


1 Introduction

While the reference “antiferromagnetic (AFM) insulator compounds of high-T. superconduc-
tors {HTSC’s) are well understood 'in terms of 2:dimensional (2D) isotropic Heisenberg model
the nature of anomalous spm dynamrcs in the doped samples still requires proper understa.nd~
ing {1]. ' “ een

One of the simplest models invoked to descrlbe t.he HTSC s.is the t — J. model, which
contains the essential physics of CuO; planes in the superconducting cuprates. The ¢t —.J
{or its extension t — t' — J) model is the low energy, eflective model obtained from the
Hubbard model by projecting out doubly occupied sites. As a result the ¢t — .J .model is
formulated in terms of the so-called Hubbard operators (HO’s), which are nelther Fermi nor
Bose operators. This particularity. makes it ‘difficult to treat the ¢ — .J model within the
conventional field-theory methods. :

The various approaches, e.g., slave- boson [2 'J] or slave—fermxon (4, 5, 6] methods and
diagrammatic technique for HO’s {7]; have been used to study the spin dynamics within the
t — J model. In the slave-field approaches the local constraint is usually replaced by the
global one restricting the validity of the approach. . Whereas in any approximation formuldred
in‘terms of HO’s the constraint of no doubly occupancy can be rigorously preserved.:

Recently in Ref. [8] the diagrammatic technique for HO’s has been used to calculate
the spin susceptibility within the Larkin equation {9] for the t= *'J model. However, in
the particular case J = 0 (correspondmﬂ to U — co limit of the ‘Hubbard model) ‘the
contribution from the irreducible part in the denominator of Larkin equation (see Eq: (9) of
Ref. [8]) vanishes, which lndwates that the so-called kinematical mterartlon is not properly
taken into account.

In the present paper we study. the dynamlral spin susceptibility for the:t'— .J model. by
applying memory function technique [16]in term of HO’s - which has been applied recently
for calculation of the optical ‘conductivity for this -model {10]. We show that there exist
two different in nature contributions to ‘the memory function.” The first. one is:due to the
kinematical interaction and comes: from the particle-hole excitations.in-the .itinerant hole
subsytem. “While the second one comes: from the: localized: spin-fluctnations ‘due to the
Heisenberg interaction.: The existence of these two contributions explicitly shows that there

"is a rompetrtmn between itinerant®and localized md;.,netlsm as it has been pomt.ed out in
Refs: [7. 8] and observed experimentally (see. e. g Ref [11]). . i :

It is found that the low energy (w — 0) spin dynanics has a.diffusive characterh While
in the high energy limit (w — oc ) the spin-wave-like excitatjons are regained. The mean-
filed-like (MFL) expression obtained earlier [12] by Kondg and Yamaji’s (KY’s) theory (3] .
is recovered in this limit. } .

“The paper is organized as follows. "In'the next sectlon we formulate the t.— J model’
in"terms of HO's. In Sec. 3 . the general formalism of the memory function approach is
presented and within the mode coupling approximation the: memory: function is calculated.
The self-consistency of the presented approach is drscussed in Sec. 5. Sec. 6 summarizes our
main results. In the '-\ppendw the expressxou for static spm susceptlbrhty is derived.
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2 The model
The Hamiltonian of the ¢ — J model reads

H=H+H;= Et'JXUOXOU"r‘ZJ,J{SS —-n.n,} PR (1)

l_]U

The ﬁrst tern} in the rlght-aand side of Eq (1) descnbes an, electron hopplnvtc,7 between the

nearest (£;; = t):and next-nearest (£;; = t') neighbor lattice sites. .The second term describes -

the exchange interaction of localized spins S; between the nearest nelghbor sites ( = J).
The HO’s in Eq (1) are defined as - . . . ‘ .

for three possible states at the lattice site ¢ : L L :
e =150, fio), - T 3

for an empty site and for a smgly occupied site by electron with spin o. In the t — J model
only smgly occupled sites are retained and the completeness relatxon for the HO’s reads as

L WHDA=L @

The spin' zt_‘l.la‘denskity\vo'per‘ators in Eq (1) are expreSsed b}; HO's as "’

