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1 · Introduction 

The discovery of high'T, s~perconductivity by Bednorz and Miiller [1] 
in· copper oxides has renewed interest to models with strong corelations, 
the Hubbard model [2] and its version in the ,limit of strong c.oupling, the 
t- J_ model [3], since many unconventional properties of these materials 
are proved to be due to strong electro(! correlations. Among them linear 
temperature dependence of resistivity and anomalous frequency depen­
"de(lce of optical conductivity, the so-called midinfrared absorption, etc. 
(see, e.g.,[4, 5]). 

Several rigorous results for the optical conductivity has been obtained 
for the one-dimensional fiubbard and t- J 'models (see, e.g., [6] - [14]). 
By using the Bethe ansatz exact solutio'n the charge stiffness, or the 
Dnide weight D, was calculated near the.Mott-Hubbard metal-insulator 
transition. However, to o]?tain the frequency dependence of the optical 
conductivity some approximations or numerical calculations for finite 
chains were used. 

There have been so far only few analytical calculations of optical 'con­
_ductivity in two- and three-dimensional microscopical models with strong 
electron correlations. Among them are the early theoretical studies of the 
optical conductivity in the framework of Kubo linear response theory [15] 
done by the high-temperature expansion [16] and by the equation of mo­
tion method for the Green functions in the Hubbard I [17] and Hubbard 

·III approximations [18, 19]. 
Latgr on the t - J model was considered by Rice and Zhang [20] 

in the limit of small J when the hole motion has a diffusive character 
described by an incoherent spectrum for single particle excitations. They 
obtained a non-Drude conductivity, cr(w) oc 1/w, in the high-frequency 
limit, w :> J. A detailed discussion of optical and photoemission sum 
rules for one- and two-dimensional · Hubbard models has been given by 
Eskes et al. [21] by comparing astrong coupling perturbation theory in 
powers of tjU with numerical calculations. 

Recently the optical cond-uctivity has been investigated within the 
dynamical mean-field approach which becomes exact in the limit of infi-

. nite dimensions [22, 23]. The symmetrical Hl)bbard model at half-filling 
. ' 

has been considered near metal-insulator transition and a semiquantita-
tive agreement with experiments has been observed. However, Jor the 
realistic two- or three-dimensional Hubbard model nonlocal ( q- depen-
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dent) corrections to the transport vertices and the self-energy could be 
important. 

Most extensively the optical conductivity for two-dimensional models 
of the Cu0 2 plane has been studied by numerical methods based on 
exact diagonalization for small clusters within the framework of the the 
Hubbard or tbe t- J models (see, e.g., [24] - [34] and the review paper 
[35]). For example, in recent papers [34] a universal behavior, cr(w) ex 
(1- exp( -w/T)jw, has been claimed for the t- J model in the limit of 
high temperature, T > O.!t c=. 500 K. 

However, numerical investigations for small clusters have a poor fre­
quency resolution and pronounced finite-size effects in the region of low 
temperature and low frequency to be quantitatively compared with ex­
perimental results. Therefore, an analytical self-consistent investigations 
of the one-particle and optical spectral functions in the strong coupling 
limit for the realistic two-dimensional Hubbard and t - J models are 
required. 

In my previous paper [36] a frequency dependent conductivity cr(w) 
has been calculated for the asymmetric Hubbard model [37] by applying 
the memory function technique [38] in terms of the Hubbard operators. 
The asymmetric Hubbard model is described by two nonequal hopping 
integrals to~ for the lower Hubbard band (LHB: a = fJ = 1) and the 
upper Hubbard band (UHB: a = fJ = 2). The generalized Drude for­
mula was obtained for the conductivity with frequency and temperature 
dependent relaxation rates due to electron scattering on charge and spin 
fluctuations. It has been shown that the inter band transitions ( oc t 12) 

are essential for the Drude current relaxation. The latter is proportional 
to [(taa)2 - (t12) 2] 2 and cancels out for the conventional Huh bard model, 
(to~= t), which results in the 8(w)-type Drude term. However, for cop­
per oxides which can be described by the effective asymmetric Hubbard 
model (see, e.g., [39]) a finite relaxation rate is observed. In this respect 
the results of [36] are a generalization of the optical conductivity calcu­
lations [40] for the p...: d model. Numerical estimations for the relaxation 
rate caused by spin-fluctuation scattering in [40] have shown that its tem­
perature and frequency dependence agree quite well with experimental 
results in copper oxides . 

