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Orientational States of a C¢y Molecule in Crystals ‘

The local symmetry of the orientational states of a C,, molecule in crystals

is investigated. It is shown that in different crystals different orientational phase
transitions are connected with different orientational orbits. The model
of orientational phase transitions based on a sequence of orientational states
of different symmetry is proposed. It is discovered that the local symmetry
and the symmetry of internal vibrations of a Cgp molecule increase as the spatial

symmetry of a crystal decreases at phase transition. This effect has the general
character and may be observed following orientational phase transitions of the order-
disorder type with wave vector at the boundary of the Brillouin zone. Possible
manifestations of the predicted effect in different experiments are discussed.
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1. Introduction

It is known that phase transitions in fullerene crystals result in a change of the
orientational state of a Ceo molecule. Experimental investigations of a pure Cgo crystal
(fullerite) [1] show that Cg molecules in the high-symmetry phase Fm3m experience
anisotropic and retarded rotation and at the phase transition Fm3m — Pa3 the rotation
disappears and orientational’ ordering of Cg molecules takes place. In ACg crystals
(fullerides), where A=K, Rb, a more complicated phase transition Fm3m — Pnnm occurs and
in the low-symmetry phase Pnnm orientational ordering of molecules is accompanied with
molecule strains. These two effects lead to formation of covalent bonds between nexghbormg
Ceo molecules {2]. In both of these cases the order parameter of the phase transition connects
the averaged orientational states of Ceg molecules in the high- symmetry and low symmctry
phases and describes orientational ordermg of the molecules.

At present, there does not exist a unified theory of changes of the orientational states
of a Cg molecule. As a result two methods are used 'to describe phase transitions in
fullerenes, the continuous™ and ‘the” dtserete methods. Each “describes” adequately the
onentanonal states of a Cqo molecule in only one phase. The continuous method was used'to
describe rotatmg Ceo molecules in the phase Fm3m. The method uses, an expansion of the
averaged” anisotropic distribution ‘of Ceg molecule orientations 'in symmetnzed ‘spherical
functions transformmg in accordance with 1rreducxble represcntations of icosahedric (Y}) or
cublc (Oy) point groups [1]. In this approach it'is difficult to describe the particular selected
orlentatlon of a Ceg molecule in the low-symmetry phase of a erystal as well as the molecule
strain at phase transition in ACeo fullerldes In' the” discrete’ approach to ‘describe the
orlentatlonal phase “transition in fullerites, discrete orientational states of a rotating Cyp
* molecule are used {3} (see also [1]). In this case, the oricntational state of a Cqy molecule in

the low- symmctry phase is deseribed’ exactly anid the state of a rotating molccule in the high-
symmetry phase is described approxxmately by a set of discrete orientational states. Since the
discrete method describes exactly the orientational states ‘of a Cq; molecule in the’ low-
symmetry phase of a crystal, it is obvious that other physical propertics of the low- symmetry
phase connected with the orientational phase transition are’ also described adequately by this
methiod. For ¢xample, in [4], the strain”of a’ Cqo molecule at phase transition' in a ACep
fuHeride erystal is described with the help of the generalization of the discrete méthod. ‘
o In this paper, it is shown that some phystcal propertles of the high-symmetry phase can
be also described by the discrete method. This is possible due to ‘the fact that different
orientational states of a Cqy molecule in a crystal have different local symmetry. Hence it
follows that the physical phenomena observed i in the high-symmetry phase and conneeted with
definite discrete orientational states 'can be classified with respéct to the orientational state
symmetry.. . . . -
' In Sec. 2, all onentatlonal states of a C(,o molecule of dlfferent local symmetry in the
phase Fm3m are constructed. On the basis of the orientational states the phase transition is
discussed (Sec. 3) and the atomic density distributions of a rotating Ceo molecule are built :
. (Sec. 4). The local symmetry and the symmetry of internal vibrations of a Ceo molecule in a.;
erystal are investigated in Sec. 5. In Sec. 6, we discuss possible experimental verifications of

.
)f; Ehetuimd Luocwrey 5

Faydzh §'3




!he prefiicted orientational states by the neutron and X-ray diffraction methods. The effect of
increasing the symmetry of internal vibrations of a Cg molecule at phase transition by
investigating the scattering of light will be also discussed.