57 =X77, Si= Zcrx’f' ;k‘n.~ZX”' o )
‘_w‘here o = —o. The HO’s obey .the fol]»ow»mg‘ multiplicahon rules» : ’ v

and commutagion relations -

- [xe? X”]'—Ju («Sa,x%ﬁsaX"’) o o

In Eq.(7) the upper sign’ stands for the case when both HO’s are Ferml hke ones (as, e.g ‘, ’

X?).“The spin and density operators (5) are Bose-like and for them the lower sign in Eq.(7)
- should be taken. The HO’s are neither Fermi nor Bose operators, the are projected operators.
‘These unconventional commutation relations (7) makes impossible to treat the model within
the conventional- diagrammatic technique. To use the latter one needs to introduce slave
particles with the constraint:of no doubly occupancy.: While in the treatment within the

HO’s the constraint is automatically- fulfilled. Therefore we treat the problem in terms of

H A - . .
. HO s and use the memory functxon formalism to determine the dynamical spin susceptibi‘lity.

3 Memory Function _

3 1 General Formahsm

The dynamxeal spin susceptibility is defined as

Xal@) = ~((SHST e = = DM (SFIST e, ()

R;;
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where Ry; = R‘ R; and. ((A|B)). denotes the Fourier transformed two—txme retdrded
commutator Green I'unctlon (GF) [14, 18} : B

(B = =i [ e (AW, B, ) ®)

where Imw > .0, A{t) = exp(iHt)A éx;)(—th), and (AB) denotesthe equilibrium statistical

" average.

- In the paramagnetic state with zero'sublattice. magnetlzatlon an average. of the commu-
tator (1S#, 571y = 20:;(S¢) equals zero. Since just this quantity enters as ah initial condition
(t =0)in the equation of motion for the GF-(8);'it is more tonvenient. to construct- the
self—consxstent equation for the Kubo—Morl relaxatlon functlon (see, e.g., Refl. [16])

C(AIB), = —i / dte'“‘(A o, ) | (10)
where (A (t) B) is the Kuho—Morl %calar product deﬁned as
(A(t), B) = / ANA(L=iNE), . (1)
N ’ B o N
where = 1/T (h = kg = 1). . - e
_ The GFs {9) and (10} are coupled hy the (qudtlon o o o
G(AIBo = (AIBY — (ABYoor 71
There are also following nseﬁll'r(-li‘ltion:f which can be obtained Ijmm/lh‘(-. definitions (9)-(11)
(GAIB)=T((Al—iB) = (AlB)ur - o e (1)
(1A, B) 2 (A, =if3) = (A, B), —_— (14)
(AB) =_-((.a|n)>w:(., o (15)
where i = id.- 1/(1!"[1 H]. P : Goone oew
Hv usm;., llu above f()rmulds for the (lylld"]l(dl spm sus((ptllnlny we ol)ldm ‘
\q(uJ = \q w(b,,(w) e e e - (16)
where \q = \q(()) is the static spin suse r‘ptllnhty and ¢q(w) IS ))w- To calculate the

spin-spin relaxation function ®@q(w) it is convenient to employ the memory function approach

- of Mori (see, e Rel. [16]}). We define the memory function M{q,w ) hy the equatlon

y e o Xq ) ) . ) ) o
b, (w):-—————- . S - -:.‘(17
SB[ CRETEAR )

To calculate the memory ﬁm(tmn we use the equatlon of motion for the relaxation
function (10) : .

(S5, = xa (@30S0 )
and similarly ((1S;|S;))w obey the following equation of motion - 7. 7. 77 R
W((iSF1SD)e = G555 + (G531 =35 (19)
3



From Eq.(14) we have (1S+ S7) =([S3, Sq]) = 2/\/_( AL which is zero in the paramag-
netic phase, that results -

PN 1 .. o
wPq(w) = Xa + =((57] = 15))u- (20)
By mtroducmg the zero order GF 3° qw) = Xq/w we rewrite Eq. (20) as follows

Do) = Bw) + B Ta(@)Bow) - )

where we have introduced the scattering matrix.

il . .

