


Understanding of the quasiparticle (QF) characteristics of charge carriers forming
the normal-state electronic properties of high-T. superconductors (HTSC’s) is an
issue of current interest. [1] In particular, it is under debate now whether these
compounds can be described within the normal Fermi liquid (FL) approach, or a
more exotic scenario, for instance, the marginal FL (MFL) concept, [2] should be
involved.

In an attempt to understand the QP properties of HTSC’s one has to take info
account a strong difference between an intermediate and a low doping regime as it
follows from the angle resolved photoemission {ARPES) eiperiments. (3] Actually,
at the intermediate level of doping ARPES indicates a large Fermi surface (FS),
while the reference insulator compounds [4] show a hole dispersion that is compati-
ble with a small four—pocket shape of FS at low doping. In the latter regime, 2 hole
propagation is strongly affected by the presence of antiferromagnetic (A¥M) corre-
lations in the spin subsystem. The essential features of this problem are described
by the t — J model. |

In the present paper, we investigate the regime of low doping based on the
t — J model in the slave-fermion Schwinger boson rept_‘esenta,tion.. We are mainly
interested in a QP hole behavior near FS. We show that at zero temperature the
imaginary part of the hole self-energy ImX(k, w) « w?nw, which indicates a con-
ventional FL behavior of quasiholes. Qur result is at variance with one reported in
[5], where the MFL—beh_avinr of quasiholes is obtained even at T = 0. The reason
of this contradiction is discussed below. o

By using the stave—fermion Schwinger boson factorization for electron operators,
the t — J model with the Neel ground state can be mapped onto the so—called
spin—polaron [6, 7, 8, 9] model with the Hamiltonian given by
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where wq = zJ/2 1 — v with 7 = 3(cosky + cosky), s is the chemical potential
of holes, Mi(k,q) = Ma(k - q,—q) = (2qTk—q T vg7k), and z = 4 for the square
lattice; IV is the total number of sites, the lattice spacing is taken to be unity, and
ug, vq are the usual parameters of the Bogo]iubbv. U— trap'sf-drlerlati011. In the
Hamiltonian (1) hy (h{() are canonical spinless fermion operators a;.nd aq (aa) are
canonical boson operators: | -
We introduce the Fourier transformed two—tame retarded Green functmn (GF)
- Glk,w) =< hkih,k > for holes and the matnx GF D(q,w) =< Aq|Aq >, for
magnons Ag is the two-component opera.tor a.nd AJr = (aq, a_q) By applymg the
itreducible GF method [10] and using a decoupling procedure, which is equivalent
“to the self-consistent Born approximation (SCBA}, both for G'(k,w) and D(q,w},

we obtain: _ .
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where Dg(w) = [w—1"(q,w)]*—[wq +T* (g, w)P+M12(q,w) 2 (g, @) with HitQaw) =

1/2[14(q, w) £ ng_(q,w)]. The elements of the polarization operator l(q,w) for
the magnon GI has the form .

H“‘G(d’w) = %l_ qué(k,q) [‘/'d@’}dwz [r(ws) — nlwy)] MB‘:‘@ (4)
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where gop(k, a) = Mq(k,q)Mp(k, q) and pk(w) = ~1/7ImG{k,w) is the hole spec~
tra.l function. The hole self—energy E(k w) is glven by

Z(k,w) = (‘;%?/ / dondon [V () + 1= o)) 2= aloealen) (o)

w1~w2+m

where n(w) = (# + 1)1 and N(w) = (e8¢ — 1)1, In (5) we have introduced an

effective spectral function xy q(w) as
1 -
Xk,q(w) =~ Z gapl(k, Q)IlmDgp(q,w),” ()
of3 .

for spin fluctuations coupled to a pa,rticula,i* hole k-state.

* For the single-hole problem at zero temperature [7, 8] the self-energy (5) is
reduced and only thé contribution due to Dq1(q,w) remains. By considering the
case of finite hole concentration 6, the full form (5) is adopted heré, in contrast
to [5]. In a proper analysis, Eqs. (2)-(5) should be treated self-consistently, the
problem which, to our knowledge, can be soiVed_ only numerically. Here, we z'u‘g‘
interested in a particular question of calculating the damping of QF hole states in
an analytical way based on the well-established numerical results of SCBA.

