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The canonical transformation diagonalizing the one-particle tight binding
Hamiltonian for an alternating chain with two non-equivalent sites per unit cell has
been used to introduce the Hubbard-like interactions (on-site, inter-site, bond-site
and intra-bond) in the corresponding two-band model. For a large enough gap
between the two bands, the consideration can be restricted to the partial filled band,
as for the undistorted 3/4-filled CuO, chain where the alternating structure comes
only from the on-site atomic energies. The renormalization group method has been
applied to this model and the corresponding phase diagram has been analyzed
in terms of some renormalized (density dependent) Hubbard-type couplings
for arbitrary filling of the upper band.
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I. INTRODUCTION’

A large amount of work has been devoted to the study of alternating chains not only due
to their interesting structure, but also in connection with a better understanding of the high-
T. superconductivity mechanism. ! The same phenomenon renewed interest in the Hubbard
model and, quite recently, in its one-dimensional extensions. 2 However, the particularitics
induced by the Hubbard-like couplings in alfernating chains are less well known: the charge
gap that opens in a one-dimensional dimerized Hubbard model has been estimated in various
limits using analytical results and exact diagonalizations ’of small clusters; 3 a model where
the dimerization is induced via alternating on-site repulsiohs has been studied within a boson
representation theory * and also be renorrhalizati(;h group (RG) technique. ® The aim of this
paper is to investigate, using the RG method, the effect of the Hubbard-type interactions
on the ground-state properties of a chain with‘alter‘qa‘ting on-site atomic ('llgrrgi(:s.

The paper is structured as follows.. The one-particle Hamiltonian ilrl“t]l() tight |)indin;;r,
approximation corresponding to an alternating chain with iwo n(moqu’ivalcntrﬁ.i!,esr per unit
cell can be diagonalized by a canonical transformation; one gets a two-hand ‘model. The
Hubbard-type interactions, i.c. . interactions which in the site representation (;ou[)‘lc only
clectrons belonging to the nearest ngighbor sites, give rise to both intra- and inter-band
couplings; if the gap between the two bands is large enough, as for the C'uQOj chain occurring
in superconductor materials with high critical temperature, the last ones can be neglected.
The obtained expressious of the Hubbard-type interactions (upper band), in the particular
case of allernating on-site oncrgicg and cqual hopping amplitudes, close Sec. II. The standard
RG analysis (second order), © briefly reviewed in Sec III; is done in terms of the g-constants
describing the clementary processes of forwévrvd,A backward and vumklapp scafterings: their
expressions are obtéincd by evaluating the Hubbafd‘type interactions (u}ﬁ)ér band) at the
Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger (TL) 7 and
Luther-Emery (LE), ® we can predict the low energy physics of our system; the ground-state

phase diagrams in terms of the model parameters and at arbitrary band filling are presented
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in Sec. IV, where we also show that the alternating structure does not favor the occurrence
of a possible superconducting state in a system like the undistorted 3/4-filled CuOj3 chain.

The last section summarizes the main results of this work.

II. THE TWO-BAND MODEL

Let us consider the alternating chain from Fig. 1, with two non-equivalent sites per
unit cell (N, cells, periodic boundary conditions). Within the tight binding approzimation,
the second quantized form of the one-particle Hamiltonian in the site representation of the

atomic orbitals reads °

cZ(an—b'b)
Z[(ta +ta,+1)b+Hc] ; » (1)

whelie"j =1,N isv the Cell iridex, and the a(b)—bperatbr corresbonds'to the annihilation of
one electroﬁ ‘on a site A(B), we ignore for the moment the"’spin'variablé‘a:‘[‘,j, of the
electron (1t ‘can also be corflsi'de‘r?ed as in(crlu(ied in the cell index). The constants € and ¢
(f) are positive and '(Iien‘(‘)té‘réé’ﬁecti»vely the site energies and the ‘parameter describing the
hoppingr between A and B sites belonging to the same cell (nearest heighbo-f‘cells); all of
them can be expressed in terms of the atomic quantities.'® From the site representation we
can pass to the momentum rep;‘ese;tation by a usual Fourier transform; Eq: (1) becomes

