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and intra-bond) in the corresponding two-band model. For a large enough gap 
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in terms of some renormalized (density dependent) Hubbard-type couplings 
for arbitrary filling of the upper band. 
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I. INTRODUCTION 

A large amount of work has been devoted ,t,o the study of <l;lternating chains not only due 

to their interesting structure, but also in connection with a better understanding of the high­

Tc superconductivity mechanism. 1 The same phenomenon renewed interest in the Hubbard 

model and, quite recently, in its one-dimensional extensions. 2 However, the particularities 

induced by the H~bbard-like couplings in alternating chains are less well known: the d,arg<' 

gap that opens in a one-dimensional dimerized Hubbard model has been estimated in various 

limits using analytical results and exact diagonalizations of small clusters; ·1 a model when• 

the dimerization is induced via alternating on-site repulsions has been studied within a boson 

representation theory 4 and also by renormalization group (RG) technique. 5 The aim of this 

paper is to investigate, \Ising the RG method, the effect of the Hubbard-type interact.ions 

on the ground-state properties of a chai,n with alter.~ating on-site atomic <'n'.,rgics. 

The paper is structured as follows. The one-particle Hamiltonian in the tight binding 

approximation corresponding to an alternating chain with ,two no1l!'<p1ivalcnt ,~it.cs per unit. 

cell can be diagon,alized by a canonical transformation; one .gets a t.wo-1,and model. The 

Huhhard-1.yp<' interactions, i.e. interactions which in the site representation couple only 

Pirct.rons ll<'longing to the Jl<'an'st 11~,ighhor sites, giv<' ris<, to both intra- and inter-hand 

couplings; if the gap hetw<·<•n the two bands is l<1;rg<• <·nough, as for the C1103 chain occurring 

in s111><·rcm1<l11ctor mat<,rials with high critical temperature, the last ones can bE: neglected. 

Th<' ohtai1H'd <'Xpr<•ssions of the Hubbard-type interactions (upper band), in the particular 

,as<' of alt <'mating on-sit.<' Pnergics and equal hopping amplitudes, close Sec. II. The standard 

HG analysis (s<'co11<l order), 6 briefly reviewed in Sec III, is done in terms of the g-constants 

dPscribing the e!Pmcntary processes of forward, backward and umklapp scatterings: their 

expressions arc obtained by evaluating the Hubbard-type interactions (upper band) at the 

Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger (TL) 7 and 

Luther-Emery (LE), 8 we can predict the low energy physics of our system; the ground-state 

phase diagrams in terms of the model parameters and at arbitrary band filling are presented 
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in Sec. IV, where we also show that the alternating structure does not favor the occurrence 

of a possible superconducting state in a system like the undistorted 3/4-filled Ctt03 chain. 

The last section summarizes the main results 9f this. work. 

II. THE TWO-BAND MODEL 

Let us consider. the alternating chain from Fig. 1, with .tw? non-equivalent sites per 

unit cell (N cells, periodic boundary conditions). Within the tight binding approximation, 

the second quantized form of the one-particle Hamiltonia!1 in the site repres~ntation of the 

atomic orbitals r~ads 9 

1lo = ~L (aJa; :._ b}b;) 
j 

- L [(taj + taj+1) b; + H:c.] 
j 

(1) 

whe;e·j = 1, N is the cell iridex, and the a(b)-operator corresponds to the annihilation of 

one electron on a site A(B); we ignore for the moment the··spin variable a =t, .j. of the 
.. ,i ' " ' . 

electron (it can also be considered as included in the 'cell index). The constants f and t 

(t) are positive and 'denote respectively the site energies 'and the parameter describing the 

hopping between A a~d B sites.'belonging to the same' cell (nearest neighbor cells); all of 

them can be expressed in terms of the atomic quantities. '9 From the site representation ·we 

can pass to the m·omentu~ representation by a usual Fourier transform; Eq. (1) becomes 

then 

1lo = f L ( alak - bkbk) 
k 

- L [(t +Ie-i•k) a!bk +H.c.] (2) 
k 

where k E (-1r/a,1r/a] with a being the lattice constant. 