Actually, spectral characteristics of a hole propagating in an AFM background at
low level of doping have been investigated in many works {11}, Those results led to
the consensus }tha.t 'thé hole spectrum involves a narrow QP band of coherent states
at low energies and a broad continuum of incoherent states. The corresponding

spectral function is then represented as py(w) = pf{"h(w) + p‘“c(w) with

pf{"h(w_) = Zyeb(w + p - Bx)- | o (M

The QP weight Zy and the bandwidth W are estimated to be Zy ~ J /t Z and

=~ 2J. The QP dispersion Ej in the vicinity of its minima ki = (:I:'.'r/2 +x/2) can
be expanded as Ey o = Ex; + K| /2m|| + kE2f2my. [8,9] Here ki, and k' are the
component of k - k; in the (1, ——1) and (1,1) directions in the Brillouin zone (BZ)
for k; = {w/2,7/2). For instance, the anisotropy factor a = m,) [my is calculated
to be @ = 6 for J = 0.3t [8] This anisotropy can be absorbed by the following
transformation k' — (ak“,k‘l), which does not change our final results. Hence, we

further consider the case my = my = m(~ J™') (7,8, 9]



From the above results one may expect that the filling of QP states leads to a
four—pocket F'S. Some arguments have also been given in [9, 12}, that the fraction
of BZ covered by these pockets at T = 0, is equal to the hole concentration 6.
This leads to the following estimations for the Fermi momentum kx = v/7é and the
chemical potential p = Ey + k%./2m.

The nearly structureless incoherent part p{;‘c(w) is distributed predominantly

above the QP band and can be approximated as [13]
mc(w') = (1/20)8(|’'| - J)8(2T — '), (8)

where 2I' ~ 2zt and ' is measured from the middle of the QP band. In Eq.(8)
the negative energy cutoff w, ~ —J — 2I'(1 — Z;)4 is implied. It is provided by the
sum rule N1 3%y [ dwn{w)pr(w) = § taken at T = 0 with the value of the chemical
potential p defined above. Numerical analysis [9, 12] of the model allows us to
conclude that w, does not depend on T {for T < J).

In the above formulated scheme (2)—(5) the QP damping is due to scattering by
spin-waves. Tor QP states near FS renormalization of low-lying long—wavelength
spin excitations (w < ep. = k%/2m, ¢ < 2kp < 1) is of erucial importance. This
renormalization is due to the coupling of spin—waves to "particle-hole” pair excita-
tions and is described by the polarization operator (4) which contains three contri-
butions. The first part TI°7%(q,w) is due to the transitions 'wi’shin the narrow QP
band, when both py(w:) and py_g(ws) in Eq.(4) are replaced by pc"h‘. The remaining
two terms II°7¥(q,w) and ITF~¥(q,w) are provided by the coherent—incoherent and

mcoherent—mcoherent transitions.

First, considering TI¥%(q,w) we come to the {following expression for small |q| <

1
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where g = (k"2/2m — €F) is a hole energy referred to the Fermi level ¢p and the
summation over i is due to the presence of four equivalent minima. Since for small
momentum |g| <€ 1 the vertex function M, 2(k,q) is proportional to /g, we make

an approximation M a2(k; + k',q) = 4+ M{k;, q), where
M(k,q) = 2754~ (gz sin ky + g, sin £y, (10)

to keep the leading contributions in Eq.(9). This leads to the following relations
between the elements of the polariza,tioﬂ operator: 1157°(q,w) = MH(q,w) =
“N55¢ (g, w) = ~T57°(q,w) = Mg (w)- We also note that the summation over iin
Eq.(9) introduces an effective interaction 3 |M(k:;,q)f* = q/v2. Then, for T =0

we obtain the following expressions for the real and imaginary parts of Mg (w),

Rell ) = C{ g + sealolg. ) ) +sgali(e,—vta. "), (D)

Imlly(ew) = C{[-vlaw)? = (v(g. -7}, (12)

where 7(gq,w) = mw/g + /2, v{q,w) = 7°(g,w) — (kp) and C = 4V2mi2Z2 [x ~
44/2J/n. The step-O@-functions insuring the positivity of the arguments of the
square roots are implied in Eqs.(11) and (12).