In the present paper we consider the optical conductivity for the t- J 
model by applying the memory function method in terms of the Hub­
bard operators. Contrary to the conventional Hubbard model we obtain 
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a finite relaxation rate in the t- J model. It has two contributions: the 
first one due to the kinematical interaction in the LHB as in the Hubbard 
model considered in [36] and the second one due to the exchange interac­
tion that, however, do not compensate each other. So we conclude that 
the Hubbard model in the limit of strong correlations is not equvalent to 
the t- J model concerning their transport properties. It was also pointed 
out in several numerical studies for finite clusters (see, e.g. [28]). 

The employment of the Hubbard operator technique has a twofold 
advantage. First of all by using equations of motion for the Hubbard 
operators we automatically take into account scattering of electrons on 
spin and charge fluctuations due to strong correlations as it has first been 
pointed out by Hubbard [41]. In the Fermi liquid models (see, e.g. [42]­
[45])" one has to introduce a. phenomenological spin fluctuation scattering 
mechanism to obtain nonzero relaxation. To study the transport proper­
ties in the auxiliary field representation (see, e.g., [46] and the references 
therein) or in the gauge field technique [47, 48] one has to adopt a spin­
charge separation condition which has been rigorously proved only for 
the one-dimensional Hubbard model. 

By employing the Hubbard operator representation we can also pre­
serve rigorously restriction for no double occupancy for the LHB con­
sidered in the t - J model. In the auxiliary field and the gauge field 
techniques this restriction has to be imposed by the local constraint for 
the total number of fermions and bosons. The latter can be ·allowed for 
only approximately as, e.g., in the 1/N expansion technique with N be­
ing the spiri-orbitaldegeneracy (see, e.g., [46]). However, it is difficult to 
give an unambiguous physical interpretation of the obtained results for 
a realistic value of N = 2. 

The paper is organized as follows. In Section ·2 we introduce the 
t - J model by a unitary transformation of the asymmetric Hubbard 
model written in terms of the Hubbard operators. In Section 3 a gen­
eral expression for the frequency dependent conductivity in terms of the 
memory function is obtained. The calculation of the relaxation rate for 
the optical conductivity is given in Section 4. In the last Section 5 model 
estimations for the relaxation rate and the conductivity are presented 
and the obtained results are summarized. 
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2 The t - J model 

We start our consideration from a two-band p - d model reduced by 
a cell-perturbation method [39] to a singlet-hole asymmetric Hubbard 
model with the LHB occupied by one-hole Cu-d like states and the UHB 
occupied by two-hole p- d singlet states [37]. In terrhs of the Hubbard 
operators the asymmetric Hubbard model reads: 

H = Ho + H, = El L x:· + E, LX," 
iu 

- "{t'1X~0X0" + t22X2
" X~2 + 2at' 2 (X'" X0

" + X"0 X02
)} (1) ~ lJ l J tj 1 J 1J 1 J t 3 • 

if.ju 

Here 2a = ± 1, a- = -a and we introduce energy levels E1 = Eo - I' and 
E 2 = 2E0 - 21' + U for singly and doubly occupied sites, respectively, 
where Eo is a reference energy and I' is the chemical potential. The 
Hubbard operators are defined by the equation: 

xr = Ji, p)(i, qJ ' Xl?q x:s = 8qr X'fiS 
' ' ' 

(2) 

for 4 possible states at a lattice site i: 

Ji, p) = Ji, o) , Ji, a) , Ji, T L) 

for an empty site, a singly occupied site by electron with spin a= (T, L) 
and for a doubly-occupied site, respectively. For these states a complete­
ness relation for the Hubbard operators (2) holds 

x~o + L x:· + x," = 1 . (3) 
q 

The hopping integrals have different values for the LHB ( ti]), the UHB 
(tTJ) and the interband transitions (t)j). In the singlet-hole model the 
Coulomb repulsion energy U in the standard Hubbard model is substi­
tuted by the charge transfer energy L\. = Ep- Ed between p- and d-levels 
in Cu02 plane. 