By mixing the a- and b-operators, the Hamiltonian 1{0 has not a diagonal form; it can 

be diagonalized by the canonical transformation 9 

" ·! 
2 

h 

• 

' 

with 

\

a,= A(k),-.;;c•i,,,,, + B(k)c,; 

bk~ B(k)c{,k -'A(k}ei<l>(k)~.k 

'A(k) = ~ [1: c~~)] ½ 

. ' 1 f ·' ' ' . ] ½ 

B(k) = v'2 [1 + t(k) 

I sin(ak) 
tan[ef>(k)] = t + tcos(ak) 

c(k) in Eq. (4) has the form 

c(k) = ✓ L'l.2 + 4tt cos2(ak/2) 

where 

L'l..= ✓{2 + (t - t)2 

Jn. terms of .the c operators, the one-particle Hamiltonian (2) reads as 

1lo ='I:(-i)"E(k)cLck,a, a= 1,2 
k,a 

(3) 

(4) 

(5) 

(6) 

(7) 

.and defines the kinetic part of the two-band model: the dispersion law in the upper (lower) 
' : • , •• "' I , .,, ' • 

band is given by (minus) E(k) with a gap between the two bands equal to 2L'l.; in the limit 
I " , ;, ) • 

L'l. --t O , one recovers the usual dispersion law -21 cos( ak) for an ideal ( non-alternating) 

structure. 

By .analogy wi~h the u~~al case, th~ Hubbard-type interactions between thedectrons in 

an altern.ating chain are introduced in the site rep'.esentation as follows: 

(i) on-sit~ 

; 1°"( A A B B ) · 1l1 = 2 LJ UAn;,unj,-u +UBnj,unj,-u , 
J,U 

3 

(8) 



h A(B) - t ( t b )· w ere n;,(7 - a;,aa;,a b;,0 ;,ti , 

(ii) inter-site 

"A( B -B) 1{.2 == L..., n;, .. Vn;,.-• + Vn;-i,.-• (9) 
j,<1,17' < 

(iii) bond-site 

1{.3 == L (aJ, .. ( XAb;,.- + X Ab;-i,.-) + H.c.] n1,_ .. 
j,a 

+ L (bJ, .. (xBa;,.- + XBa;+i,.-) + H.c.]~f-.-
;,a 

(10) 

(iv) exchange.hopping 

1{.4 == -~ _L, [aJ, .. (wb}, .. ,b;, .. 
J,u,a 

+ Wb}_1, .. ,b;-i,.-) a;,.-• + H.c.] (11) 

( v) pair hopping 

1{.s == ~ E [aj, .. aJ,_ .. (Wb;,-.-b;, .. ,,.. 
+ Wb;-t,-.-b;-i,.-) + H.c.] (12) 

The expressions of the Hubbard-type interactions in the corresponding two-band model 

are obtained by passing in Eqs. (8)-(12) to the momentum representation and replacing 

after that the ak- and bk-operators by the c
0

,k-operators, according to Eq. (3). Below we 

shall restrict our consideration only to the particular case of alternating on-site energies 

(f cfi 0) and equal hopping amplitudes (t == l); in this case (01 == 02 == a/2) 

ak I:!,,== f ¢,== 2 , (13) 

and there will be no distinction between intra-cell interaction constants (without overli~e) 

and the inter-cells ones (with overline). Any interaction in terms of the~- and b-operators 

gives rise to both intra- and inter-band couplings. Nevertheless, if the gap between the two 

bands is large enough, it is reasonable to restrict the consideration only to the partial filled 