2. The symmetry of the orientgtionél states of a Cgp niolecule

To determine the type of the orientational states, let us investigate the orientations of
Cep molecules of icosahedric symmetry occupying a position in the crystalline lattice of cubic
symmetry. The molecules Cgp have the point symmetry group Yy which, as is shown in Table
1, has 6 five-fold symmetry axes (Cs), 10 three-fold symmetry axes (C3), 15 two-fold (C2)
sym.n_wt'ry_a.xes, and the inversion (I). In the crystalline lattice, Cep molecules occupy the
positions with the local symmetry Oy. The point group Oy has 3 four-fold symmetry axes
(C4), 4 three-fold axes, 6 two-fold, and inversion. ’ e
' A comparison of the sets of symmetry axes for the, groups O, and Y, shows that to
obtain one of the four-fold symmetry axes of the cubic crystal, the Cgo molecule must occupy
two discrete orientationg‘il states, if a two-fold symrhetry axis.of the Cgo molecule is directed
along one of three <100> directions, or four discrete states, if the Cgo molecule has any other
orientation. If in a crystal the two-fold symmetry axis of the Cgo molecule is oriented élong
one of three <100> directions, the Ceo molecule can be rotated about this two-fold symmetry
axis so that its three-fold symmetry axes would bé oriented along the <111> crystal directions.
This provides most symmetric occupation by Ce molecules of positions in a cubic crystalline
lattice (see Fig. 12) and results in two. so-called “standard’ orientations interrelated by 90°
rotation about the axis coinciding with any direction of the <100> type. The Cgo molecule in
the crystalline lattice of the phase Fm3m which occupies a position with the symmetry Op and
has the standard orientation has the local symmetry Ty=Op M Y}, [5]. This is realized in A;Ceo
crystals, where the Cgp molecules are statically disorderéd}()v‘e'r two ‘standard’ orientations [6].
.+ In what follows, we discuss.the situation Wlien'onl'y‘brnei_‘of three-fold symmé)t.ry axes
of a Co molecule coincides with one of <111>, directions.in a cubic crystal (sce Fig. 1b).
Accounting for, the symmetry: with respect to inversion we obtain that six elements. of
symmetry that form the point group Se=(E, C3, C3)X(E,I), where E is the identical symmetry
clement, arc the common elements of, the Cep molecule and the point group Oy. In this case
the local symmetry. group of a molecule is the group Se.-Since the: point group Oy has 48
different symmetry elements the number of different orientational states of Cgp molecules 'fof
such occupation of a position in the cubic lattice is. 8=48/6. These eight orientational states
were used to describe the phase transition in Cgp fullerites [3]. ., T

T al?;Ie 1. The sygmetfy ‘elefnén‘ts’ﬂgofaf'ree; Ceo molg‘culek and the ﬁosiiion in the‘cr‘ystaliin;é
lattice of the cubic phase Fm3m occupied by Csomolecule. ‘ ; o

Symmetry elements Cs - Cy o | G | G I
Cgo molecule_. . - . 6 : - E 10 . 15 :
Position inthe - - . - 3, 4 6 1
lattice with

symmetry Oy

. fold basis’

- If in a cubic crystal the two-fold symmetry axis of a Ceo molecule is aligned with the
[110] crystalline direction (see Fig." lc), the common symmetry elements are (E; CoX(E, 1)
and conséquently, the number of different orientational states of Ceo molecules is 12=48/4.
These 12 orientational states of Cg molecules are used to describe the phase transition in
ACsp fullerides [4]. The local symmetry group of a Cgo molecule is the group Cay. Note that if
in a-cubic crystal the two-fold symmetry axis of a Cgo molecule is oriented along the [001]
direction and the three-fold symmetry axes do not coincide with the <111> dircctions, a
different ' 12-fold orientational basis arises (see Fig. 1d). Below,’ we denote these two
orientational bases by 12(a) and 12(b), respectively. ‘ - i