In the strong coupling limit, L\. ~ Jt~/J, which holds for the model 
(1) (see [37]) we can apply perturbation theory and further reduce the 
Hubbard model (1) to the one-band t-J-likemodel for the LHB (see, e.g., 
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[21]). By using the canonical transformation, f£ = exp( -S)H exp(S), we 
obtain the following expression for the one-band t- J model: 

H = H, + HJ = E1 '\'X"" - '\' t 11 X"0 X 0" L...t ~ L_, iJ t J 
ia i:f.;jq 

+ (1/2) L Jij (Xi" Xj"- Xi" XJ") (4) 
if:ju 

where the exchange energy in the second order is equal to J,; = 2( t)J)2 /6. 
and we neglect contributions given by the operators Xf2 and three-site 
terms (see [21]). Usually in the t- J model only the nearest neighbor 
hopping is considered, t!J = t, that gives also exchange interaction for 
the nearest neighbor sites J. However, in the model (4) reduced from the 
effective two-band Hubbard model (1) these twoparameters, t and J, are 
independent ones since t 11 of t 12 . 

In the t- J model ( 4) only the singly occupied band (LHB) is consid­
ered that gives Xl 2 = 0 and the completeness relation for the Hubbard 
operators (3) reads: 

X?0 + L x;o- = 1 . (5) 
q 

It should be pointed out that a number of important properties of 
the Hubbard model (1) as, e.g., weight transfer from the UHB to the 
LHB and changes of the spectral functions with doping (see [37, 21]) are 
lost in the t - J model. However, as claimed in many publications, the 
low energy physics should be the same in both models. To check this 
statement for the Drude relaxation rate in the optical conductivity which 
is essentially the low energy physics we consider in the present paper the 
t - J model and compare the obtained results with those one for the 
two-band Hubbard model [36]. 

3 Memory function 

In the linear responde theory of Kubo [15] the frequency dependent con­
ductivity is defined by the current-current correlation function 

O,x(w) = ~ 100 

dte'w'(Jx(t), Jx) (6) 
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where V is the volume of the system, S'w > 0, and 

(A(t), B)= 1fi d.\(A(t- z.\)B) (7) 

is the Kubo - Mori scalar product for the operators in the Heisenberg 
representation, A( t) = exp( zHt)A exp( -zHt), and (AB) denotes equilib­
rium statistical averaging for a system with the Hamiltonian H, f3 = 1/T 
(here li = ks = 1 ). · 

The real, absorptive part of the conductivity (6) can be written m 

the form: 0 

1 - exp(-{!w) roo •wt 
!RO"xx(w) = Vw 3? Jo die (Jx(t)Jx). (8) 

This fluctuation-dissipation equation is often used in numerical calcula­
tions (see, e.g., [28, 34]). It is also convenient for estimations of high­
frequency conductivity [20]. However, to obtain an interpolation formula 
for the dynamical conductivity being valid from the hydrodynamical to 
the optical frequency region it is much more convenient to employ the 
memory function method as has been discussed by Gotze et al. [38]. 
Later in a vast literature it has been proved that Gotze et al. formula­
tion is very efficient in calculations of dynamical conductivity. Below we 
shortly formulate the memory function approach in a slightly different 
form to overcome the problem of perturbation calculation of the memory 
function. 

To calculate the conductivity (6) we will use the equation of motion 
method for the retarded two,time Green functions (GF) [49, 50] for the 
scalar product (7) 

((AJB))w = -z 100 

dte'w'(A(t)),B) (9) 

and for the commutator GF 

((AIB))w = -z 1oo dte'w'([A(t), B]) (10) 

where S'w > 0 and the operators have zero average values: (A) = (B) = 
0. The conventional dynamical susceptibility is given by 

XAB(w) = -((AJB))w· {11) 

7 



The GF (9), (10) are coupled by the equation 

w((AIB))w = ((AIB))w- ((AIB))w=D· 

We have also the following useful relations: 

((zAjB))w =((AI- zB))w = ((AIB))w 

(zA, B)= (A, -zB) = ([A, B]) 

where zA = zdAjdt =[A, H]. 

(12) 

(13) 

(14) 

By using the above given definitions and writing the current operator 
as the time derivative of the polarization operator of the system, Jx = Pxo 
we obtain the following equivalent representation for the optical conduc­
tivity (6) 

' 1 ' . 
CT(w) = v((JIJ))w = v((PIJ))w = v)XJ.i(O)- XJJ(w)] (15) 

where we have omitted the indexes for the operators Jx, Px. By employing 
the standard dispersion relation [49] for the GF (10) or susceptibility 
(11) we readily get the sum rule for the real, or absorptive part of the 
conductivity (15): 

{"" . 1 r= S'xJJ(w) 1f 21f 
Jo dw'RO"xx(w) = V Jo dw w = 2V'RXJJ(0) = 2V([JxoPx])· 

(16) 
The sum rules (16) has been extensively used by many authors to dis­
cuss the metal-insulator transitions in the Hubbard model (see, e.g., [6]­
[13],[21, 26, 28, 30, 35]) since the right-hand side of (16) can be calculated 
from the static correlation functions. 