4 

band. In the case of the Cu03 :chain, the·gap is approximately 1.23 eV, while the total 

bandwidth (including the gap) is about 6.33 eV; 10 the chain is 3/4-filled, i.e. a: half-filled 

upper band. Consequently, we sh,;.H con~ider oniy processes from the upper band (a == 2); 

the total Hamiltonian in this case reads as 

. . 1 5 

1{, == LE(k)cl,..ck,.- + 2N L 'L (\1+k2,k3+k, 
k,a /J=l k1-4;a,a' 

x Vp(k1 , •• , k4; u, u')cl., .. cl2,.-,ck,,.-,Ci,3 ,.- (14) 

where t:(k) is given by Eq. (5);' Vp' quantities ((3 == 1,5) correspond, respectively, to the five 

types of the Hubb~rd interactions defi~ed by Eqs. (8)-(12), and they have the f~llowing 

expressions: 

Vi== [uA I] B(~i) ~(A++ B?] o.-,-.-• 

½ == 2V cos(a(k1 - k3)/2] 

x (A{ki)B(k~)A(k3)B(k4) ±(A++ B)] 

½ == -4 {XA (cos(aki/2)A(ki)B(k3) + cos(ak3/2) 

x B(k1)A(k3)] B(k2)B(k4) ±(A++ B)}o.-,-.-• 

Vi == 2W cos(a(k1 - k4 )/2] 

x (A(ki)B(k2)B(k3)A(k4) ±(A++ B)] 

Vs == 2W cos(a(k1 + k2)/2] 

x (A(ki)A(k2)B(k3)B(k4) ±(A++ B)] o.-,-.-• 

(15) 

(16) 

(17) 

(18) 

(19) 

The a-function in Eq. (14) assures the conservation of the total momentum up to a reciprocal 

lattice vector, i.e. k1 + k2 == k3 + k4 + Q with Q == 0 or Q == ±21r/a. In Eqs. (15)-(19), the 

upper (lower) sign corresponds to the normal (umklapp) scattering) i.e. to Q == 0 (±21r/a); 

this fact, characteristic of an alternating structure, 3 com~s from the phase factor ¢, of the 

canonical transformation (3).' Let us also note that for the lower band (a== 1), ½, ¼ and 

Vs have the same expressions while Vi ➔ Vi (UA ++ UB] and½ ➔ -V3 [XA ++ XB]-

5 



III. RENORMALIZATION GROUP ANALYSIS 

The low energy physics of our model (14) can be described, within the RG method, 6 by 
1 •, ; 

assuming: (i) a linear dispersion law 

t:(k) ~ VF(kF - lkl) , VF> o, (20) 

together with the existence of a momentum cut-off k0 restricting all possible states of the 

electrons to those around, the, Fermi points (or equivalently, a ba!1d??i,dth cut-off E0 = 

2vFk0 ); (ii) all interaction processes can b,e classified into four different types (see Fig. 3) 

with the coupling constants g, (i = 1,4) obtained by evaluating the bare potentials at the 

corresponding values + or -kF of the momenta. 

In the g1 process (backward scattering) the mom~ntum transfer is 2kFi in the g2 and g4 

processes (forward scattering), it is zero. The g3 process (umklapp scattering) is possible only 

at half-filling when the momentum tra!lsfer 4kF is equal to the reciprocal lattice vector. Each 

coupling constant has two components as the spins of interacting particles are parallel (II) or 

antiparallel (1.); however, if all momenta are fixed at + or -kF, due to the Pauli principle 

g311 and g41 bring no contribution and thus their spin index can be omitted. The expressions 

of the g-constants corresponding to the model (14) and also their form for a non-alternating 

chain are given Table I where we have introduced the renormalized Hubbard constants 

U = UAB4(kF) + UBA4(kF) 

V = 2V A2(kF)B 2(kF) 

(21) 

X = XAA(kF)B3 (kF) + XBA3 (kF)B(kF) 

W = 2WA2(kF)B2(kF) 

Unlike for a non-alternating chain, they now depend on the band filling n (akF = rr(l - n), 

0 ~ n ~ l]. As can be remarked from Table I; there is an almost complete analogy between 

6 

I, 

the case of an n-fi!led band coming from an alternating chain and an (n+ 1 )/2-filled band ofa 
. .{_;. ' . ' . 

non-alternating.one; the differences con~ist in the renormalization of the Hubbard consta~ts 

and, obviously, in the umklapp process. 

