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Understanding of the quasiparticle (QP) characteristics of charge carriers forming 

the normal--state electronic properties of high-Tc superconductors (HT$C's) is an 

issue of current interest. [1] In particula~, it is under debate now whether these 

compounds can be described within the 'normal Fermi liquid (FL) approach, or a 

more exotic scenario, for instance, the marginal FL (MFL) concept, [2} should be 

involved. 

In an attempt to understand the QP properties of HTSC's one has to take into 

account a strong difference between an intermediate and a low doping regime as it 

follows from the angle resolved photoemission (ARPES) experiments. [3] Actually, 

at the intermediate level of doping ARPES indicates a large Fermi surface (FS), 

while the reference insulator compounds [4] show a hole dispersion that is compati

ble with a small four-pocket shape of FS at low doping. In the latter regime, a hole 

propagation is strongly affected by the presence of antiferromagnetic ( AFM) corre

lations in the spin subsystem. The essential features of this problem are described 

by the t - J model. 

In the present paper, we investigate the regime of low doping based on the 

t - J model in the slave-fermion Schwinger boson representation. We are mainly 

interested in a QP. hole behavior near FS. 'vVe show that at zero temperature the 

imaginary part of the hole self-energy ImE(k, w) ex w2 ln w, which indi~ates a con

ventional FL behavior of quasiholes. Our result is at variance with one reported in 

[5], where the MFL-beh_avior of quasiholes is obtained even at"T = 0. The reasOn 

of this contradiction is discussed below. 

By using the slave-fermioll Schwinger boson factorization for electron operators, 

the t - J model with the N eel ground state can be mapped onto the so-called 

spin-polaron [6, 7, 8, 9] model with the Hamiltonian given by 

H = I;wqoo~ooq -I" :~::>khk +:;, L>khk-q[M,(k,q)ooq+ M2(k,q)oo~q], (1) 
q k k,q 
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l where wq = zJ /2-j 1 - 1a with /k = !C cos kx + cos ky ), J1 is the chemical potential 

of holes, M1 (k, q) = M2(k- q, -q) = ( Uq"fk-q + Vq"fk), and z = 4 for the square 

lattice; N i& the total number of sites, the lattice spacing is taken to be unity, and ,., . 

uq, Vq are t~e usual parameters of the Bogoliubov- u- v trap.~formation. In the 

Hamiltonian (1)' hk (hL_) _are canonical spinless fermion operatOrs and aq (at) are 

canonical boson operators. 

We introduce the Fourier transformed two-time retarded Green function (GF) 

G(k,w) =< hkl~ ?>w for holes and the matrix GF D(q,w) =< Aq[A~ ?>w for 

magnon~, Aq -is the two-:-component operator and At = (at, CLq)· By applying the 

irreducible GF method [10] and using a decoupling procedufe, which is equivalent 

to the self-consistent Born approximation (SCBA), both for G(k,w) and D(q,w), 

we obtain-

a-1(k,w) = w + Jt- E(k,w), (2) 

D( )
- _1_(wq+w+IT,(q,w) -II12(q,w) ) 

q,w- , 
Vq(w) -II21 (q,w) wq- w + Iln(q,w) 

(3) 

where Vq(w) = [w-rr-( q,w)J'-[wq+II+( q, w )]2+II12( q,w )II,l( q, w) with rr±( q,w) = 

1/2[IIn(q,w) ± II22(q,w)]. The elements of the polari2ation operator Il(q,w) for 

the magnon GF has the form 

= 
Ilop(q,w) = (z~' LYop(k,q) jj dw1dw2 [n(w2)- n(w1)] Pk(wl)Pk-q(w,), (4) 

k w-~+~+~ 
-= 

where Yop(k,q) = M0 (k,q)Mp(k,q) and Pk(w) = -1/7rlmG(k,w) is the hole spec

tral function. The hole self-energy E(k, w) is given by 

E(k,w) = (z~' I;jj+= dw1dw2 [N(w,) + 1- n(wi)] Pk-q(wl)xk,q(w,), 
Q _

00 

W - Wt - Wz + '1-Tf 
( 5) 
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where n(w) = (ePw + 1)-1 and N(w) = (ePw -1)-1. In (5) we have introduced an 

effective spectral function Xk,q ( w) as 

1 
Xk,q(w) = -; L9op(k,q)ImD0 p(q,w), 

oP 

(6) 

for spin fluctuations coupled to a particula-f hole k-state. 