Ti(o) = ((zs+| — i (22)

By comparing (22) to the definition of the memory function (17) we get the following relation
between the scattering matrix and the memory function

M (q,w) M(a,0) 50
X2

Xa a

Tq(w) = ( VTo(w)- - (23)

-

A formal solution'of the Eq. (23) by iteration shows that the quantlty M(q,w)/xq(w) is

just the irreducible part of the scattering matrlx which has no parts connected by the single
zero order GF ¢°(w) :

M(qw) = XgT3" (@) = (831 =S - (29
Finally, the dynamical spin susceptibility in terms of the memory function can be written

M(q,w)/xq
w—= M(‘L“)/Xq'

as

Xq(w) = —Xa (25)

3. 2 Mode-couplmg approx1mat10n

First we express the memory function in terms of the 1rreduc1ble current-current - time-
dependent correlation function by using the spcctral representation for the GF

B N . ﬂ i
M yw C_qn‘l— co du'—_/ —lwt F\irr :
(a.0) = 2 " ey [ e o, o)
where the current operator in the site representation is defined as J; = —iS'{’, -].‘+ = zS‘+

! Current operator can be written as-a sum of two terms
Ji=Jt+J! = [S,‘,H.]+[,,-.,HJ]. . -(27)

In-Eq.(27) the first term comes from the so-called kinematical interaction which is due
to the unconventional commutation relation for the HOs operators (7) TlllS term is pro—
portional to the hopping integral and reads as.:

: = L tim XX = XTOX). o (28)

o Mz(éi,w)=‘2—,:Z,JEq // démdw'f[‘zv_(ee;gw) N( NE

The second term in Eq. (27) comes from the exchange 1nteract10n between localrzed sprns
and has the form o ,

e

.k_2ZJ,,,.(S’S‘ : szs ) (29)

' To calculate the 1rreduc1ble tlme—dependent correlatlon functron in the rrght.hand side
of Eq. (26) we employ ‘the mode-coupling’ approxrmatron in terms of an independent propa-
gation of the dressed particle-hole andspin fluctuations (see,.e.. g.; Gotze et al., {17]). This
scheme is essentially equivalent to the self-consistent Born approximation in whrch the vertex
corrections are neglectéd. The proposed scheme is defined by the follow1ng decouplmg of the '
time-dependent correlation functions: :

<X;.°(t)X°+(t)X+°X°f>'~‘<X-°(t)X."><XP+(t)xi+°>, S (30)
(SHOSA(OS;ST) = (SIS, st (31)

The cross-correlatrons like (J‘I(J")J) are 1gnored w1thm the proposed approxrmatlon and

they will be omitted.
By using the above defined decouplmg scheme (30) and (31) and the spectral represen-
tation for the GF, the memory function (26) can be written as

M(a,) = Mi(a,w) + Mi(a,w), IR 2

where Mi(q;w) is the contrlbutron from the 1tmerant hole subsystem and reads as

Mi‘(q{‘v”) Ztkq // dwl n(wl —-w ) - n( )l Ak(quZJAk :,(:lm) ).,‘ : (33)

" where n(w) = (e® + l)‘l tkq = tk — tk—q With te = 2(tyq + 1Y), 2 =4, Yq = 1/2[cos ¢, +

cos g,] and 7} = cos g cos g, for 2D square lattice (the lattice constant is taken to be unity)
and Ag(w) = —l/7rlm((X°"X"°))u, is the one particle spectral ‘function which is spin inde-
pendent in the paramagnetic phase.

The second contribution My(q,w) in Eq. (32) ‘comes from the localized spin subsystem
and is grven by

lka(wl)lka,q(
w'(w — W' +m),

) (1)

" where N(w) = (¢?* — 1)7! and Jiq = Jkx — Ji-q, and Jq = 2J7q. In obtalmng (34) relatlon
((SalSaNe = 1/2((SF1Sg ))W yvhrch is. valrd in the rotatlonally mvarrant system has been

used. . .
The real, ReM(q,w), and 1mag1nary, lmM(q,w), parts of the memory functron are odd

'and even “functions of w respectlvely, and they are coupled by the drspersron relatron

ReM(q,w) /_m du M_(_cﬂ)

; (35)
W w :

o Therefore only 1mag1nary part of the memory functlon should be evaluated



3 Asymptotlc behavxor of xq(w)

Now we examine asymptotic behavior of the dynamlcal spin susceptlblllty First we consider
"the hydrodynamic limit q — 0 and w — 0. In this limit, ReM(q,w) being an odd function
 of w vanishes while ImM(q,w) reinains finite. By usmg Egs. (33) and. (34) we can express it
as lmM(q,w) ~ —Dq with D = Dy + D_, where