For further purposes we fix also the asymptotic, w — 0, behavior of Mg (w) for

g < 2kg
: Créq®
Im T, (w) = 0, Rell,(w) = 7—=5, - (13)
forw/g > kp/m, while for w/g < kp/m one has
-2
ImIy{w) = Cme Rell(w) = ~Cyq. (14}

V(Zkr)? = g%’
The limiting case (13) is important in calculating of the renormalized spin-wave

velocity, which will shortly be discussed below. The limit (14} corresponds to that



region of the spin fluctuation spectrum, generated by "particle-hole” excitations,
which produces finite damping of quasiholes near I'S. In this respect, we note the
conventional linear w—dependence of ImIl, (w) in Eq. (14) in contrast to a marginal
(q; and w-independent, at T = 0) form of ImI,(w} in [5] (see Eq.(19) there). The
reason of this difference can be explained as follows. Due to the incorrectly defined
limits of integration in Egq.(14) of [5], the authors lost part of the polarization
operator (which is presented by the second term in the curly brackets in Eq. (12) in
this paper), which led to wrong subsequent approximations.

Considering the remaini_n'g contributions ]"[Z?(q,w) and H:;."(q,w) we note that
each of them is characterized by a threshold energy A for creating a "particle~hole™
pair excitation. Namely, A = ¢ for processes involved in H;}i(q, w)and & = 2J
for Hi’g(q,w). Therefore, Imﬂi"ﬁ =0, wh/ere_ l'[fx"‘é3 = Hg‘_ﬁ" + I'[‘[';G", for frequencies
w < gF we are interested in. Evaluation of Rell}j'{ requires the summation over ail
virtual processes,which gives a finite estimate for these quantities even as w — 0. To
the lowest order in ¢ and § for Reﬂg*g we obtain Reﬂi’}fzz(q,w) o —ReII‘f{,fz](q,w) T
~Agé where A is poéitive and can be estimated as A ~ t/v2{In(zt/J) + 241 -
Z) (2 246) + 1]} '

A position of the pole in the spin-wave GF in the long-wavelength limit is now

determined as

g = way/1 — 2(Ag — Relly(w)}/wg + O(8?). (15)

Since the unrenormalized spin—wave velocity @ = v/2J, is much larger than the
Fermi velocity vp = V/78J one has to take in Eq. (15) the limit (13) which gives
Relly(w,) = w,d. Thus the renormalized spin-wave velocity now reads #(§) =
/1 — 2(Afu — 1)5. For the actual values of § it holds A/u 3> 1 and hence, one
obtains, in accordance with [9, 13], a spin—-wave softening due to the presence of
the incoherent part in the hole spectrum,

The above estimation for & is valid up.to the critical hole concentration 8. which

is defined as 4(8.) = vr(= Vwé.J). In particular, for J/t = 0.3 we estimated
8, =~ 0.04. Tor higher concentrations § > 4., by taking the corresponding limit
{14) one can see from Eq.(15) that the pole ©q becomes purely imaginary. So; the

long-wavelength magnons, with ¢ < 2kp lose their identity and can not be now

'~ detached from the incoherent part of the spectrum produced by pair excitations.

Disappearance of the long-wavelength magnons due to dilution of the AFM state

with holes was connected by several authors’ [14] with the occurrence of a phase

" transition into a disordered magnetic phase. The applicability of the spin—polaron

model in the disordered phase will be discussed bellow.
Let us consider the effective spectral function (6). By using the approximated
vertex function (10) for the momentum near FS, &' ~ kp (k' = k- k;), we obtain
X1k ,q(@) = —1/7| M (ki, )P I D(q, w), (16)

where M(ki, q) = 27341 2qk; and f)(q,w) = Dp — 2D13 -~ Dga. Taking into
account the relation between the elements of the polarization operator II{q,w), that

has been obtained above, we write
ImD(q,w) = 4w3ImIly(w)/|Dg(w)* ()

For the actual region of the w— and g-variables, defined as w/g < vp, where the
part of spin fluctuation spectrum responsible for the qua,sihqle damping is located,
one has [Dq(Q)iz = [w?+ 2?1 + [2wqImIl (w)]? with ¢ = uy/2(A + O)fu—1> vp.
This strong inequality allows us to take the static limit, w — 0, for Dg(w) in Eq.
(17) that results in ' ' | '

i 1e,q(®0) & — 1/ n/B{a Pl () @i o0 (8)

Inserting (18) into (5) one obtains for the imaginary part of the hole self-energy

Im%(k, £) o(]/ dy cos? Qdﬂ/dwlmﬂq(ﬁ.})ﬁ(s - W= Elr_g), (19)
. 0 ’ - ’



where cos# = dk;, k' = k ~ k;, ¢ is the hole energy referred to the Fermi level and
ImIly(w) is defined in Eq. (14).