For the single-hole problem at zero temperature [7, 8] the self-energy (5) is 

reduced and only the contribution due to Dn(q,w) remains. By considering the 

case of finite hole concentration 0, the full form ( 5) is adopted here, in contrast 

to [5]. In a proper analysis, Eqs. (2)-(5) should be treated self-consistently, the 

problem which, to our knowledge, can be solved only numerically. Here, we ar~ 

interested in a particular question of calculating the damping of QP hole stateS in 

an analytical way based on the well-established numerical results of SCBA. 

Actually, spectral characteristics of a hole propagating in an AFM background at 

low level of doping have been investigated in many workS (11]. Those results led to 

the consensus _that the hole spectrum involves a narrow QP band of coherent states 

at low energies and a broad continuum of incoherent stat~s. The corresponding 

spectral function is then represented as Pk(w) = Pk'h(w) + pj;''(w) with 

Pk'h(w) = ~8(w + Jt- Ek)· (7) 

The QP weight Zk and the bandwidth W are estimated to be Zk oe J ft "' Z and 

W oe 2J. The QP dispersion Ek in the vicinity of its minima k; = (±1r /2, ±1r /2) can 

be expanded as Ek;+k' oe Ek, + kfr/2mu + k'J./2mi· [8, 9] Here k(1 and k'c are the 

component of k- k; in the (1, -1) and (1, 1) directions in the Brillouin zone (BZ) 

fork;= (7r/2,7r/2). For instance, the anisotropy factor a= mu/mi is calculated 

to be a = 6 for J = 0.3t. [8] This anisotropy can be absorbed by the following 

transformation k'--+ (akfp k~_), which does not change our final results. Hence, we 

further consider the case mu = mi = m(~ J-1
) [7, 8, 9] 
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From the above results one may expect that the filling of QP states leads to a 

four-pocket FS. Some arguments have also been given in (9, 12], that the fraction 

of BZ covered by these pockets at T = 0, is equal to the hole concentration 6. 

This leads to the following estimations for the Fermi momentum kp = .J1f8 and the 

chemical potential I' = Ek, + k}/2m. 

The nearly structureless incoherent part Ptc(w) is distributed predominantly 

above the QP band and can be approximated as [13] 

pj;'"(w') = (1/2f)O(Jw'J- J)0(2f- w'), (8) 

where 2f "' 2zt and w' is measured from the middle of the QP band. In Eq.(8) 

the negative energy cutoff We~ -J- 2f(l- Zk)6 is implied. It is provided by the 

sum rule N- 1 'Lkf dwn(w)pk(w) = 8 taken at T = 0 with the value of the chemical 

potential f-l defined above. Numerical analysis [9, 12] of the model allows us to 

conclude that w, does not depend on T (forT< J). 

In the above formulated scheme (2)-(5) the QP damping is due to scattering by 

spin-waves. For QP states near FS renormalization of low-lying long-wavelength 

spin excitations (w ~ EF = k}/2m, q ~ 2kp ~ 1) is of crucial importance. This 

renormalization is due to the coupling of spin-waves to "particle-hole~' pair excita

tions and is described by the polarization operator (4) which contains three contri

butions. The first part rrc-c(q,w) is due to the transitions within the narrow QP 

band, when both Pk( wl) and Pk-q( w2) in Eq .( 4) are replaced by p'"h The remaining 

two terms rrc-i(q,w) and rri-i(q,w) are provided by the coherent-incoherent and 

incoherent-incoherent transitions. 

First, considering rrc-c(q,w) we come to the following expression for smalllql ~ 

1 

ll~.B'(q,w) = (z~
2 

Lz~,Mo(ki + k',q)Mp(ki + k',q) (n(£k'-q)- n(£k,)] 
i,k' W- Ekt + Ck'-q + i7]