'

then
czk:(alak——bkbk) o ; o
— 3 [(¢ +7e*) alb, + H.c] @)
K

where k € (—n/a, 7r/a] w1th a belng the la.ttlce constant.
By mixing the a- and b—operators the Hamiltonian H, has not a diagonal form it can

be diagonalized by the canonical transformatlon

= A(k)e™*Wey  + B(k)ey
' ®3)

b = B(K)oy, — A(K)e#®¥ey

gl

k)=—‘}—§[1+ g%] o (4.

sin(ak)

with

tafﬂ[¢(k)] = T¥Tcoslak)
(k) in Eq. (4) has the form
e(k) = /A* + 4tt cos?(ak/2) . (5)

where

A=yt (t=1) (6)

In: terms of the ¢ operators, the one-particle Hamiltonian (2) reads as -

ko

Ho = Y (~1)e(k)elatha, @=12 7 0T (D)
and defines the kinetic part of the two-band model: the dispersion law in the upper (lower)
Band is given by (minus) (k) with a gap between the two bands equal to 2A; in tbe limit

A — 0 . one recovers the usual dispersion law —2tcos(ak) for an ideal (non-alternating)

3
structure.

By analogy with the usual case, the Hubbard-type interactions between thelelectrons in

'

an alternating chain are.introduced in the site representation as follows:

(i) on-site ; L
. : s 1
Cov Sy = 22 (UA"Ja L +UBn’J.a J,—a) B PR (8) -

0



A(B) ot

where n; a;,(b,b;,);

(ii) inter-site
Ha= 3 nf, (Vnlo +Vnlyy) : 9)
prrd ’
(i) bond-site

'H:;=Z:[a}',7 (XAb}',+7Abj ) +Hc]n —

io )
+ 3 [bh, (Xpaj, + Xpajy,) + Hel ilf_, (10)
o T A .

(iv) exchange. hopping

Ho=—3 3 [ahe (WO,

Jn’u"

+ WbJ_M.bJ_l,,) G o +H.c.] . ; (11) .

(v) pair hopping
E [ J:" J—U ( Jv_"bla
+ ij_,__,b,-_,',) +Hel (12)

The expressions of the Hubbard-type interactions in the correspbnding two-band model
are obtained by passing in Eqgs. (8)-(12) to the momentum representation and replacing

after that the a,- and b,-operators by the ¢, j-operators, according to Eq. (3). Below we

shall restrict our consideration only to the particular case of alternatingkon-site energies

(e#£0) and equal hopping amplitudes (t = ?); in this case (a) = a3 = a/2)
ak V k
= 7 A=c¢ (13)

and there will be no distinction between intra-cell interaction constants (without overliﬁe)
and the inter-cells ones (with overline). Any interaction in ‘terms of the a- and b-operators
gives rise to both intra- and inter-band couplings. Nevertheless, if the gap between the two

bands is large enough, it is reasonable to restrict the consideration only to the partial filled

band. In the case of the CuQ;:chain, the'gap is approximately 1.23 eV, while the total
bandwndth (mcludmg the gap) is about 6.33 eV; 1° the chain is 3/4-filled, i.e. a half-filled
upper band. Consequently, we shall con51der only processes from the upper band (a = 2);

the total Hamiltonian in this case reads as

H= Ze(k)ckacka 2NZ Z 6k1+kzk3+h

B=1ki_q;0,0'

x Va(ky, .., ks30,0 3ch 'acli 5/Chs 57Cha 0 (14)

where e(k) is given by Eq. (5); Vi qﬁantities (B =T1,5) correspond, respectively, to the five

‘types of the Hubba.rd 1nteract10ns deﬁned by Egs. (8)- (12), and 'they have the followmg

expressnons

Vi= UAHB(k :i:(AHB) _ | ‘ (15)

[REREI t_.l
L Vy'=2V cosfa(ky — k3)/2] i ~ S

x [A(k)B(E)A(ks)B(k) £ (A B~ © (16)

b .
’

Vi = —4 (X, cos(abs 2 Ak Blks) -+ os(aks/2)

 x B(k)A(ks)| B(k2)B(k)) £ (A ¢ B)}borr (1T)

Vi = 2W cosla(ks — k4)/2]

CAR)BEIBIAR)E(AB) ()

Vi = 2W cosla(k; + k2) /2]

x [A(ks) A(k2) B(ks) B(ks) £ (A ¢ B)| 85—t (19)

The é-function in Eq. (14) assures the conservation of the total momentumup to a reciprocal

lattice vector, i.e. ki + k2 =k3 +k+Q with Q=0o0rQ= +27/a. In Eqgs. (15)-(19), the
upper (lower) sign corresponds to the normal (umklapp) scattering; i.e. to Q@ =0 (£2n/a);
this fact, characteristic of an alternating structure, * comes from the phase factor ¢ of the
canonical transformation (3). Let us also note that for the lower band (e'=1), V2, Vs and

Vi have the same expiessions while V; =V [Us 4 Up] and V3 = —Vi[Xa & Xg).