Fig. . Tlu" initial orientations of a Cey molecule for different orfentationdl bases. a), b), o)
d), ) and f) are one of the orientational states of a Cgo molecule for the 2-; 8- 12(u)-, 12(1_7‘),' :
24:; ar the 6:fold bases. - - : s e T
If none of the symmetry axes of a Cey moleeule coincides with the corresponding
symmetric direction in the crystal, the only common clements of symmetry are (E, 1) and
ates of the Cqo molecule is 24=48/2 and

the local symmetry of'the Coo niolecule is determined by the group I'(sce Fig. ey 7
" The oficntational states belonging 1o one basis bave the same continuous degrees of
Ifrgédom.’1-‘0‘1'36?(;11]1]31::.' an ori"'fﬁt"‘tional}stafc of the 8-fold basis may admit an arbitrary angle
of rotation about the three-fold symmery axis. It is analogous for the 12-fold basis but in this
. the arbitrary rotatioi can be accomplished about the’ two-fold symmetry axis. The 24-
dmits two ilidcpcxydcx\l"roiinii_)nxs.:' Note that for some angle (angles) of rotation,
additional degeneration of the orientational “states of Coo molccules may take’ place: “This
happens duc o the” fact that for ‘2 particular oricntation, additional” coincidence ‘of ‘the
symmetry axes of Cen molecules and symmetric directions of a crystal may take place. For the
$-fold basis. for example, the two-fold symmetry axes of the Ce¢o molecule may coincide with
the <100> crystalline dircctions for a- particular angle~of rotation about the three-fold
symmetry axis of the Cqo molecule. This leads to degeneration of states of the orientational
basis and as a result, of 8 states only two “standard® orientations remain. For two " 12-fold

consequently, the number of different orientational st

case, the

oricntational bases, in' the situation when ‘the two-fold' symmetry axis of a Ceo ‘molecule
coincides with the <100> direction for the basis 12(a) or the <110> direction for the-basis
12(b), the number of independent orientational states decreases to 6 (see Fig. 1f). In this case,



the local symmetry of the orientational state is described by the group Dyy. It is apparent that
the enumerated bases can be obtained from the 24-fold basis as well. Also, note that the
orientational states of 2- and 6-fold bases are the most symmetric states and, in contrast to the
orientational states of other bases, do not have rotational degrees of freedom. '

The orientational states belonging to one basis transform into one another under the
action of the symmetry elements of the group Fm3m and in this case, form (in the language of
the group theory, see, e.g., [7]) an orbit.

In Table 2, different types of orientational orbits are summarized with an indication of
compounds (fullerite Cqo or fulleride ACqp) for which these orbits are used to describe the
phase transition. Let us note that in A3C¢o fullerides the orientational phase transition does not
take place and in the phase Fm3m static disordering of Cgo molecules over two ‘standard’
orientations is observed [6].

Table 2. Different types of the"orientatli'onal orbits of a Csy molecule in the phase Fm3m.

“Thus, the following model of the orientational phase transition in fullerene crystals can
be suggested At high temperatures (T>>Ty), a rotating Ceo molecule occupies all orientational
states from all orientational orbits. At temperatures close to the phase transition temperature
(T>T,), a rotating Ceo molecule occupies, most of the time, the states of one orientational
orbit, i.e., of the orbit that corresponds to a particular orientational potential of the Ceo
molecule in a particular crystal. At phase transition ‘freezing’ of an orbit takes place and the
molecule occupies one of the orientational states of this orbit.

Comparing orientational phase transitions and structural phase transitions of the
displacement type we can make the followmg conclusions. The set of states in all orientational
orbits is-an analogue of the possible dlsplacements of all atoms in a crystallme cell. The
particular orientational orbit can be understood as an analogue of the displacements of only
atoms connected with the soft mode of the structural transition. Thus, different orientational
orbits are the mrcroscoprc reallzatrons of the order parameter of different orrentatlonal phase
transmons .