1 (9) 
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\~here Ek' = (k'2 f2m- £F) is a. hole energy referred to the Fermi level £F and the 

summation over i is due to the presence of four equivalent minima. Since for sm~ll 

momentum [q[ ~ 1 the vertex function Mt,z(k, q) is proportional to Vfj, we make 

an approximation M1,z(ki + k',q) = ±M(ki,q), where 

M(k, q) = T 514q-112(qxsin kx + qy sin ky), (10) 

to keep the leading contributions in Eq.(9). This leads to the following relations 

between the elements of the polarization operator: II~lc(q,w) = II~2c(q,w) = 

-I1~2c(q,w) = -TI~lc(q,w) = Uq(w). We also note that the summation over i in 

Eq.(9) introduces an effective interaction L;, ]M(k,,q)J2 = qj,fi. Ther, forT= 0 

we obtain the following expressions for the real and imaginary parts of IIq(w), 

ReTI,(w) = C { -q + sgn[~(q, w)][I'( q,w)] 112 + sgn[~( q, -w )][v(q, -w)]
1
1
2
}, (11) 

Imll,(w) = c{[-v(q,w)]112
...: [~v(q,-w)]'l2 }, (12) 

where ~(q,w) = mwfq + q/2, v(q,w) = ~2(q,w)- (kp)2 and C = 4,fimt2 Z2 /~ ~ 

4..;2J /tr. The step-8-function~ insuring the positivity of the arguments of the 

square roots are implied in Eqs.(ll) and (12). 

For further purposes we fix also the asymptotic, w ~ 0, behavior of IIq(w) for 

q < 2kp: 

lmiT,(w) = o, Rell,(w) = Ctr8q
3 

2m2w2' 

for wfq > kpfm, while for wfq < kpfm one has 

-2Cmw 
) 2' ImTI,(w = J(2kp)Z q 

Rell,(w) = -Cq. 

(13) 

(14) 

The limiting case (13) is important in c.alculating of the renormalized spiH·-wavP 

velocity, which will shortly be discussed below. The limit (14) corresponds to that 
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region_ of the spin fluctuation spectrum, generated by ''particle-hole'' excitations, 

which produces finite damping of quasiholes near FS. In this respect, we note the 

conventional linear w-dependence of Imiiq(w) in Eq. (14) in-contrast to a marginal 

(q- and w-independent, at T = 0) form oflmJI,(w) in [5] {see Eq.{19) there). The 

reason of this difference can be explained as follows. Due to the incorrectly defined 

limits of integration in Eq.(14) of [5], the authors lost part of the polarization 

operator (which is presented by the second term in the curly brackets in Eq. (12) in 

this paper), which led to wrong subsequent approximations. 

Considering the remaining contributions II~t/{q,w) and II~pi(q,w) we note that 

each of them is characterized by a threshold energy ~ for creating a "particle-hole" 

pair excitation. Namely,~= £F for proce~ses involved in n~pi(q,w) and~= 2J 

for ll~ff(q,w). Therefore, Imll~p = 0, where ll~J = ll~{/ + ll~[Ji, for frequencies 

w < £p we are interested in. Evaluation of Ren~n.J requires the summation over all 

virtual processes, which gives a finite estimate for these quantities even as w ----t 0. To 

the lowest order in_q and b for Refi~J we obtain Reiii~~22(q,w) ~ -Relli~~21 (q,w) ~ 

..:Aqo where A is positive and can be estimated as A "" tf-/'i{ln(ztfJ) + z2{1-

z.)[ln(2Jfzto) + 1]}. 

A position of the pole in the spin-wave G F in the long-wavelength limit is now 

determined as 

wq = wqJ1- 2[Aqo- Rerr,(w)J/w, + o(o2
). {15) 

Since the unrenormalized spin-wave velocity u = -../2J, is much larger than the 

Fermi velocity VF = v:;r§J one has to take in Eq. {15) the limit {13) which gives 

ReiT,(w,) "" w,o. Thus the renormalized spin-wave velocity now reads u(o) = 

uy'1- 2(Afu- 1)6. For the actual values of 6 it holds Afu ?> 1 and hence, one 

obtains, in accordance with [9, 13}, a spin-wave softening due to the presence of 

the incoherent part in the hole spectrum. 

The ahove estimation ·for U is valid up to the critical hole concentration be which 
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is defined as u(o,) = VF(= ~J). In particular, for Jft = 0.3 we estimated 

be ~ 0.04. For higher concentrations b > be, by taking the corresponding limit 

{14) one can see from Eq.(15) that the pole wq becomes purely imaginary. So; the 

long-wavelength magnons, with q ::; 2kF lose their identity and can not be now 

detached from the incoherent part of the· spectrum produced by pair excitations. 