‘Like in the conventional considerations of the 2-dimensional (2D) FL, [15] the
major contribution to ImE is given by scattering processes with the_ momentum
transfer g almost parallel to k’. These processes result in the following dependence

for TmX familiar- for the 2D FL: [15]
tm3(K, ) o< f(KK:l)(e? fer) (e /e ). e)

Here, a. k'~dependence of Im¥ is due to the aniéotfoi)y of the vertex (10) and is
given by f(|k'k;|) which is a positively def_in_edx smooth function of its variable.

' Up to now we have considered the scattering f)rocesses r_eta,ining a quasihole
in the vicinity of the same hole-pocket. There exist, however, 'pmcesses in which
the hole scatters from a given hole-pocket to the opposite or neighboring one, with
momentum transfer q ~ Q (Q is the AFM wave vector) and q ~ Q' = .(’.'i.',O),
respectively. Since the symmetry of the problem provides the ‘equivalence of ¢ <1
and ¢’ = |Q — g| < 1, the first process gives just an extra factor 2 in ImE. Further,
the vertex function M(k;, q) falls much faster at q =~ Q' than at g ~ 0 (or Q) and
the second kind of processes gives higher order corrections .in w. So, the conventional
91 FL behavior is expected for quasiholes at low doping.

Being originally formulated for a state with the AFM ordered spin subsystem,
the spin—polaron model requires some justification if one tries to extend it to a
disordered phase, ’i.e. either to 6§ > 8, at T = 0 or T > 0. Actually, [16] the
hole spectrum is weakly affected by the absence of the long-range order, provided
that the AFM correlations with the radius £§>» Ry survive (R, is the size of the
spin—polaron associated with a hole). It means that hole propagation over the same
sublattice dominates and the four—pocket FS survives as well;

Connecting the magnetic phase transition at § = &, with the disappearance

of long-wavelength magnons with ¢ < 2k, we did not find, however, any abrupt

change in that low-lying part of spin fluctuation spectrum which is responsible for
the quasihole damping. Therefore, one may expect that not only the QP dispersion
relation but also the character of the quasihole damping (20) do not change for &
slightly above §;.

This picture breaks down with further dilution of the magnetic subsystem, when
the magnetic correlation length becomes comparable with the size of the spin—
polaron. In this case, the nearest—neighbor hole hopping becomes dominant and
a transition to a large FS takes place. However, this regime is beyond the scope of
the present consideration. -

Considering a possible effect of finite 7 (low enough to provide { > R,, } we point
out the existence of a characteristic temperature T4(§) above which one may expect
different hehavior of a quasihole subsystem as compared to the low temperature case,
T < Ty(8). Actually, the Fermi-ensemble of quasiholes goes over into the strongly
nondegenarate regime when the temperature Ty(§) = ¢p = 1.5.15 is reached (for
instance, Ty =~ 100K at § = 0.05 for J = 1500K). That is a result of the strong
renormalization of the chemical potential g with T, which is naturally inherent
in a fermion system of low density. Really, our analytical estimations, as well as
numerical calculations, [12] show that g crosses the bottom of the QP band at
T =~ Ty and for T > Ty lies in the low energy incoherent part of the hole spectrum.
This results in a dramatic change in the momentum distribution functién N{E): the
four-pocket structure existing at T' < Ty is almost washed out-at T > Ty. [12] The
onset of this strongly nondegenerate regime for hole carriers should manifest itself
in a strong change of the thermodynamic and transport properties of the system,
the problem which requires further theoretical and experimental studies.

In summary, we have investigated the quasihole da,m‘ping in the low doping
regime, § < 1, of the 2D t — J model. The self-energy parts for the hole and
magnon GF are derived within the self~consistent Born approximation. Based on



the well established results [11] for the spectral density function of a hole moving in
the AFM background, we first have calculated renormalization of spin—wave excita-
tions due to the presence of holes. With increasing hole concentration 4, softening
of the long-wavelength spin—waves followed by their overdamping at § > 8.(= 0.04)
has been obtained. The renormalized spectrum of spin excitations was incorporated
to calculate the imaginary part ImZ(k, ) of the hole self-energy. It has been shown
that ImE, as ¢ — 0, possesses the form (20) characteristic of the conventional Qﬁ

FL:
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