III. RENORMALIZATION GROUP ANALYSIS

The low energy physrcs of our model (14) can be descnbed within the RG method, ¢ by

assuming: (i) a lmear drspersron law
(k) = vr(kr — k), P >0 (20)

together with the existence of a momentum cut-off kg restricting all possible states of the
electrons to those around the Fermi points (or equivalently, a bandwidth cut-off E; =
2vrko);. (ii) all interaction processes can be classiﬁed into four diﬁerent types (see Fig. 3)
with the coupling constants g; (i = 1,4) obtained by evaluating the bare potentials at th_e
corresponding values + or —kfp of.the momenta.

In the g, process (backward scattering) the moméntum transfer is 2kF; in the g, and g,
processes (forward scattering), it is zero. The g, process (umklapp scattering) is possible only
at half-filling when the momentum transfer 4k is equal to the reciprocal lattice vector. Each
coupling constant has two components as the spins of interacting particles are parallel () or
antiparallel (L); however, if all momenta are fixed at + or ;kp, due to the Pauli principle
gm; and g, bring no contribution and-thus their spin index can be omitted. The expressions
of the g-constants corresponding to the model (14) and also their form for a non-alternating

chain are given Table | where we have introduced the renormahzed Hubbard constants

vk

U= UAB4(I€F) + UBA4(ICF)
V = 2V A (kp) BY(kr)

X = X A(kr) B (ke) + Xg A%(kp) Bkr)

| W = 2W A% (kr) B (kr)
Unlike for a non-alternating chain, they now depend on the band filling n. [akp = (1 — n),

0 <n <1]. As can be remarked from Table I; there is an almost complete analogy between

the case of an n-filled band commg from an alternatlng charn and an (n+1)/2 ﬁlled band ofa
non—alternatmg one; the dlfferences consrst in the renormahzatron of the Hubbard constants
and obv1ously, in the umklapp process. ’

] All physrcal results predrcted by the. RG method (second order) can be drscussed in terms

of four mdependent conplmg constants. gl 1293
gy = Gy~ Iyt c . (22)
and |
9o =81 — 92 — 921 ' o - (29)

(the main effect of g, can be included in a renormalized Fermi velocity). The coupling
constants g, and g, deshribe the spin sector; g, and g,, the charge sector. The RG equations

(in units of 7vF) read as ®

B (@) = @)1 + o)
y (24)
dglJ. ) ’ 1 : | 1_ 3
D1t (1) = g, (2)gua (1 + ()] + 10 (0)
d, SN Y -
L) =A@ +1g,2)]

Ei£°1(r) 9,(x)gs()1 + ,,g,,(x)l + 493 z),

where z = In(E/Ep) € (—o0 0] ‘with £a sma.ller cut oﬂ' than the original one E;. The

structure of Eqs. (24) and (25) reflects the spin-charge separation occurring in 1D systems:
the evolution of the g-constants in”the spin' sector is decoupled from that in the charge
sector.

By solvmg Eqs (24) a.nd (25) a set of equrva.lent problems related by RG
transforma.tlons can b.e found the low energy physrcs is essentrally the same for all models

with the g-consta.nts along a certam g(z) curve. The flow dragrams are shown in Flg (4)



where the arrovys indicate the limit ¢ = —o0 (E — 0) of the fixed points. There are also
two important lines in the diagram, related to two exactly soluhle models: the vertical axis
corresponds to the TL nlodel " (g, = g5 = 0) and the horizontal dashed line corresponds to
the LE model ® (9,=9,= —6/ 5). Two different regirnes can be distinguished from the flow
diagram drawn in Fig. (4): (i) for g, = lg,.| (9, > lgsl) the:spin (charge) pa;t of the system
scales to the TL model which is also the fixed point (this is the weak coupling regime); (ii)
for g, < |gy1| (gp < |g5]) the spin (charge) part of the system scales to one of the two strong
coupling fixed points, but before this it erosses the LE line and thus its hehavior can be
inferred from the exact solution.