Disappearance of the long-wavelength magnons due to dilution of the AFM state 

with holes was connected by several authors· [14} with the occurrence of a phase 

transition into a disordered magnetic phase. The applicability of the spin-polaron 

model in the disordered phase will be discussed bellow. 

Let us consider the effective spectral function (6). By using the approximated 

vertex function (10) for the momentum near FS, k' ~ kF (k' = k ~ k;), we obtiUn 

Xk;+k',q(w) "" -1/lr[M{k;, q)I 2ImD( q, w ), {16) 

where M{k;,q) = 2-3/ 4q112qk; and D{q,w) = D11- 2D12- D 2 ,. Taking into 

account the relation between the elements of the polarization_ operator II( q, w ), that 

has been obiained above, we write 

- 2 2 ImD(q,w) = 4wqimJI,(w)/IVq{w)[ . {17) 

For the actual region of the-w- and q-variables, defined as wfq < VF, where the 

part of spin :fluctuation spectrum responsible for the quasiho_le damping is located, 

one has 1Vq(w)l2 = [w2 +c2q2]2+[2wqimJI,(w)F with c = uy'2(A + C)fu 1 ?> VF. 

This strong inequality allows us to take the static limit, w ---+ 0, for Dq(w) in Eq. 

{17) that results in 

Xk;+k',q(w)"" -1/,.-.fi(u/c2j'ImiT,(w)(qJq)2q-'1 . (Hi) 

Inserting {18) into {5) one obtains for the imaginary part of the hole self-energy 

0 

ImE{k', e) oc j j dq cos2 OdO j dwimiT,(w)8(t- w- "k'-q), 
0 
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where cos 0 = q:ki, k 1 ::::: k- ki, £ is the hole energy referred to the Fermi level and 

Imll,(w) is defined in Eq. (14). 

Like in the conventional considerations of the 2-dimensional (2D) FL, [15] the 

major contribution to Im:E is given by scattering processes with the momentum 

transfer q almost parallel to k'. ·These processes result in the following dependence 

for !mE familiar. for the 2D FL: [15] 

lmE(k',£) ex f(ik'JGI)(£2 /EF) ln(e/EF ). (20) 

Here, a. k'-dependence of Im:E is due to the anisotropy of the vertex (10) and is 

given by f(lk'JGI) which is a positively defined smooth function of its variable. 

Up to now we have considered the scattering processes retaining a quasihole 

in the vicinity of the same hole-pocket. There exist, however, processes in which 

the hole scatters from a given hole-pocket ,to the opposite or neighboring one, with 

momentum transfer q ~ Q (Q is the AFM wave vector) and q ~ Q' = (1r,O), 

respectively. Since the symmetry of the problem provides the ·equivalence of q < 1 

and q' = jQ- qj < 1, the first process gives just an extra factor 2 in ImE. Further, 

the vertex function M(k;, q) falls much f,.ter at q"' Q' than at q"' 0 (or Q) and 

the second kind of processes gives higher order corrections in w. So, the conventional 

2D FL behavior is expected for quasiholes at low doping. 

Being originally formulated for a state with the AFM Ordered spin subsystem, 

the spin-polaron model requires some justification if one .tries to extend .it to a 

disordered ph,.e, i.e. either to b > b, at T = 0 or T > 0. Actually, [16] the 

hole spectrum is weakly affected by the absence of the long-range order 1 provided 

that the AFM correlations with the radius ~ > Rp survive ( Rp is the size of the 

spin-polaro:rl associated with a hole). It means that hole propagation over the same 

sub lattice dominates and the 'four-pocket FS survives as well. 

Connecting the magnetic phase transition at 6 = be with the disappearance 

of long-wavelength magnons with q 5 2kp, we did not find, however 1 any abrupt 
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change in that low-lying part of spin fluctuation spectrum which is responsible for 

the qua.sihole damping. Therefore, one may expect that not only the QP dispersion 

relation but also the character of the quasihole damping (20) do not change for b 

slightly above be. 

This picture breaks down with further dilution of the magnetic subsystem,-when 

the magnetic correlation length becomes comparable with the size of the spin

polaron. In this case 1 the nearest-neighbor hole hopping becomes dominant and 

a transition to a large FS takes place. However, this regime is beyond the scope of 

the present consideration. 