All physical results predict_ed by the RG method ( second order) can be discu~sed in terms 

of four independent coupling constants: Yu., g3 , 

-Yu = 910 - 9211 +Ya (22) 

and 

9p = 910 - 9211 - 92.1 (23) 

(the main effect of g4 can be included in a renormalized Fermi velocity). The coupling 
• ·, • j t . 

constants Yu and Yu. des~ribe the spin sector; gP and g3 , the charge sector. The RG equations 
'' • ·~ > • _... ,• ; ~ • 

(in units of 1l"VF) read as 6 

! 
?: (x) = gf.L(x)[l + ½gu(x)] 

d::.L(x) = gu(x)ga(x)[l + ¼Yu(x)] + ¼Yri(x) 

(24) 

1 

dgp ( 2( [ I ( l I dx x) =:g3_ x)l + 2gP x) 

dg3 . 
dx (x) = gp(x)g3 (x)[I + ¼g.(x)] + ¼m(x) . 

(2.5) 

,-

where x = In( E / Eo) E (-=, OJ, with E a smaller cut-off than the original one E0 • The 

structure of Eqs. (24) and (25) reflects the spin-charge separation occurring in 1D systems: 

the evolution of the g-constants in the spiri sector is decoupled from that in the charge 

sector. 

By solving Eqs. (24) and (25), a set of equivalent problems, related by RG 

transformations, can be found; the low ener~ physics is essentially the same for all models 

with the g-constants along a certain g(x) curve. The flow diagrams are shown in Fig. (4) 

7 



where the arrows indicate the limit x ➔ -oo (E --+ 0) of the fixed points. There are also 

two important lines in the diagrain,-related to.two exactly soluble models: the vertical axis 

corresponds to the TL model 7 (g1.L = g3 = 0) and the horizontal dashed line corresponds to 

the LE model 8 (gu = 9p = -6/5). Two different regi~es caii be distinguished from the flow 

diagram drawn in Fig. (4): (i) for Yu 2: IYal (gp 2: lg3 I) the spin (charge) part of the system 

scales to the TL model which is also the fixed point (this is the weak coupling regime); (ii) 

for Yu < !Ya I (g P < lg3 I) the spin (charge) part of the system scales to one of the two strong 

coupling fixed points, but before this it crosses the LE line and thus its behavior can be 

inferred from the exact solution. 

Let us note that for the Hubbard-type interactions, due to the SU(2)-spin symmetry 

_of the Hamiltonian (14), Yu is always equ~l to Yai consequently, the scaling in th~ spin 

flow diagram is along the first bisectrix Yu(x) = Ya(x) and, therefore, we h~ve four distinct 

regions 

where, in our case, 

I. J Yu 2: 0 

l gp 2: IY31 
II. I Yu 2'. 0 

l gp < 1931 

· l Yu < 0 l Yu < 0 III: IV: 
9p < 1931 9p 2: 1931 

Yu= U - 2V cos(7rn) ::- SX sin(7rn/2) + 4W 

gP = -U - 2V[2 + cos(7rn)] + SX sin(7rn/2) 

+4Wcos(7rn) 

(26) 

(27) 

(28) 

and g3 can be read from. Table I. In terms of the model parameters, the four regions defined 

by Eq. (26) can be conveniently described in the (W, V)-plane as follows: 

8 

!
W2:F !W2:F I: - II: 
V~G V>G 

!
W<F !W<F III: · IV: 
V>G V~G 

where 

F =· [-U + 2Vcos(7rn) + 8Xsin(7rn/2)) /4 

does not. depend, on W an1 , 

l 
8Xsin(7rn/2)+4Wcos(7rn)-U n/l 

.. 2[2+cos(7rn)] 2 

G- "''" 
· .. 1 ·. , . .. ' . I 
- 2Max{Yi,½} n = 2 

is independent of V where 

Yi = UAB4 
- 4v'2XAAB3 

, ½ = Yi[A ttB] 

(29) 

(30) 

(31) 

(32) 

A and B in Eq. (32) stand respectively for A(kF) and B(kF) (see Eq. (4)] evaluated at 
, ~- . '. . : -

· half-filling. 