To calculate the current-current correlation function for conductivity 
(1.5) it is convenient to employ the memory function approach of Mori 
[51] in the form slightly different from that one used by Gotze et al. [38]. 
We define the memory function MJJ(w) o= M(w) by the equation 

where Xo = x31 and 

Xo 
<I>11(w) = ((JIJ))w =: w + M(w) 

M(w ± u5) = M'(w) ± zM"(w). 
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i 

Here M'(w) = 'RM(w) and M"(w) = S'M(w) are real functions. 
We calculate the memory function by using equation of motion for 

the GF 
i!!JJ(t- t') = ((J(t); J(t'))). 

By differentiating it in respect to timet and t' we readily get an equation 
for its Fourier transform (9): 

i!!(w) = ifio(w) + ifio(w)Mo(w)i!!o(w) (18) 

where 
i1! 0 (w) = Xo 

w 
(19) 

and the "scattering matrix'' 

Mo(w) = -(1/xo)((F:.O[Fx))w(1/xo) (20) 

is given by the correlation function for forces 

Fx = ,jx = [Jx,fi]. (21) 

We have also used the relation of orthogonality for current and force: 

(Fx, Jx) = (zjx, Jx) = ([Jx, Jx]) = 0. 

From eqs. (17), (18) we obtain the following relation for the memory 
function M(w) and Mo(w) (20): 

Mo(w) = -[M(w)fxo]- [M(w)fxo]ifio(w)Mo(w). (22) 

A formal solution of this equation by iteration shows that the memory 
function is just the irreducible part of the scattering matrix (20)" which 

·has no parts connected by single zero order GF i1!0 (w): 

M(w) = ((FxiFx))t'"d)(lfxo). (23) 

In the original formulation of the memory function approach in the 
calculation of the dynamical conductivity Gotze et al. [38] have used 
a perturbation calculation for the memory function from eqs. (20), 
(22). However, in solving eq. (22) by perturbation expansion one should 
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be cautious since the solution is a non-analytical function in (w, cou­
pling constant) [52]. Evaluation of the memory function from the high­
frequency expansion of the dynamical conductivity (15): 

cr(w)"' (zxo/V)(1/w- M(w)/w2
) 

used in several papers (see, e.g. [6, 13]) can be also misleading since the 
frequency dependence of M(w) may be nontrivial. Therefore our "exact" 
representation for the memory function in terms of the irreducible part of 
the force-force relaxation function, eq.(23), seems to be more convenient. 
Though, the exact meaning of the irreducibility is really given by Mori 
in his definition of the memory function in terms of the operators with 
the projected time evolution. 

Now we can write the frequency dependent conductivity (15) by using 
the representation for the GF ( 17) in the form of the generalized Drude 
law: 

Xo 
cr(w) = v 

m 

m(w) 
1 (24) 

f'(w)-zw. 
where the effective optical mass and the relaxation rate are given by 

m(w) - 1 + >.(w), - -
m 

r(w) 
f'(w) = 1 + >.(w) (25) 

with 
>.(w) = M'(w), r(w) = M"(w). (26) 

w 
The real and imaginary parts of the memory function are coupled by the 
dispersion relation 

M'(w) = ~ 1oo dz M"(z) 
-oo Z- W 

(27) 

It is also convenient, by using the spectral representation for the GF, to 
write the relaxation rate given by eq.(26) in terms of the conventional 
time-dependent force-force correlation function: 

_ 1- exp(fJw) 100 

dte'w'(FxFx(t)) 
r(w)- 2xow -00 

(28) 

where 
Xo = (Jx, lx) = z([J.,Px]) (29) 

is the static susceptibility. 
In the next Section we calculate the force-force correlation function 

and relaxation rate (28) for the t- J model (4). 
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4 Relaxation rate 

We start with a definition of the polarization operator for the t- J model 
( 4 ): 

Px = e 'E,R~N; = e 'E,Ri'E,Xi" (30) 
q 

where Rf are coordinates of electrons with charge e on a square lattice. 
From this definition the following expression for the current operator 
results 

lx = -z[Px, H] = w L(R;'- R'j) t,; Xi0 XJ". (31) 
ii.ja 

By introducing the q-representation for the Hubbard operators and the 
hopping integral 