Let us note that for the Hubbard -type interactions, due to the SU(Z)—spin symmetry
of the Hamiltonian (14), g, is always equal to i1; consequently, the scallng in the sp1n

flow diagram is along the first bisectrix g,(z) = 9,.(z) and therefore we have four dxstmct

regions
, 20 19,20
g 4’
g 2lgl 9 <lgl
e (26)
g, <0 , <0
111 9 IV : 9
9 <lgsl 92 lgsl
where, in our case,
g, = U — 2V cos(wn) — 8X sin(wn[2) + 4W (27)
g, = —U—2V[2+ cos(nn)] +8X sin(7m/2) ,
+4W cos(mn) 7 (28)

and g, can be read from Table L In terms of the model parameters the four reglons deﬁned

by Eq. (26) can be conveniently descrlbed in the (W, V)- plane as follows

F W>F

I: II:
V<G V>G 1
. - (29)
W< F W< F
II:< " IV : :
V>G V<G
where .
F = [~U + 2V cos(wn) + 82 sin(mn/2)] /4 ~ (30)
does not depend.on Wand .. . . .
8X sin(7n/2) + 4W cos(mn) — U - ngl
2f2 + cos(mn)] 2
G = . Bt T o e ‘,(31)
Sies(i) T i
is independent of V where » j B v C ’
= UsBt —~4V2X,4ABY |, Ya=Yi|A H,B] )

A and B in Eq (32) stand respectlvely for A(kp) and B(kp‘) [see Eq (4)] evaluated at

“half- ﬁlllng

The scahng of our system to one of the two exactly soluble models, TL or LE in each of
the four reglons, at any den51ty and for both charge and spm sector is summarlzed in Table
L ’
IV. PHASE DIAGRAMS

[EFRN

‘Based on the exact results obtained for the TL'and LE models and using the'scallng
arguments, we can now describe the low energy physics of our system'’Anytime the system
scales to the LE*inodel, there is a gap in the corresponding charge or spin sector; in the TL

case, the spectrum'is' gapless. Following the Sélyom’s analysis, 8 we can predict the most .



preferred type of instability occurring in the ground-state of the system, corresponding
to the most divergent correlation function: charge density {Nave (CDW), spin density wave
(SDW), singlet superconductivity (55) or triplet superconductivity (T'S). Before discussing
the results, let us remark that the on-SJte and bond-s1te interaction constants have always

opposite effects; they occur only in the comblnatlon
Y =U — 8X sin(nn/2) (33)

or, in the half-filled case, through Y; or Yz with a similar structure. Consequently, a bond-
site repulsion acts (in the upper band)as an effective attraction and its effect is enhanced
by increasing the electron density n, a fact already used in the hole superbonductiVitil
k mechanism. '.'bThe value of Y- (or_¥;23) fixes the position, in the (W, V)-plane, of the
intersection between the ;spintline” (9, :. 0) anvd\ the i‘charge—line” (g, = lgal)-

Let us first consider the half-filled case (n 1/2) The obtamed phase diagram has
the structure presented in Fig. 5. The spm—lme is vertical and the charge—lme is
horizontal; both of them delimit not only different phases, but also the strong couplmg reglme
from the weak coupling one in each corresponding’( charge or spin) sector . The critical
value V; = —Maz {Y;,Y2} /2 of the inter-site interaction constant separates a dommant
superconductor region (V < Vg) from a densxty ﬂuctuatlon one (V > Vg) Analogously, by
decreasmg the mtra—bond mteractlon constant W below the critical value W; = —Y/4 the
trlplet states (spm densnty or superconductor) dlsappear Dependmg on the values of Upp
vand AA B, the origin W = V =0 can be found in prmcnple in any of the four reglons, but
the most probable case for a real system is that considered in the picture (Y > 0, Y;; > 0).