D, = % zk;(qvktk)2 m} ‘lli_'n;lo duoi ' (w1) Ax (1) Axq(wr — w),

R » L A A
Dy =— ‘z(qvm)2 lim m / dury N'(&1) Imxic(w1 ) Imxx—q (w1 — w), (36)

where @ = qfq, Vi = dtk/dk n'(w) = dn(w)/dw a.nd N (w) = dN(w)/dw Finally in the

hydrodynaml(‘ limit' the dynamical spin- qusceptlblhty can be expressed in the usual form -

(sw Ref. {16]) as
iDg?
w +iDg?
where I) = D/xu is the spin diffusion coeflicient and yg is the static uniform susceptibility.
; Unlike to the hydrodynamic limit, in the high energy limit, w ~» oo the dominant con-

B tnl)utmn to the meniory functions comes from the real part: M(q,w) mq/w where i is
* the first nonvanishing moment, in 1/w P‘(panslon of the memory function defined as

Y:](w) —_ X() (37)

S— /lmM(q,w) ([,s;,s,’;) ‘ (38)

" Thus iin;t,lu‘ high energy limit dynamical sus(td]itﬂ)ility t,akes the form

——y —— . . 3¢
\(l(lf)) : ‘\uw-z_:w?l . ; ; (‘))

= mq/vq Let us note, that Eq. (39) with expressions of yq and m.l derived in the
‘ Appendl‘( [see Eqgs. (62)-and (63)] reproduces the result for the spin‘suseeptibility obtained
for the t —.J model in Ref. [12] l)y KY’s theory [13] whic h is essenitially self-consistent MIL
appro‘(lmahon . .

" where wz

4;‘ Self-'-c(')nSistency of the problem

. The equations (25),(33), and (34) are the self-consistent integral equations for dynamical
‘'spin ‘susceptibility which is obtained by- using only ‘mode coupling approximation.  These
equations should be solved numerically by iteration procedure. The static spin susceptibility
at_each iteration step should be calculated by Eq.-(50) with M(q,w) and \q(w) from
the preceding iteration. However some ansatz for xq(w) as the starting point of iteration

Proceduré should be defined. Moreover we need to know the hole spectral function entering
into Eq. (33) for the memory function.

According to well known results for hole spectré.l function obtained within t—J model [18]
Ax(w) can be modeled as ' - o '

Ak(w)—zka(w}ﬂ—ek)Jr inc(w), . - ,(‘40)':‘

/where Zy is. the quasnpa.rtlcle weight for the excitations with the dlspemon Er in a na.rrow
band of the order J. The second part Af™“(w) is due to the diffusive motion of holes i m a’
broad band with bandwidth 2W (of order 8t for 2D square lattice). We model it as'’

Bl

Amc__chg(W Iw+I‘I g v‘ L 5 : : (41)

.where N, is the density of state for th(-‘ mcoherent rontmuum and it'is roupl(d to. /k by
the sum rule :

»

—Z/ Ak(u X””)_l~—12£;~v: ,(42):'

By using Eq.(40) the contribution from the hole coherent’ motlon to the Illldbl]ldry |mrt of’

the memory function can be expreqqed as -

[m My *"(q,w)

1(Eg—q) — (e
Etquklk—q’—_‘__l(‘ k l)w, l( k)

5‘('5.{ — py — ). (4‘;;’)‘

To evaluate the second term in the memory fun(tmn (M) as th(- s(drhn;_, point.-for \q(w)
one can use the MFL expression ('l‘)) with mgand wq defined by ( )4) and (()2), respec hvvly
Asa result we obtam o C :

lmM.l(Q»w) = 2LN E b'kq{”kq(,‘*’) + Pkfl(;w)} - o . (44); :
where By = '."“l'l‘:i [ + M')l‘
. kT SR N

is an effective vertex-function and

[ N(wa) = N 1 N + Nwry)
- w w

I’k,,(w) - : "I)J(wk - wk-q — w) - Suwi + wrq -f w)}
B (1)