" Table 3 gives the orlentatronal orblts and states necessary for the description of
orientational phase transmons m C(,o fullerrtes anid ACqo fullerides.

Table 3. The ortentattanal states of a C60 malecule in dtjferent phases of Cao and ACg)
crystals

Number of « | Local symmetry of . | Crystal -~ Comments
orientational states in | orientational state '. R

orbit Lo R ,

2 Th AsCego static disordering

6 i Dan :

8 : Se Ceo dynamic disordering
12 (a) Can ACqgo dynamic disordering
12 (b) Con B ) ) i

24 ‘ I

3. The Orientatiorial phase transitlon )

lefractron mvesngatrons of C(,o fullerites in the phase Fm3m [1] show that rotating
Cso molecules have an anisotropic onentatlonal d1stnbut10n in the crystal. Hence it follows
that the onentatxonal states of Ceo are not equally probable In the previous Section it is shown
that it is p0551ble to combme orientational states into onentatlonal orbits which differ in local
symmetry (see. Table 2). The orlentatlonal states’ of one orientational orbit are “physically
equxvalent Therefore Ceo molecules occupy them w1th equal probabllltles So, to explam the
anisotropic dlstnbutlon of molecular orientations it is necessary to assume that the states of
different orbits are occupied by a rotatmg Ceo molecule with different probabllltles determined

by, ..
Po= exp(-Vo/kT)Emexp(-VakT), )

where k-.is the Boltzmann constant, V,- is the potential energy of the state n of the

or;)entanonal orbit, and the summation runs over all orientational states of all orientational
orbits.. . -

Crystal High- symmetry phase Low-symmetry phase
T>>T. = T>T, T T< T,

fullerite Ceo {2,6,8,..} . . - {8} a8

fulleride ACgo 2,68,y {12} S ’12

-

Table 3 illustrates the onentatlonal trans1t10n In the Cf,() (ACgp) crystal at high
temperatures rotating Ceo molecules occupy all orlentatronal states from all orientational orbits
(2-fold, 6-fold orbits, etc.). In the ‘vicinity of the phase transition (T >T.) the molecules
occupy, most of the time, the states from 8- (12-) fold _orbits. In the low-symmetry phase,
orientational ordering of Ceo molecules inone of the states of 8- (12 ) fold orbits takes place.

ER

4. The atomic density ‘distributions of rotating Cc,o molecules

In the previous Section, it is shown that in the vicinity of the phase transition
temperature rotating Ceo molecules in the phase Fm3m occupy, most of the time, the
orientational states of one orbit and therefore the anisotropic distribution of orientations of a
'Cgo molecule in a crystal is determined by the states of one orbit. Let us investigate a certain
orientational state. Then for this (first) orientation Y the atomic density on the surface of a
Ceo molecule at the pomt determined by the angles Q*(G 0) (6 and ¢ are the polar angles in
the coordmate system shown in Fig.1) is :

o S pl(Q):Zn:Sl(Q'Qn‘):( N )

where & - is the Dirac &-function and the summatlon runs over 60 carbon atoms in the
molecule. Accounting for the remaining orientational states in the selected orbit and modeling



the thermal motion of a Cg molecule according to the normal distribution law with the
‘fotational angle dispersion o it is p0551ble to calculate the mean anisotropy of the atomic
denstty <p(Q)>