X"~ = -
1
- '-"""'X"~ e··•qR, t(q) = '-"""' t e-•qR, 

q nv~~~, LtD 
ylv i i#O 

(32) 

the current operator (31) can be written as 

lx = e '-"""' Vx(q) X"0 X 0
" j'__,J q q (33) 

qu 

where vx(q) = -8t(q)jDqx is the electron velocity. 
Now we calculate the force (21) for the current (33) 

written as a sum of two terms: 
which can be 

Fx = F; + F'/, = [J, H,] + [J"' HJ]. (34) 

The first term comes from the kinematical interaction and has the fol­
lowing form: 

F; = -ze L 'E,(R;'- Rj)(t;; i;1 X;'1X 1°"' B)uu' +H. c.). (35) 
if:.jf:.l ua-' 

The second term is proportional to the exchange interaction. It reads: 

F/o = ze L 'E,(R;'- Rj)(t;; J;, X[0 XJ"'B(,q, +H. c.). (36) 
i:;fj# aa-1 

Here the Bose-like operators have been introduced: 

Bjuu' = ( XJ0 + Xja )5u'u + Xt' Ou'iJ , 
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J -- (jq . t c 
B/qql = - xrcr {jqla + x, {ju'iJ = B/qql - Uqlq . (37) 

In the second line of this equation we have used the completeness rela-· 

tion, eq.(6), for the Hubbard operators. The Bose-like operators describe 

electron scattering on spin and charge fluctuations caused by the non­

fermionic commutation relations (kinematical interaction) for the Hub­

bard operators and by the exchange spin-spin interaction. It can be 

demonstrated explicitly by using the following representation 

-X"'+ X'"=-~" X~"+ ~(X""- X"')+ X'" 
J J 2L.....t J 2 J J J 

" 
1 

= - 2N; + 2o-5j + Sj (38) 

where Sj = ±1/2 and Sj = Sf for 2<r = ±1. From eq. (38) it follows 

that the operators (37) can be written in terms of the number N; and 

spin Sj operators. 
Now we can write the total force (34) in q-representation as 

Fx =-JH L L vx(k) [t(k- q)- J(q)](X:0 Xf~~Bquu' +H. c.) (39) 
k,q uu1 

where we neglected the q = 0 term in the functions (37) and introduce 

only one function Bqua' = B!uu' = B:au' in the q representation 

1 " _,qR 
B9o-u' = rr;; L...t Biuq' e • . 

vN i 

(40) 

Now we can calculate the relaxation rate given by eq.(28): 

f(w) = 
1

- :xp(f3w) 1"" dte'w'(FxFx(t)) . 
,xow -oo 

(41) 

To calculate the many-particle time-dependent correlation functions in 

the right-hand side of eq. (41) we apply the mode-coupling approx­

imation in terms of an independent propagation of electron-hole and 

charge-spin fluctuations. This approximation is essentially equivalent to 

the self-consistent Born approximation. in which vertex corrections are 

neglected. The proposed approximation is defined by the following de­

coupling of the time-dependent correlation functions: 

(X:0 Xf~~ B, ... [xk:~,.(t)Xft(t)(B,.,,(t))1 ) 
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c:e 6k,k'6,,,.6,,.6,,,., (Xf0 X2" (t)) (X2~~ Xf~~ (t))(B, ••• (B, ••. (t))1). ( 42) 

There are 4 correlation functions of the type given by eq.(42). However, 

by using the symmetry relations for the correlation functions in terms of 

the Bose-like operators (37) we can write the final result f9r the relaxation 

rate in a compact form: 

r(wl = exp(f3w)- 12e2 L9;(k, k -q) j j"" aw,aw2n(wJ)[1- n(w2)1 
XoW N · -oo k,q 

N(w- Wt + w2)X~,(q,w- w, + wz)A(k, w,)A(k- q, wz) , (43) 

where n(w) = (exp f3w+lt', N(w) = (exp f3w-lt 1 and the momentum 

dependent vertex is given by 

9x(k,k-q) = Vx(k) t(k-q)-vx(k-q) t(k)+J(q) [vx(k)-vx(k-q)] (44) 

The charge-spin susceptibility x~,(q,w) = S'xc,(q,w) is defined by the 

Fourier component of the retarded Green function (see [49]): 

Xc,(q,w) = -((pc,(q)[pc,(-q))}w = -~((N,[N-,})w- L((S;[S~,}}w 
a 

( 45) 

We introduced also the spectral function which does not depend on spin 

<r in the paramagnetic state: 

A(q,w) = _.!:.S'((X~" I x;0 ))ww. 
7r 

(46) 

It defines the spectrum of electronic excitations by the one-electron (fully 

"dressed") Green function for the t- J model. 