The scaling of our system to one of the two exactly soluble models, TL or LE, in each of . . . 
the_ four regions, at any density 3:nd for both charge and spin sector is summar.ized inTable 

I. 

IV. PHASE DIAGRAMS 

Based on the exact results 'obtained for the TL'and LE models and using the scaling 

arguments, we can now describe the low energy physics of our system·: Anytime the system 

scales to the LE-model, there is a gap in the corresponding charge or spin sector; in the TL 

case, the spectrum i; gapless. Following the S6lyom's analysis, 6 we can predict the most 

9 



preferred type of instability occurring in the ground-state of the system, corresponding 

to the most divergent correlation function: charge density wave (CDW), spin density wave 

(SDW), singlet superconductivity (SS) or triplet superconductivity (TS). Before discussing 

the results, let us remark that the on-site and bond-site interaction constants have always 

opposite effects; they occur only in the combination 

Y = U - 8X sin( rrn/2) (33) 

or, in the half-filled case, through Y1 or½ with a similar structure. Consequently, a bond-
. - \ 

site repulsion acts (in the upper band) as an effective attraction and its effect is enhanced 

by increasing the electron density n, a fact already used in the hole superconductivity 

mechanism. 11 The value of Y .(or Yi,2) fix~s the position; in the (W, V)-plane, of the 

intersection between the "spin~line" (g,, = 0) and the "charge-line" (gp = lg3 I). 

Let us first consider the half-filled case (n = 1/2): Tpe obt'ained phase diagram has 

the structure presented in Fig. 5. The "spin-line" is vertical and the "charge-line" is 
i 

horizontal; both of them delimit not only different phases, but also the strong coupling regime 

from the weak coupling one in each corresponding· ( charge or spin) sector . The critical 

value V2 = -Max {Yi, }2} /2 of the inter-site interaction constant separates a dominant 
, , ;, , . ,· . :,.I '. , , --i 

superconductor region (V < V2) from a density fluctuation one (V > V2). Analogously, by 

decreasing the intra-bond interaction constant W below the critical value W1 = -Y/4, the 
. . . -~ 

triplet states (spin-density or superconductor) disappear. Depending on the values of UA.B 

a~d XA,B, the origin W = V = 0 ca~ be fou~d in p;inci~le in;,any of the four regions, but 

the most probable case for a real system is that considered in the picture (Y > 0, Y1,2 > 0). 

In the non-half-filled case, 93 is zero and consequently gp does not renormalize; thus the 
- ~ . ,, 

charge sector is always in the weak coupling regime and the "charge-line" now separates only 

different phases. Graphically, two things happen: (i) the intersection between the "charge­

line" and the "spin-line~ moves in such a way. that the origin W = V = 0 lies inside either 

the region II (for Y > 0) or the region IV (for Y < O); (ii) by increasing the density n, the 

"spin-line" rotates anti-clockwise while the "charge-line" rotates clockwise (by decreasing 

10 
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l 

n, the effect i_s reversed). Consequently, on starti_ng from the half-filled case and increasing 

the electron concentration the regions I and III become smaller while the regions II and 

IV grow, as it is shown in Fig. 6 for Y > 0; the intersection of the "sp_in-lin~" with the 

coordinate axes are given respectively by W1 = -Y/4 and V1 = Y/[2cos(rrn)] ½'.hile in the 

"charge-line" case by W2 = Y/[4 cos( rrn )] and V2 = -Y/[4 + 2 cos( rrn )]. The effect ?f the 

model parameters on the ground-state phase 1iagram can easily be inferred from the above 

discussion. 