<p(Q)> = Cl dS’ exp[-(Q-Q)26%) Zi pu(Q) =

=[ds’ exp[-(Q-Q’)2/20'2] Tien (), 3)
where C is the numerical constant, the mtegratlon is over the surface of a C¢y molecule, |Q- ']
€)'} is the distance between the Q and (04 points on the surface of a C¢q molecule measured in A’
degrces, and the summation is over the orientational states in the orbit (index k) and 60 carbon J
atoms in Cgg molecules (index n). j

ln Fig. 2, the atomic density distributions of rotating Cgo molecules in ACq crystals in
the phase /<m3m are illustrated. The calculation is performed by Eq.(3) with the orientational
states of the 12-fold orbit. We take the orientatonal state shown in Fig. Ic as the initial state
(y1). Other orientational states of Cep arc obtained from the initial orientation by means of the
following rotations: W2 = Cay1, 3 = C4% gy, yy = C43 y.. The remaining orientational states
arc obtained with the help of the rotations C; and C3? by the followmg symbolic scheme (ys,

Yo, W1, Wy) = C3 (\}In, Y2, Wi, W), and (Yo, Yo, Yir, yi2) = 3’ (\Vl, V2, Y3, Wa), where Cy is
the rotation by 90 db()llt the axis z and Cj is the rotatlon by 120° about [1 1]

Flg a) The fragment (I/Mlz o/ the surface of a molecule) of the u!umu (/cmm (II\III/)IIIIUH
of a Cso molecule in the phase Fm3m. The dark regions wuc\puml to the maximum density
(100 % to 66 %), lighter ugzom correspond to the atomic density of 66 %o to 33 Yo, and the
light tegtons 33 % 10 0 %. The orientational states are distributed according to the normal
law with 5° dispersion. b), c). and d). The same as for a) but with the dispersion 3"
addition, for c) and d) we considered the strain of the tipe en=ey=-2e#0. In d). the same

_ strain as for (c) plus the additional shear strain o). 2\
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The syrnmetry analysis of the phase transition in ACgp [8] shows that the low-
symmetry phase arises as a result of condensation of one of six order parameter components

"and consequently, the appearance of six domains can be expected in the low-symmetry phasc.

The atomic density distribution (see Figs. 2a and 2b) constructed on the basis of all 12

‘onentatlonal states is connected with all six domains. However, in a deformed crystal, the 12

orientational states are not phys1cally equivalent. This causes a change of the occupation
probability for different states. The symmetry analysis of the phase transition [4,8] makes it
possible to understand which of 12 orientational states and how they are ‘connected with
different types of deformation. For extemaf stresses Gx\—O'})—-ZG,ﬁto the atomic density
distribution is illustrated in Fig. 2c. It is constructed using of the orientational states Wi, ya,
y3, and ya. Applying the additional shear stress 6,20 to the deformed crystal it is posslblc to
restrict further the orientational degrees of freedom of a Cey molecule. For this 'case, the
atomic density distribution constructed on the basis of two orientational statcs Y and Y3 Is
lllustrated in Fig. 2d.

5 The Iocal symmetry and the symmetry of internal vibrations of C(,(. molecules in
crystals

In previous Sections it is shown that the rotating Cq molecules occupy all
orientational states from all orbits. Tn thc vicinity of the phase trammon (in the phasc Fm 3m),
however, they occupy, most of the time, the ‘states from only one orbit. Because of this, the
atomic dcnsnty distribution is anisotropic. In crystals, the local symmetry of a rotating Cey

,molcculc is determined by the symmetry of the lowest symmctry state that the molecule

occupics, Conscqucntly, in the high- symmetry phasc Fm3m the Tocal symmetry of rotating Cgi
molecules is described by the inversion group 1. On’ the other hand, in the low-symmectry
phasc, the Cop molecules. arc oricntationally ordered and occupy one state from a particular
oricntational” orbit. For cxample, in Ce fullerites in the low-symmetry phasc Pa3, Cg

molccules occupy the orientational state with the local symmetry S, and in'ACeo fullerides in

the low- symmctry phase Prnm, the state with the locdl symmctry th llcncc it follows that at
phasc transition, on the bdck;,round of y,ncrally dccrcdsmg ‘spatial symmetry of a crystal thc
local symmetry of a Cqy molecule increases (see Table 4).

Table 4. The local symmetry of Con moleculés in dl,"/ﬁ'ren‘r ‘phases of Cey fullerite and ACg,

Sidleride.