In the non-half-filled case, g; is zero and consequently % does not renormalize; thus the

charge sector is always in the weak coupllng reglme and the “charge-line” now separates only
different phases. Graphically, two things happen: (i) the intersection between the “charge-
line” and the “spin-line” moves in such a way. that the origin W = V = 0 lies inside either
the region II (for Y > 0) or the region IV (for Y < 0); (ii) by increasing the density n, the

“spin-line” rotates anti-clockwise while the “charge-line” rotates clockwise (by decreasing

10

n, the effect is reversed). Consequently, on starting from the half-filled case and increasing
the electron concentration the regions I and III become smaller while the regions II and
IV grow, as it is shown tn Fig. 6 for Y > 0; the intersection of the ‘“splin—linef’ with the
coordinate axes are given respectively by Wy.= ~Y/4 and V; = Y/[2 cos(mn)] while in thie
“charge-line” case by W, = Y/[4 cos(nn)] and V; = —Y/[4 + 2cos(wn)]. The effect of the
model parameters on the ground-state phase diagram can easily be inferred from the above
discussion. »

Let us now discuss if the alternating structure is important in a possible occurrence
of sup"ercondu‘ctivity in’ the ground—state of the system. In order to do this, we have to
compare; as’ we have mentioned in the previous section, the case of an n-filled upper' band
for ‘the alternating chain with .the case of ‘an (n + 1)/2-filled band of a non-alternating
one.” For simplicity, we shall ‘assume a short ranée?potential between' the ‘electrons; i.e.
a very effective"sereeningf in this case, the on-site and bondisite interactions are more
i'mportant thail the inter-site and intra-bond onés that can be thus neglected. 13 For the
undistorted 3/4-filled CuO; cnain, the'estinrations of the band parameters are::102¢ =1:23
eV, t = 1= 14 eV; from Eq. (4) it then follows A"~ 0.6 and B ~ 0.8. According to the
phase diagram from Fig. 5, the ground-state is super¢onducting if Y” < 0 or eqiivalently,
Xa/Us > BJ(4v/2A) ~ 0.24 and Xp/Us > AJ(4v/2B) =~ 0.13 [See Eq. (32)]. For a non-

alternating chain, ‘the same condition now tequires ¥ < 0, i.é; 'XO/UO > 17/(4v/2) '2'0.18

1 [See Eq. (33); where we replaced the renormalized coupling constants 2/ and' X by

“respectively Up and X; of a non-alternating chain]:' In order to get'a superconductor state,

we thus need ‘a bigger ratio of the (A) bond: and on-site couiplings in the alternating case
than in ‘the' non-dimerized one; however, in average, the ratio is practically the same. ‘It
follows that the alternating structure ‘dogs ‘not affect the occurrence’ of superéonductiyvity

for a 3/4-filled chain as’ CuOs;" the reriormalization of the coupling constants die’to' the

- d [ . . N - e ) i
dimerization seems to be not important in this respect. The same conclusion can be’derived

for othier densities: ‘If a superconductor state exists in such a model, it is ‘due to other

factors (as the ‘density, for example, that diminishes the effective repulsion by enhancing

11



the contribution of the bond-site term) and depends on the effective values of the coupling
constants: dsihg a Kronig;Pennéy model for the potential arising from the ions and for a
very screened inter-electronic potential, Ca.mpbell et al. 12 estimated Xo/Up in the range
0.15 - 0.18; for the CuQ; chain, Uy =3 - 4 €V, UB =1 -3 eV, '° but the values of X4 and

Xpg are less known.

V. CONCLUSIONS

.~ The results of this paper can be summarized as follows: the canonical transformation
diagonalizing the 6nefpa.r_ticle Hamiltonian for an alternating chain with two nop:eguiy@eht
sites per unit cell has been used to find the expressions of the Hubbard-type ’intera.c‘tions,
initially introduced in the site-representation, in the corresponding two-band "’mo’(!el; the
consideratioﬁ has been restricted to the.particular case of only alternating on-site energies
(and equal hopping amplitudes).and a gap between the two bands large enough to take into
account only the processes inside the partial filled band (and wek‘_chosekt’he upper band, as
for the 3/4-filled Cu0js chain). A particularity of the alternating structure manifests itself
in the dependence of the obtained potentials on the momentum conservation in-a given
process, .i.e.. if it is normal or umklapp one. The RG method, (second order) has.then
been applied to this (one-band) model Hamiltonian; all the g-constants have been obtained
by evaluating the corresponding Hubbard-type interactions around the Fermi points.- The
resulting ground-state phase diagrams have been analyzed in terms of all coupling constants
and for an arbitrary band filling. The effect of the bond-site interaction is to renormalize
the on-site one.. In the chosen coordinates (intra-bond, inter-site) and at half filling, a
critical inter-site interaction controls the position of the “charge-line? (separating a dominant
superconductor region from a density fluctuation one), and a critical intra-bond- coupling
determines the “spin-line” (separating a region of singlet states from one with possible triplet
states); the effect of the density is to rotate these two lines and to change the position of