Let us now discuss if the alternating structure is important in a possible occurrence 

of supercoridu'ctivity in the ground-state of the system. In order to do this', we hive to 

compa~e; as we have mentioned in the previous section, the ca.se of an n-filled upper band 

for.the alternating chain with the case of an'(n +· 1)/2-filled band of a· non-alternating 

one. For si~plicity, we shalr assume a short range: potenti11 between the electrons, i.e. 

a very effective s~reenirig; in this case, the on-sit'e 
0

a.nd bond~site interactions are ~ore 

important thaii the inter-site and' intra-bond ones that can be thus neglected. 12•13 For the 

undistorted 3/4-filled Cu03 chain, the·e;timations of the band parameters ate: 10 2c: == 1.23 

eV, t = l= IA eV; from.Eq: (4(it the~ follows A-~ 0.6 and B ~ 0.8. Acc~rding to the 

phase diagram from Fig.' 5, the ground-state is superconducting if Yi:2 < O or equivalently, 

XA/UA > B/{4v'2A) ~ 0.24 and Xa/Ua > A/(4v'2B) ~ 0.13 [See Eq. (32)]. For a non­

alternating chain, 'the same condition now require~ Y < 0, i.e. X 0 /U0 > 1/(4v'2) ~ 0.18 

14 [See Eq. (33), where we replaced the renormalized coupling constants U a.nd X by 

· respectively U0 and
0 

X~ of a non-alternating chain]. In order to get a superconductor s'tate, 

we thus need a bigger ratio of the (A) bond- and on-site couplings in the alternating case 

than 'iri'the·non-dimerized one; however, in average, the ratio is practically the same. 'lt 

follows 'that the alternating stru~ture 'does not affect the occurrence'of sup~rconductivity 

for a 3/4~filled chain as' Cu03 ; the ·renormalization cif' the coupling constants due to the 
·~r 

dime-~ization seems to be not important in this respect. The same conclusion can be'dei:ived 

for other densities; If a superconductor state exists in such a model, it is due to other 

factors (as the density, for example, that diminishes the effective repulsion by enhancing 

11 



the contribution of the bond-site term) and depends on the effective values of the coupling 

constants: using a Kronig~Penney model for the potential arising from the ions and for a 

very screened inter-electronic potential, Campbell et al. 13 estimated X0 /U0 in the range 

0.15 - 0.18; for the Cu03 chain, UA :::::3 - 4 eV, UB :::::1 - 3 eV, 10 but the values of XA and 

XB are less known. 

V. CONCLUSIONS 

The results of this paper can be summarized as follow:.: the canonical transformation 

diagonalizing the one:particle Hamiltonian for an alternating chain ,with, two non~equivale"nt 

sites per unit cell has been used ,!o find the expressions of the Hubbard-ty!)e interadions, 

initially introdu~ed in the sit,e-repr~sent-:tion, in the corresponding two-,band, mo<l,el; , the 

consideration has b~en restricted tothe_particular case ~f only alternat_ing on-site energies 

( and equal hopping amplitudes) ~nd, a gap between thetwo bands large enough to take, into 

r,crnunt only the processes inside the partial filled, band (and we,chose t,he upper,~a,n~, as 

for the 3/4-filled Cu03 chain). A particularity of, the alternating ~tructure manifests ,itself 

in the dependence of the obtained potentials on the momentum fOns~ryation in a given 

process, i.e., ff it is normal or umk~a~p one. The RG m~thod (second,order) has then 

been applied to this (one-band) model Hamjltonian; all th~ g-constants hav:e been o~tained 

by evaluating the ~orresponding Hubbard-type interactio~s around, the Fermi p,oints. The 

resulting ground-state phase diagrams have been analyzed in terms of_ all coupling constants 

and for an arbitrary band filling. The_ effect of the bond-site interaction is,to renormalize 