Considering a possible effect of finite T (low enough to provide~::.:'}> Rv) we point 

out the existence of a characteristic temperature Ta( 6) above which one may expect 

different behavior of a qua.sihole subsystem as compared to the low temperature case, 

T ~ Td( 6). Actually, the Fermi-ensemble of quasi holes g~:ms over into the strongly 

nondegenarate regime when the temperature Td(b) ~ fF :::::::: 1.5.lb is reached (for 

instance, Td ~ lOOK at b = 0.05 for J = 1500K). That is a result of the strong 

renormalization of the chemical potential J1 with T, which is naturally inherent 

in a fermion system of low density. Really,· our analytical estimations, as well as 

numerical calculations, [12] show that J1 crosses the bottom of the QP band at 

T ~ Ta an~ forT> Td lies in the low energy incoherent part of the hole spectrum. 

This results in a dramatic change in the momentum distribution function N(k): the 

four-pocket structure existing at T < Td is almost washed out at T > Td. [12] The 

onset of this strongly non degenerate regime for hole carriers should manifest itself 

in a strong change of the thermodynamic and transport properties of the system, 

the problem which requires further theoretical and experimental studies. 

In summary, we have investigated the quasihole damping in the low doping 

regime, 6 ~ 1, of the 20 t - J model. The self-energy parts for the hole and 

magnon GF are derived within the self-consistent Born approximation. Based on 
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the well established results [11] for the spectral density function of a hole moving in 

the AFM background, we first have calculated renormalization of spin-wave excita

tions due to the presence of holes. With increasing hole concentration 0, softening 

of the long-wavelength spin-waves followed by their overdamping at 6 > 6,(,; 0.04) 

has been obtained. The renormalized spectrum of spin excitations· was incorporated 

to calculate the imaginary part ImE(k, £) of the hole s~lf-energy. It has been shown 

that lmE, as c --+ 0, possesses the form (20) characteristic of the conventional 2D 

FL; 
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HopMa.rihHOc cpept-.m-/KH.UKOCTnoe nose.aem-te KBa3H.UhipoK 

' .. 
B CmfH-ll01Hip01-1HOH MO.[{CJJH MC.UHbiX OKCH.UOB 

Ha OCHOBC t- } MO,UCJIH 3 C3MOCOfn3COB3HI-IOM 6opHOBCKOM npw6m-t)KCHHH 

HCCJIC.UOB3fl0 33TYX3HHC KB33H".UbipOK B6JJI.BH nosepXHOCTH ¢epMH B pe%H"Me MaJIOrQ 

.UOI1Hp0B3HH51. I10K333HO, l.JTO MHBHMaJlbllasl 'JaCTh M3CCOBOro onepaTopa KB33H

)lblj)OK onHCbJBaeTc" msecTHOi1 <jJopMynoii lm 2: ( k', £) = (£
2 

/£F) In (£/£F), xa

paKTepHo~ JUUI .UByMeptiOH ciJcpMH->i-afllKOCTH, 3 OTJIWIHe OT paHHCro )tfBep)K.UCIIH51· 

o MaprHJiaJJbiiOM noBe!lei!HH KBaJH!IhlpoK [Phys. Rev., 1995, v.B51, p.6343]. 

Pa6oTa BMIIOJJHeua s .na6opaTOplm TeopeTw-IecKoH QJH3HKH HM. H.H.Eoromo-
6osa OIUII1. 

IlpcllpHHT QfuemiHCHHOro HHCTHT.YTa 511tCpllhiX HCC;lCJ{OBaHHii. 1ly611a. 1997 

Jackeli G., Yushankhai V.Yu. 
NorrJ!al Fermi-Liquid Behaviour of Quasiholes 
in the Spin-Polaron Model for Copper Oxides 

E17-97-43 

Based On the t- J model and thc.self-consist~nt Born approximatiOn, damping 
of quasiparticle hole states near the Fermi surface is calculated in a low doping 
regime. Renormalization of spin-wave excitations due to hole doping is taken 
into account. The clamping is shown to be described by a familiar form 

lm 'L ( k', E)"" (e2 
/ EF) ln (£/ EF) characteristic of the 2-dirnensional Fermi' liquid, 

in contrast with the earlier statement reported by Li and Gong [Phys. Rev., 1995, 
v.B51, p.6343] on the marginal Fermi behaviour of quasiholes. 

The investigation has 
of Theoretical Physics, JINR. 

been pe~fonned at the Bogoliuboy Laboratory I 
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