To conclude this Section we calculate the static current-current sus­

ceptibility (29) in the denominator of eq.(43) that is also define the sum 

rule for the conductivity, eq.(l6). By performing the commutation be­

tween the polarization operator (30) and the current (33) we readily get 

Xo = (Jx,Jx) = •([Jx.Px]} = e2 L(Ri -R'j) 2t;;(Xf0 Xj"}. (47) 
i¢j,u 

For the model with only the nearest neighbors hopping, (Rf- Rj)2 = a;, 
the static susceptibility (47) is equal to the average kinetic energy, the 

hopping term H, in eq.(4), multiplied by a constant: 

Xo = -e2a;(l/2)(H,) . (48) 
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The latter equation for the conventional Hubbard model (3) has been 
used by many authors to study the conductivity sum rule (16) (see, e.g., 
[6]- [14],[21, 26, 28, 30, 31]). In the q-representation the static suscepti­
bility (47) reads: 

Xo = -e'" [J't(q)(X"oXo") _ Ne
2 

L... 8q' q q - ----
q,u X ffiejj 

( 49) 

where the doping and temperature dependence of the effective mass m,f f 

is defined by the correlation function (X;0 X~"). Tbe latter can be cal­
culated by using the solution for the one-electron Green function for the 
t- J model. 

5 Results and Discussion 

In the present paper we have derived a closed set of formulas for the 
frequency dependent conductivity for the t - J model ( 4) in the form of 
the generalized Drucie law (24) with the relaxation rate ( 43) depending on 
the kinematical and the exchange electron interactions ( 44) with spin and 
charge fluctuations. The static current-current susceptibility ( 49) defines 
the sum rule (16) and enter as a normalization factor in the definition of 
the relaxation rate ( 43). 

In comparison with the relaxation rates for the two-band Hubbard 
model [36], where the kinematical interaction gives a contribution propor­
tional to [(taa) 2

- (t12 )
2

]
2 and cancels out for the conventional Hubbard 

model, (t(XfJ = t)) in the present paper we observe a finite kinematical 
contribution in the t - J model. It is defined by the first part of the 
vertex (44), g1(k,k- q) = vx(k) t(k- q)- vx(k- q) t(k) ex t4 • How­
ever, in the t- J model we have an additional spin-exchange scattering, 
gJ(k, k- q) = J(q) [vx(k)- vx(k- q)] ex t 2 J' ex t6 since J ex ti,j ~ in 
(4). So we observe a nonequivalence of the two-band Hubbard model 
in the strong correlation limit to the t - J model (even with allowing 
for the three-site terms omitted in (4) [21]). We can also suggest that 
higher order in t2 /fl. contributions in the conventional Hubbard model 
could give a final Drude relaxation rate depending on the spin-exchange 
scattering. 

Now we estimate the relaxation rate ( 43) and the conductivity (24) by 
adopting some approximations for the one-electron spectral function ( 46) 
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and the charge spin susceptibility ( 45). As it has been proved in many 
calculations for the t - J model (see, e.g. [35]), the spectral function for 
one-hole excitations can be written as a sum of a coherent contribution 
from the quasiparticle propagation in a narrow band of the order 2J and 
an incoherent part due to diffusive motion of holes in a broad band of 
the order 2W ""St. So we can use the following approximation: 

A(k,w) = z.6(w +I"- Ek) + Aino(k,w) (50) 

where Zk is the quasiparticle weight for excitations with the dispersion 
Ek. For the second, incoherent contribution we write: 

Aino(k,w) ""Nino O(W -lw + rl). (51) 

Here the incoherent density of states Nino "" (1 - Z•)f2W. The total 
density of states (50) obeys the sum rule 

1 1= n N L dwA(k,w) =(X?"+ Xf") = 1- 2 (52) 
k -= 

• 
where n = 2(Xfu) is the occupation number. In this approximation we 
get estimations for the chemical potential r/W"" (1- 36)/(1 + 6) and 
for the static current-current susceptibility (49) xa/N "" e2a2W6 with 
6 = 1- n. 