the, on~site one.,, In, the chosen coordinates, (intra-bond, inter-site) and at half filling, a 

critical inter-site interaction controls th,e,position of the "charge-line~ (separating a dominant 

superconductor region from a density fluctuation, one), and a critical intra-bond- coupling 

determines the "spin-line" (separating a region of singlet states from one with possible triplet 

states); the effect of the density is to rotate these two l.ines and to change the position of 

their crossing determined by a certain relation between the on-site and bond-site coupling 
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constants. According to our estimations, the alternating structure does not favor a possible 

occurrence of a superconducting state in a syste~ like the undistorted 3/4-filled Cu03 chain. 
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TABLES 

TABLE I. Th~ values of th_e 9-c?nstants for the upper _band of a chain with alternating on-site 

energies and Hubbard-type interactions (last column), compared with the similar quantities for a 

non-alternating structure (middle column). U, V, X and W are defined in the text by Eq. (21) 

and they are analogous, for our model, of the Hubbard-like coupling constants Uo, Vo, Xo and 

W0 from the usual case. By n we deu'oted the electron filling of the band, related to the Fermi 

monientum by akF = 1r(l .:._ n) for the upper band of the aiternating chain, or by akF = 1rn in the 

non°alternating case (0.$ n $ 1). 

non-alternating chain alternating chai~ 

91n 2V0 cos(21rn) + 2W0 -2Vcos(1rn) + 2W 

911. Uo + 2V0 cos(2rn) + 8Xocos(1rn) + 4Wo U- 2Vcos(,rn)- 8Xsin(,rn/2) +4W 

9211 2V0 + 2W0 cos(2,rn) 2V- 2Wcos(1rn) 

921. Uo + 2V0 + 8Xocos(,rn) + 2Wo{l + cos(21rn)} U + 2V- 8Xsin(1rn/2) + 2W{l - cos(,rn)} 

93 (Uo - 2Vo - 4Wo)on,1/2 {(UAB4 
- 4J2XAAB3

) - (A f-t B)}on,1/2 

94 Uo + 2V0 + 8X0 cos(1rn) + 2Wo{l + cos(21rn)} U + 2V- 8Xsin(1rn/2) + 2W{l - cos(1rn)} 

TABLE II. The scaling of the considered model (14) to one of the two exactly soluble models -

Tomonaga-Luttinger (TL) or Luther-Emery (LE), in each of the four regions defined by Eq. (27) 

in both the charge (c) and spin (s) sector. 

half filling (n = 1/2) not half filling ( n f. 1 /2) 

C s C s 

TL TL TL TL 

II LE TL TL TL 

III LE LE TL LE 

IV TL LE TL LE 
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FIG: L_Alternating chain with two non-equivalent sites per unit cell. 
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FIG. 2. The two bands corresponding to the one-particle tight binding Hamiltonian for an 

alternating chain with two non-equivalent sites per unit cell. 
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FIG. 3. The g-processes of the backward (a), forward (b,d) and umklapp (c) scattering. 
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FIG. 4. The flow diagram in the charge (spin) sector. The vertical axis corresponds to the 

Tomonaga-Luttinger model and the horizontal dashed line to the Luther-Emery model. 
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FIG. 5. The phase diagram corresponding to a chain with alternating on-site atomic 

energies and Hubbard-type interactions for 'a half-filled upper band. W1 ~ -Y/4 and 

V2 = -Max {Y1 , Y~} /2 [see Eqs. (32) and (33) in the text].The resp~mse functions co~~esponding 

to the phases shown in the parentheses have a lower d~gree of divergence than the others. 
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FIG. 6. The phase diagram of the considered model away from half filling. W1 = -Y/4 

and V1 = Y/[2cos(,rn)] determine the "spin-line", while the_ "charge-line" is determined by 

W2 = Y/[4cos(,rn)] and V2 = -Y/[4 + 2cos(,rn)] {here Y > 0 and the band filling n > 1/2). 
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