Crystal Phasc Fm3m Phasc Pa3. .. Phase Pnnm
fullerite Cen 1 Se -

fullcride AC | - Con.

_4 Below we discuss the symmetry of phonons in the phase Fm3m. For phonons with
different energies, two possibilities exist. If the frequency of a phonon is higher than the

_characteristic frequency of rotation of a Ceo molecule, the phonon moves in.a crystal with

differently oriented Cqo molecules and due to slow rotation of Cep molecules, the symmetry of



the crystal for such a phonon is lower than it could be expected for the spatial group Fm3m.
On the other hand, if the frequency of a phonon is considerably lower than the characteristic
rotation frequency ofa Coo, ‘molecule, the symmetry of the crystal completely corresponds to
‘the spatial group Fm3m.

As an example, we discuss the mtemal vxbratlons ofa C60 molecule in Ceo and AC60
crystals that can be studied in light scattenng experiments., It is common knowledge that i in
infrared and Raman scatterlng of llght phonons with a wave vector close to zero are observed
and their symmetry is determmed by the group of the wave vector k‘O i.e., Gk=o, or the point
symmetry group (see, €.g.,.[9] about local point and other symmetry groups in crystals). In a
primitive cell of Ce and ACeo crystals in the phase Fm3m only one rotating Ceo molecule
occupies the position with the local symmetry Oh. Hence it is assumed that the internal
vibrations of Cég in the phase Fm3m can be analyzed with a reasonable precision on the basis
of the icosahedral group Y}, [10] or ‘the point group Oy, if we need to take into account splitting
of internal vibrations of thé molecule in the crystalline field. However, Cep molecules do not
have four-fold symmetry axes (see above) and therefore, only group Ti= On N Y}, can be the
maximum group of the local symmetry of Ceo molecules. This is one of the reasons why in
[11], the symmetry analysls of ‘internal V1bratlons of Cg molecules in the phase Fm3m was
carried out according to irreducible representations of the group Ty The analysis of the
orientational states of Cgo molecules performed above shows that it is possrble to classify the
internal ~vibrations of the molécules accordmg to ireducible representations’ of the group Ty
only if the Ceo molecules occupy the states from a 2-fold orbit. In C(,o and ACeo crystals the
onentatlonal crystalhne potential requires that the 8- and 12-fold orbits with lower local
symmetry S¢ and Coy, respectlvely, must be considered. Since the frequency of internal
vibrations is considerably (10 to 100 tlmes) higher than the characteristic rotation frequency of
a Ceo molecule, such phonons propagate through the crystals where Ceo molecules look
statrcally disordered. For these phonons the point symmetry group is even Jower. Thus, the
symmetry of the internal vibrations of a Ceo molecule in the phase Fm3m is not hlgher than S¢
and Cy, for Ceo and AC(,O, respectlvely Smce the point groups of low- -symmetry phases for
these crystals are Th and Day, respectively, the conclusion can be made that the symmetry of
the internal v1bratlons ofa Ceo molecule i 1ncreases despite of the fact that the spatial symmetry
decréases at orientational phase transmon

6. The results and discussion

Let us briefly summarize the obtained results. In the framework of the discrete method

a model of the orientational phase transitions in fulleride crystals is suggested. The symmetry .

classification of all orientational states of a rotating C¢o molecule-is done. It is-shown that the
‘orietational states of the molecule can-be distributed between dlfferent onentatlonal orbits

}thh different local symmetries. It is found that particular orientational orbits are connectedi
‘with:the. corresponding orientational phase transitions and -the. orientaional .states from one’

orbit are the analogs of atomic displacements connected with the soft mode of the structural
phase transition. Namely, the orientational states from one orbit determine the amsotropy of
the atomic density distribution:of a Cg ‘molecule in’the phase Fm3m. The atomic density
distributions ‘reflect the physical nature of the orientational phase transition the scheéme of
which is proposed ini Sec. 3. On the basis of an analysis of the symmetry of the’ orlentatronal
states of Cgp molecules the effect of increasing both the local symmetry and the symmetry of

internal vibrations of Cg¢ molecules in a crystal despite of decreasing spatial symmetry of
crystals at phase transition, is predicted.