By using eqs.(50), (51) we,.get the following expressions for the relax­
ation rate ( 43) depending on the coherent contribution 

exp(iJw) - 1 2e2 L 2 fooh(w) = . N g,(k, k- q)Z• Zk-o 
xow • k,q 

n(<•)[l- n(<k-,)]N(w- Ek + '•-,)X~,(q,w- Ek + '•-ol (53) 

and the incoherent contribution 

exp(iJw)- 1 2e2 
2 1W-~ jw-~ 

Cno(w) = w N L g.(k,k-q) . dw1dw2 
Xo k -W-" -w-" ,q 

N,~0n(w1)[1- n(w2 )]N(w- w1 + w,)x~,(q,w- w1 + w2 ). (54) 

The coherent part of the relaxation rate (5~) has the conventional 
form for the Drucie relaxation rate calculated in the Born approxima­
tion. However, the relaxation rate and the conductivity (24) have quite 
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a complicated temperature and doping dependence due to a very specific 
dependence of the one-electron spectra'" and spin susceptibility on that 
parameters. The formula (53) has been evaluated in [40] numerically 
for the p- d model and for the Millis-Monien-Pines spin susceptibil­
ity model [53]. It has been shown that the relaxation rate (53) has a 
crossover from T 2 at T -. 0 to a linear temperature dependence in the 
static limit, (w ~ 0), and a crossover from w 2 at w -+ 0 to a linear 
frequency dependence for low enough temperatures in agreement with 
experiments for copper oxides. 

Therefore, in the present paper we do not discuss the coherent part 
or the relaxation rate (53) and consider only the incoherent part (54). 
By using the model for the spin susceptibility suggested in the numerical 
calculations [34] 

x~(q,w) ~ x,(q) x~(w) ~ x,(q) tanh ;T ~, '" (5S) 

we get after some algebra the following estimation for the incoherent 
relaxation rate: 

Cnc(w) = w, r(v, r) A= w, f(v, r) Ze~ I>;(k, k- q)N,~,x,(q) (56) 
Xo k,q 

where the dimensionless function for the frequency v = w /2T and tem­
perature r = T/w, is given by 

f(v, r) =:Zr l'(v, r) 

+oo 
tanh v J dx 

= Zr-v- (I + 4r2x 2) 

0 

1 v tanh v - x tanh x 

cosh2 x tanh2 
11- tanh2 x · 

(57) 

It is remarkable that for the incoherent spectrum (51) the q- and fre­
quency dependence is factorized as the product of the scaling function 
l'(v, r) in (57) and the integral over scattering vectors, the constant A in 
(56). Therefore, the problem of hot spots on the Fermi surface discussed 
by Hlubina and Rice [54] is irrelevant for the incoherent scattering. 

The frequency and temperature dependence of the relaxation rate 
f(v, r) is shown in Fig.l for several temperatures T = Tfw8 where W:; c:: 
J ~ 1500 K. 
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Fig.L Relaxation rate f(v, r) as a function of frequency v = wj2T 
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Fig.2. Dimensionless conductivity CT(v, r)/(xo/Vw,) as a function of 
frequency v = wj2T and temperature T = Tjw, 
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A linear frequency dependence is observed for v = w /2T 2': 1 for low 
temperatures, r ::; 0.2 (T ::; 300 K). In the static limit, v = 0, we 
have a linear temperature dependence even in the low temperature limit, 
T --t 0, since 

+= 2 

J xdx "" 
r(v = O,r -t 0) C:OT sinhx = 7 2. (58) 

0 

This low temperature linear behavior is due to the specific temperature 
dependence of the model spin susceptibility (55). 

For the absorptive, real part of the conductivity, neglecting the optical 
mass renormalization, .l.(w) eo: I, we obtain from (24), (56) the following 
representation for the incoherent scattering: 

Xo 1 A7(v, r) 
cr(v,r) = Vw, 2r v2 + (A7(v,r))' (59) 

The frequency and temperature dependence of the dimensionless con­
ductivity cr(v, r)/(xo/Vw,) for A = I in eq.(59) is shown in Fig.2 for 
several temperatures. Since r( v, T) ex v in the low temperature region 
(see Fig.!) the conductivity cr(v, r) ex 1/v in a wide frequency range in­
cluding the midinfrared band. This universall/w behavior was observed 
by Rice et aL in the model with purely incoherent spectrum of holes 
[20] and also in numerical calculations for small clusters [34] and in the 
Hubbard model in the limit of infinite dimension [22, 23]. So we can 
confirm by our analytical calculations that midinfrared absorption or the 
universal (1/w) dependence of the optical conductivity can be explained 
by the diffusive character of the hole motion in systems with strong cor­
relations, as in the copper oxides. In the static limit, (v -t 0), we obtain 
a linear temperature dependence for the resistivity, p( r) = 1/ cr( r ), in the 
limit of low temperature which readily follows from (58). 