their crossing determined by a certain relation between the on-site and bond-site coupling

12

constants. According to our estimations, the alternating structure does not favor a possible

occurrence of a superconducting state ina syétein like the undistorted 3/4-filled CuO; chain.
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A R . . .. TABLES ) . o

_TABLE .. The values of thfa g;cgns.tants for the upper band of a chain wi@h a.lteynatipg on-site
energiés and Hubbard-type interactions {last column), com];)area with the sirﬁilar quantities f(;r a
non-alternating structure (middle column). U, V, X @qd W are defined in the text by Eq. '(21)
and they are analogous, for our model, of thie I-iubbard;like éoupling’constarllts Uo,‘Vo, Xo and
Wo from the ‘usual case. By n we denoted the electron filling of the band, related to the Fermi

momnientum by akp = x(1= 1) fof the upper band of the alternating chain, or by akr = 7n in the

fion:alternating case (0 < n'< 1),

non-alternating chain alternating chain -

9y ‘ 2V, cos(2xn) + 2Wo —2Vcos(rn) + 2W-

G911 Up + 2V cos(2rn) + 8 Xgcos(nn) + 4Wy U — 2V cos(wn) — 8X sin(wn/2) + 4W
92y 2V, + 2Wy cos(27n) 2V — 2Wcos(nn)

921 Uo+2Vo +8Xocos(wn) + 2Wo{l + cos(2rn)} U + 2V ~ 8Xsin(nrn/2) + 2W{1 ~ cos(wn)}
ga (Uo ~ 2V — 4Wo)by, 172 {(UaB* = 4V2X4AB%) — (A & B)}aup2

g, Uo+2Vy +8Xgcos(rn) + 2Wo{l + cos(2xn)} U + 2V — 8X sin(wn/2) + 2W{1 — cos(nn)}

TABLE IL The.scaling of the considered model (14) to one of the two exactly soluble models -
Tomonaga-Luttinger (TL) or Luther-Emery (LE), in each of the four regions defined by Eq. (27)

in both the charge (c) and spin (s) sector.

half filling (n = 1/2) not half filling (n # 1/2)

C . S . [ 5
| TL . TL ‘ TL ' ©TL
1l LE TL TL TL

1 LE LE TL LE
v TL LE TL : LE
14

8> A B A B A B

-—o— & - oo o —o oo - O
D> e — —
a, a, -1 J J+1

_ FIG: 1 Alternating chain with two non-equivalent sites pér unit cell.

FI1G. 2. The two bands corresponding to the one-particle tight binding"Hamiltonian for an

alternating chain with two non-equivalent sites per unit cell.
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FIG. 3. The g-processes of the backward (a), forward (b,d) and umklapp (c) scattering.

9(3.)

LE line

FIG. 4. The flow diagram in the charge (spin) sector. The vertical axis corresponds to the

Tomonaga-Luttinger model and the horizontal dashed line to the Luther-Emery model.
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FIG. 5. The phase diagram corr&ponding to a chain vﬁrit’h"alte‘rnating on-site atomic
energies and Hubbard-type interactions for a half-filled upper baﬂd\. Wy = -Y/4 and
V; = —Maz {Y1,Y>} /2 [see Egs. (32) and (33) in the text].The response functions corresponding

to the phases shown in the parentheses have a lower dégree of divergence than the others.
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FIG. 6. The phase diagraﬁx of the considered model away from half filing. W), = -Y/4
and V; = Y/[2cos(wn)] determine the “spin-line”, while the “charge-line” is determined by

W, = Y/{4cos(wn)] and V; = —~Y/[4 + 2cos(nn)] (here Y > 0 and the band filling n > 1/2).
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