Below, let us discuss the possibility of the experimental verification of the obtained
results. The calculated atomic density distributions of rotating Cgo molecules (see Fig. 2) are
connected with the diffraction spectra obtained in the experiments. It is known (see, e.g.,[13])
that the Bragg peak intensities depend on a particular arrangement of atoms in a primitive cell
of a crystal. In our case, the primitive cell contains a rotating C¢o molecule. The Bragg peak
intensities (from Ceo molecules) are defined by the square of the structural factor

F(Q)=be {ceon 60 exp[-W1 (Q)] ] (QR) + caisc exp[- Wo(Q)]
; [ dr’ <Zi n 8(1)> exp (-IQ )}, . 4

where b, is the coherent neutron scattering length on a carbon nucleus (or the atomic form
factor for X-ray scattering), the continuous ¢, and discrete cgisc weight factors are the fitting
parameters that satisfy the condition ccontcgise= 1, for Ceo fullerite ceon=0.31, cgisc=0.69 [1],
J(QR)=sin(QR)/(QR) is the Bessel function, W (Q) and W, (Q) are the Debye-Waller factors
of carbon atom of Cep molecule Due to different types of averagmg the values of W; (Q) and
W2 (Q) can be different from one another From Eq. (4) it is seen that the averaged atomic
density, <Zpp (T r,,)> used in Sec 4 to describe the amsotrophy of the atomxc density, enters
into the structural factor.. ., ..

. Note that rotatmg Ceo molecules occupy the orrentatlonal states from all orlentatlonal
orbits but only one orientational orb1t is connected with the orientational phase transition. The
summatlon in the term <X, O(r’ “In)> runs over the states of this orbit (index k) and the
contnbutlon of other orientational states from the remammg orbits is modelled by the Bessel
function _](QR)

- Thus, the distributions .shown in F1g 2 determme the Bragg peak intensities in the
phase Fm3m and, therefore, one can venfy experimentally by neutron or X-ray diffraction the
atomic dens1ty distributions of rotating Cgo molecules.

It is known that the symmetry of crystalline lattlce vibrations can be determined in
light scattering experiments. In paper {14}, Raman light scattering spectra of fullerite Cgp were
reported. From these spectra it is seen that the lines in the spectrum obtained at T=259 K in
the low-: symmetry phase Pa3 have a finer structure than the lines obtained at the temperature
two degrees higher in the high-symmetry phase Fm3m, The physical origin of a large width of
the lines correspondmg to the internal vibrations of Ceo molecules in the phase Fm3m is ‘not
completely clear yet and in prmc1ple can be due to many physlcal reasons._In a pure Ceo
crystal, however, the Ceo molecules are neutral and this reduces the number ‘of possxble
reasons. For example owing to the Jan-Teller effect the charged Ceo™ (or Cey’ ) molecule can
go-to the strain state and this leads to splitting of the internal vibrations of molecule In
addltlon the charged molecules lead to the appearance of a macroscopic electric fi eld in
dielectric crystals and this leads to the splitting of the longitudinal and transverse optic
vibrations. So, the large width of the lines for Ceo fullerite can be explained by the anharmonic
interaction of the internal v1brat10ns of C6o molecules with other phonons or the low local
symmetry of Cgo molecules in crystals (sphttmg in the crystallme field) and/or the interaction
between randomly disoriented molecules (analogous to Davydov splitting [15]).

In contrast to anharmomc 1nteractron the last two effects determine the point group
that can be verified in light scattermg experiments with a polarization analysis.