The results presented in this section have been obtained for the model 
incoherent spectrum (51) and the model spin-fluctuation susceptibility 
(55). Both the coherent part in (50) in the form of the undamped quasi­
particle spectrum and the incoherent part (51) in the form of the fre­
quency independent contribution are really very crude approximations 
to one-hole ARPES spectra observed in copper oxides (see, e.g., [55]). 
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However, since relaxation rate (43) depends only on the averaged values 
of the spectral functions we can argue that a qualitative behaviour of the 
relaxation rate should not depend on the details of the former. There­
fore, the main result of our analytical study ·- the non-Drude behaviour of 
the relaxation rate caused by the diffusive character of the hole motion 
in systetns with strong correlations, seems to be justified. To improve 
our estimations that enables us to compare them with experiments one 
has to solve numerically the full self-consistent system of equations for 
the one-electron Green function for doped holes and for the spin suscep­
tibility for the t ·- J model. These very involved numerical calculations 
are planned to consider later. 
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nnaKIIJla H.M. El7-97-14 
OnTH'-:IeCKIDI nposo.rntMOCTh B t- J MO):teJTH 

Bw-IHCmieTCjl Jaswcsnuas~ oT tJaCTOTLI 3JieKTponposonHocth 0' (ro) )lJUI _t -1 
MO)leJTH MCTO)lOM <l>YHKUHH riawtTH 8 $opManH3Me onepaTOpOB Xa66ap.ua. 
}:VI~ (J (ro) nonyqeH o6o6meHHb!H 3aKOH }.(pyne C cj>yHKUHeH penaKC3UHII, o6ycJJOB­
JTeHHOi1: pacceSHt-leM ::meKTpOHOB Ha CnHHOilbiX H 33pSIJl0BhiX .UHH3MH'-ICCKHX QJn}'K­

TyaUHSIX. noKa3aHO, liTO ):VHf MO)leml C HeKorepefiTHbiM cneKTpOM O)l,HOttacntlJHbiX 
B036)')K)lemfi:f lJaCTOTHCU( 3aBHCHMOCTb Q:lynKUHH pfmaKCaUHH H npoBO)lHMOCTH 
onHCbJBaerc~ YHIIBepcanbHOil cj>yHKU!Ieil y (ro / kT ). <l>JHKUII" penaKcauliii 
Jl!Ul t- J MO)leJIH cymeCTBeHHO OTJIWJaeTCH OT TaKOBOH .DJIH CT8H.IlapTHOH: MO)leJIH 
Xa66ap.ua B npe):{ene cwnonoH CB.si3H. B nocne)lHeM cnytae ona o6pamaerc.s1 B nynh 
H3-3a TOlJHOH KOMneHCaUHH BHyrpH30HHOfO lf Me30JIIIOfO BK.nMOB B pacce51HHe 
::meKrpOHOB. 

Pa6oTa BhlllOJTHeHa B Jia6bpaTopHH TeopeTw-IecKoii £PH3HKH HM.H.H.Eoromo6o­
sa 0115IH. 

OpenpHIIT OfueJJ.HHenHoro HlfCTHT)'Ta ~nepHbiX HCCJieHoBaHHii. lly6ua, 1997 

Plakida N.M. El7-97-14 
Optical' Conductivity in the t- J Model 

Frequency dependent conductivity cr (ro) is calculated for the t- J model 
by applying the memory function technique in terms of the Hubbard operators. 
The relaxation rate due to electron scattering on spin and charge dynam:ical 
fluctuations is calculated and a generalized Drude law for cr (ro) is obtained. 
For a model with an incoherent spectrum for one-hole excitations we obtain 
a universal form for frequency dependence of relaxation rate and conductivity 
in terms of the scaling function y(ro/kT). The relaxation rate for the t-J model 
is quite different from that one for the conventional Hubbard model in the strong 
coupling limit- where it vanishes due to an exact cancellation of the intraband 
scattering and virtual interband transitions. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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