Eqs. (1 3) and Eq. (44) can’ he (‘onsld(‘re(l as the hrst I'(’I‘dt]()ll for th memory fun(‘tlon
The hole parameters entering into e xpn sstous (541) and (62) for g and wy can be calculated
from the hole speetral function (40): «Whereas xy and X3 defined by Eqgs. (56) and (64) -

should be evaluated self-consistently from the dynamical spin susceptibility (39). By using

the above expressions (43) and (44) for ImM(q,w) and the. dispersion:relation (35) the .~

dynamical spin susceptibility within the first iferation can be calculated from Eq. (25).
Using the obtained results one can’evaluate the spin flictuation part of the memory (34)

and the static spin susceptibility (50)-(52) for the next iteration procedure.. The 1tera.t10n, )

procedure should be continued untll the (‘onvergency will be rea.ched :



5 !Summary"

To summarize, based on the t — J model and memory function approach we have derived a
'general representation for dynamical spin-susceptibility (25) in terms of the memory function
(26). Our approach is formulated in terms of HO’s and therefore the constraint of no doubly
occupancy is ngorously presérved. The memory function is calculated by-using the equation
of motion method for two-time retarded GF’s [14] within ‘the mode.coupling approximation
(32-34). The ‘two contributions to the memory function is obtained.  The first one(33)
comes from the itinerant hole subsystem and is due to the kinematical interaction. The
second one (34) comes from the localizéd interactinig spin subsytem. In the limit of small
concentration of doped holes the latter one gives the main contribution which describes spin
dynamics characteristic for the Heisenberg model. Whereas in the opposite limit of large
hole. concentration particle-hole excitations _characteristic to the itinerant magnetism' give
- the main contribution to spin dynamics. We have shown that in the paramagnetic phase
there are two regimes in the spin dynamics. In the hydrodynamic limit (g — 0, w:— 0)
the spin susceptibility (37) describes diffusion’ spin dynam1cs with the diffusion coefficierit
(36), which has essentially two contributions. While'in the high- -frequency limit (w — co)’
spin-wave-like excitations described by Eq. (39) are observed. Their dispersion, Eq. (62),
obtained in the mode coupling like approximation-for ‘the equal time correlation function
" (60) recovers the earlier MFL result [12] obtained within the KY’s [13]theory.

. To compare our results with-that.obtained by diagrammatic methods we would like to
pomt out. that our approach, based on the general representation for the. -spin suscept1b111ty
(25), is equivalent to summation of infinite series of diagrams generated by the memory
function (26). The latter one, being calculated in the mode coupling approximation ,Egs,
(30) and (31), can be schematically represented by two loop-diagrams:: the first one of order ¢
due to the particle-hole loop and the second one of order J? due to the spin fluctuation loop.
In Ref. [8] all the contributions in the denominator of the Larkin equatron are proportional to
J and therefore disappears. in the limit J = 0 (U.— oc). While in our approach contribution
due to the first loop (for which the kinematical interaction is responsible) remains. Whereas,
in Ref. [7] the spin fluctuation contribution given by our second loop is neglected while several
other diagrams beyond our srmple one—loop diagram due to the kinematical interaction are
taken mto account. - ’ P -

" At present time it is difficult to Justrfy any of discussed scheme mcludmg our mode’cou-
pling approximation. To check the validity of our approximation one has to solve numerlcally
self-consistent equations and compare the obtained results with the experlmental data. This
w1ll be done ina forthcommg publlcatlon . S : :
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" In this Appendxx we evaluate the static spin susceptlblllty Xq followmg Tserkovnlkov [19]

For this purpose, by using Eqgs.(17), (19), and (20) we can rewrite the memory funct|on or.
the irreducible part of the current-current correlatron functron in the followmg way proposed
by Tserkovnikov [15]:

((GSH = iS7Nam = (iS5 -iSq Do — (83155 ))w((5+|5 D(CHES 15 No- ‘ (a7).
Likewise we define the irreducible part of the force-force correlation function as )
(PSHPSNL = ((123+1125 M= ((123+|5 ))u((5+|3 NS (SEES)n (48)

and consequently the irreducible part of equal time force-force correlation function can be
written as : ' '

(1zS+,zZS Y= (zZS+ 23;) (zZS+ S.;)(S;,S;)"(S;’,izs';). ) (49):v
By using Eq. (49) and identities (13)-(15) the static spin susceptibility can be expressed
(iS4, 5q))*