The symmetry analysis (see, e.g., [10]) shows that the internal vibrations of the Ceo
molecules. active in Raman light scattering have the symmetry 2A,® 8H,. As a result, in
Raman scattering spectrum ten dtfferent lines, two with the symmetry A, (nondegenerate
" vibrations) and eight with the symmetry H, (ﬁve -fold degeneration), must be observed. In the
crystalline field with cubic symmetry (point group Ty) degeneration of vibrations with the
symmetry: H,=E,®F, is removed. In this, the vibration with the symmetry F, has three-fold
degencracy and E; - two-fold degeneracy. As is seen from [14], such spllttmg is
cxperimentally obscrved for the vibrations Hy(1) and Hy(2) (T=261 K). Analogous sphttmg
may probably take place for the vibrations Hy(6) and H (7) as well (see.[14)). Accordtng to
the polarization analysis [14] the vibrations Hy(1) with a’ lower frequency (266.2 cm’ " have
the symmetry E,(1) and vibrations with the frequency 272.4 cm’ ! have the symmetry F,. For
the vrbmtrons H,__(Z) we have the opposite situation: the vibrations with the frequency 430 3
em™ have thc symmetry Fe and the vibrations with the frequency 434. 3 cm - the symmetry
Ee .-
' Smcc ‘the vtbrdttons wrth the symmetry A, are nondegenerate the Iarge width of the

correspondtng Imcs can be due to the interaction . of netghbonng molecules with different
oricntations. In . thls casc,’ modelmg of the strongest mteractton between the closest Ceo
nu[,hbms wnth dl“t.r(,m oncntattons in the. phase Fm3m (the first’ coordmatton sphcre
contains 12 molecules) is possible using lar;,c crystalllne cells (contammg more than one Cep
molecule). Such crystals with a larger size of cells can be obtained from the’ phase Fi m3nr by
symtmtry dndl)’\l\ of all possthlc phasc transltlons Icadmg to an mcreasc of thé volume of a
primitive cell. (In th¢ cluster approach, accounting for the' ‘interaction’ of 'the closest 'Ceo
neighbors it can be dssumed that the large width of the A symmetry v1brat|0ns is' formed by a
s¢t of sepamtc lines (1 to 13) with different intcnsitics which, in gencral, are propomonnl to
the time a Cyo molecuile is in a particular oricntational state).

llcnee it tollows that the Ltrbe width of the hnCs with 'the synumtry Ay is cxplamcd by
the interaction between the ¢losest Cyo molecules, i.¢ Davydov spltttlnL [l 5]):In this ease the

* point group of a crystal with an increased " size” 01 prnmttve eells must deercase duc’ to
uneorrel‘tted ortentdttons 01 the elosest nuthors ’ '

‘In wlmt follows, we digcuss the width of the’ lines ‘with the symmetry F, and L. Thé
above symtmtty dtmlysts of the ()l‘lt.nldll()ndl states of Ce molecules in Coo and AC 4w t.l'ysldl\
shows that the C(,n molecules m'unly oeeupywthe states “with- the symmetry S and Cop.
respecttvcly In this case, further femoving of dégencration of the F, symmetry vibrations
with three fold dcgencracy and two-fold vrhratlons of the E, symmctry takes p[du, duc to'low
symmetry of the crystalhne ‘field. In addmon in’ full’ nmloLy with the A, tymmetry lines,
Davydov sphttm[, due to the’ mtcractton of” the closest le nuthors \uth dtttuutt
‘orientations also takes place. B : o :

Thus the' symmctry of the mtennl vibrations “of C(,n molecules in Ceo and - A( o0
"crystals cannot be Iugher than Sf, and Capy rcspccttvcly, duc to low local symmetry of*the
orientational states and the interaction between misoriented closest ncighbors. This' mcans that
the v1brattons with the symmetry F, which in the phase Fm3ni are obscrved only for the
perpendtcular orientation of the polanzatton vectors of incident and scattcred tht ‘must be
observed for the parallel’ orientation as well and vica 'versa the vibrations with the symmctry
E; must be observed for the perpendicular ortentatton Therefore it is mterestmg to conduct an
aceurate polanzatlon analys1s of vibrations wrth the. symmetry Fe and E m C(,o fullente (phasc
Fm3m) by carrying out Raman light scattering éxperiments. ’
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