^{(i)}}{2}=\frac{1}{2} \ln \rho^{2} d e t \Delta^{(i)^{2}}+\sum_{k=1}^{\infty} \operatorname{lndet}\left(I+\frac{\Delta^{2} D^{(i)}}{\left\langle\pi^{2} k^{2}\right.}\right) \tag{15}\\
& \operatorname{indet} 2 \cosh \frac{\beta D^{(i)}}{2}=N \ln 2+\sum_{k=1}^{\infty} \operatorname{lndet}\left(I+\frac{\beta^{2} D^{(i)^{2}}}{(2 k+1)^{2} \pi^{2}}\right) \tag{16}
\end{align*}
$$

Finally, applying the inequality (1) term by term to the above expansions we complete the proof of (6) and (7).

Comulents

The obtained bounds correspond to the simplest approximation in the eigenvalue problem, when we replace $D^{(i)^{2}}$ by $\left(D^{i()^{2}}\right)_{A r}$. In practice, this matrix can be easily celculated and diagonalized (as a rule, after averaging we restore the crystal symmetry).

For Fermi systems, when H_{N} is a bounded operator, the upper bound for the free energy can be easily obtained taking into account the convexity property of the function $A \rightarrow \operatorname{InTr} e^{A}$ [5] which leads to

$$
\begin{equation*}
F_{N} \leqslant F_{N}\left[H_{N}\left(\left(S^{(i)}\right)_{A V},\left(R^{(i)}\right)_{A v}\right)\right] \tag{17}
\end{equation*}
$$

and corresponds. to the so-called Mrirtual crystal approximation" in the theory of disordered systems.

The similar argument oannot be applied to the Bose systems when H_{N} is unbounded. Instead, we have our upper bound (6). The limit $T \rightarrow 0$ can be taken in (6) and (7) which gives the corresponding estimations for the ground state energy. On the other hand, the same result may be obtained
directly if we exploit the known integral identity

$$
\begin{equation*}
\operatorname{Tr}\left[\left(D^{(i) 2}\right)^{1 / 2}\right]=\frac{1}{2 \pi} \int_{0}^{\infty} d x x^{-3 / 2} \ln \operatorname{det}\left(I+x D^{(i)^{2}}\right) \tag{18}
\end{equation*}
$$

and then apply the basic inequality (1) .

References:
[1]. E.Lieb, T.Schultz, D.Mattis. Ann.Phys., 16, 407 (1961).
$[4$ E.J.Elliot, J.A.Krumhansl, P.I.Leath. Rev.Mod.Phys., 46, 465 (1974).
[3] MoMarcus, H.Minc. A Survey of the Matriz Theory and Liatrix Inequalities, Allyn and Bacon, Inc., Boston (1964).
ө7. С.В.Тлбликов. Нетоди квантовой теории нагпетизма, Ноула, ilocква (I975).
[6] D.Ruelle. Statistical Mechanics, Rigorous Results, W.A. Benjamin Inc., New York- Ansterdam (1969).

Received by Publishing Department on April 21, 1976

[^0]: Permanent address: Institute of Physics, Technical University, Wroclaw, Wybrzeze Wyspianskiego 27, Poland.

[^1]: *) With spin Ifamiltonian unitarily equivalent (Jorden-iiguner transformation) to some quadratic form in Fermi operators [1] .