(z’S+ z’S )~ (zzS+ z’S yirr

Thé first term in the denominator can be written as the second moment of the dynamlcal ;
spin susceptlblhty : . :

as

Xq = (50)

(ﬂs 55 = ([ﬂs+ iS5 == / Himale) ey
and the latter one is equal to the second nonvamshmg moment of the memory functlon

(ﬂs+ ?S,;)"" . / wzlmltl(q,u).~ (52)

The expression (50) is an exact representatlon for the statlc sp1n susceptlblhty :
However to derrve an approx1mate expressron for- xq we start from the followmg rdentlty

(8%, 5al) = (52,5

q? q)

Ly

We evaluate the left hand side of Eq (53) by using the commutatron relation for HO’s, that
results -

- + - £ Y

: = (531530 = 4zJ(1 {5 Mg i = i), (54)
with the followmg notations’ o e

! L . o 4 '
n = ‘NZ'anm n = Nz'y;nq, ng = (XqUXg h (55)
q . q ; ) L
and ) ) , )
. , s —
X1=% 2 7(S3Sq) A= 1, (56
1 N zq: q( q*q ) q l — 7q )



To calculate the correlation function in the right-hand side of Eq. (53) we employ the -

decoupling scheme which is essentially equivalent to the mode coupling approxxmatlon but

for the equal tlme ¢correlation functlon Due to the unconventlonal commutatlon relatxons :

for HO's'it is more convenient to use the site representatxon

-

(’53, a

where second derivative of S reads .

l‘.Sf = Etij{tjn [Hijn + Hyji) —thn[Hjin + H(u'j]}- . -
e ; R ; B

+ EJij{Jjinijn‘*'n;u'i]—Jin[2Pjin+nnij]}y B (58)
im e
“with- : e o T . 4!' ) .
Hin = XHX]TXS 4+ XF(XP+ X77)X0s
Pon = SISIS* - SISISF,
My = SESTST—STSTSE . S (59)

In obtaining (58) we Have rieglected-terms proportlondl to t.Jsince they give no. contnbutlon
within the adopted approximation. .

In the sum (58) only two site indic es can be equal.. We extract those terms and by using
the maltiplication rules (6) replace the product of two HQ’s with the same site indices by one
operator. On rearranging, in the sum thiere are no products of operators having the same site
indices. Therefore in all products operators can be interchanged. (Of course in the case of
two Fermi operators one lias to chaige. the sign of the product).Further, we substitute the

‘ properly rearranged right-hand side ofeq (f )8) into (° )7) an(l make the followm[., decouphnbs

(XFSHS) = (XENSEST) o #)
(s+~. .s+,5 )~(s+s X (RA s,)+(s"+51) sf,s,) (l;’:];’:n ‘ ((i())

In the above dehn( d’ de(ouplul[., s(lleme the ()|)l rators-on. the same lattice site is never
decoupled Therefore within the adopted approximation the local correlations are retained.

‘In-the momentum space the above.defined (Iecouplm[., scheme results, in the full()wm;,
expression:

: (8%, 87 )~w (s;,sq) ,,\q, ' - (61"
where : T
wh —4J7 22l l-—’yq [1+A+( z\,l+'7q] . o (62)

~ with the following notations:

o—n

A= I{X2+ I flta—n), c=2=1 R : (63)

= —qu s*s (64)

10

)_ Ee—tqﬂmn ’2S£+’SI )’ L . ':(57)
Ry - - S . - -

. tz 2s . . P (tl)Z o ')~ “ ttrr~ L . R
Q=D Yo, @ = 2 (00 ey 1= 5575 2 Yaqnas - (65).

2NJ2 S a™ 2NJ2 4 1/ 2N J? m tla®
and : ny ’ RS S :
Fa=(-fom) =00 @)

......

Therefore, from Eq. (53) by using (54) and (61) for the ‘static spin susceptlb]hty WP:'
obtain the following representation . S A 5

(153,570 mq

Xq —y = - ((}7)
4 w3

Essentially, the equation for static susceptibility (67) with expressions for mq (54) and
wq (62) coincides with that one obtained in Ref.[12] and can be evaluated self-consistently
from the one-particle GF.
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