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1 Introduction 

A vast amount of theoretical searc~es for the relevant mechanism of high temperature su
perconductivity (HTSC) deals with the strongly correlated electron models [1] -[6]. Much 
attention has been devoted 'to the formulation of successful theory of the electrons (or 
holes) propagation in the Cu02 planes in copper oxides. In particular, much efforts have 
been done to describe self-consistently the hole propagation in the doped 2D quantum 
antiferromagnet [7] - [30]. The understanding of the true nature of the electronic states 
in HTSC are one of the central topics ofthe current experimental and theoretical efforts 
in the field [2]. The plenty of experimental and theoretical results shows· that the charge 
and spin fluctuations induced in the carrier hopping lead to the drastic renormalization 
of the single-particle electronic states due to the strong correlation. It makes the problem 
of constructing of the correct ground state wave functions and description the real many
body dynamics of the relevant correlated models of HTSC quite difficult [1] - (31]. The 
right picture of dynamical properties is very important issue, because of the most signifi
cant experimental data of HTSC have a dynamical nature, i.e. depends on frequency, [4]. 
The dramatic change of the electronic structure caused by the carrier doping is found in 
one-particle spectral density( e.g. (32]). 
Theoretical description of strongly correlated fermions on two-dimensional lattices and 
the hole propagation in the antiferromagnetic background still remains controversial [30]. 
Furthermore, validity of different variants of perturbation expansions are not quite clear. 
The first attempts [7] - [21) to describe the hole propagation have shown clearly that the 
results depends strongly on the type of the model (2D Hubbard, t-J model, d-p model, 
etc), the choice of the background (RVB, Neel, triangular, etc) and the method of calcu
lation. The role of quantum spin fluctuations was found to be quite crucial for the hole 
propagation [24). 
The essence of the problem is in the inherent interaction ( and coexistence) between charge 
and spin degrees of freedom which are coupled in a self-consistent way. The propagating 
hole perturbs the antiferromagnetic background and move then together with the dis
torted underlying region. In the "prophetic" language (33) of the gauge theory of holes 
in High-Tc superconductors it was called as a kind of quasi particle "carrion",. which 
is composed of the hole(electron) and the "cloud" of SU(2) Yang-Mills field around the 
hole. The perturbed gauge fields will be then spontaneously broken through Higgs-like 
mechanism to describe the situation when antiferromagnet symmetry is broken around 
the hole. There were many attempts [1) - [6) to realise this program. The significance of 
these attempts is, by no means, very important. However, a definite proof of the fully 
adequate mechanism for the coherent propagation of the hole is still lacking. The study 
of the hole quasiparticle propagation in the doped phase is still a quite open subject and 
is not well understood. In the present paper we will analyse the physics of the doped 
systems and the true nature of carriers in the 2D antiferromagnetic background from the 
many-body theory point of view. The dynamics of the charge degrees of freedom for 
the Cu02 planes in copper oxides will be described in the framework of the spin-fermion 
(Kondo-Heisenberg) model (46) and compared with dynamics of other models. We shall 
use for this aim the Irreducible Green's Functions Method·[34] - [36). 
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2 Irreducible Green's Functions Method 

A number of perturbation approaches have been used to describe the spin and carrier 
dynamics of HTSC. In the present paper we use novel nonperturbative method to attack 
the same problem. This method of Irreducible Green Functions(IGF) (34] - (36),(43] rely on 
a unified self-consistent calculation of one-particle fermion and spin Green Functions(GF) 
including damping effects and finite lifetimes and gives the correct results both for the 
weak and strong coupling. The approach we suggest is founded on the number of studies 
and has proved to be valuable for the s-f model (37], (38], Heisenberg antiferromagnet [39), 
Anderson model (40], [41] and Hubbard model (42), (35). In this paper it will be attempted 
to justify the use of IGF method for the description of the hole propagation in a quantum 
antiferromagnet. Our approach is in many respect complimentary' and incorporate the 
logic of development of the many-body technique (36]. The study of the quasiparticle 
excitations in solids _has been related deeply with the Green's Functions method (44) 
and has been one of the most fascinated subject for many years. We have developed the 
helpful reformulation [34] of the two-time thermodynamic GFs method which is especially 
adjusted for the correlated fermion systems on a lattice [43]. 
To clarify the foregoing, let us consider the retarded GF of the form 

G'(t -t') =<< A(t),B(t') >>= -iB(t -t') < [A(t)B(t')J,, >;77 = ±1. (1) 

The essence of the IGF method is as follows (34]. It is based on the notion of IRRE
DUCIBLE parts of GFs (or the irreducible parts of the operators, out of which the GF 
is constructed) in terms of which it is possible, without recursion to a truncation of the 
hierarchy of equations for the GFs, to write down the exact Dyson equation and to obtain 
an e?Cact analytical representation for the self-energy operator. Let us consider the sketch 
of the method in a symbolic form. To calculate the GF (1) let us writ~ down the equation 
of motion for it: 

wG(w) =< (A,A+],, > + << (A,HJ-1 A+ >>w 
By definition we introduce the irreducible part ir of the GF 

(ir << (A,HJ-IA+ >>) =<< (A,H]_ - zAIA+ >> 

(2) 

(3) 

The unknown coefficient z is defined by special constraint, which is in core of the whole 
method 

< [(A,H]'.'.",A+J,, >= 0 

From the condition (4)'one can find: 

< [[A,H)_,A+],, > z = __ccc.._;_=--.;__..:....: 

<(A,A+),,> 

(4) 

(5) 

Therefore, u-reducible GF (3) is defined so that it cannot be reduced to the lower-order 
ones by any kind of decoupling. This procedure extract all relevant (for the problem under 
consideration) mean field contributions and put them into the generalized mean field GF, 
which is defined as (34] 

G0 (w) = < (A,A+],, > 
(w - z) 

2 

(6) 

t 

It is worthy to note that Generalized Mean Fields can have, in principle, a complicated 
structure for the system with strong interaction and complicated many-branch spectrum 
and are not reduced to the functional of the mean densities of the particles or quasipar
ticles. To calculate the IGF in (2), we have to write down the equation of motion after 
differentiation with respect to the second time variable t'. The constraint (4) remove the 
inhomogeneous term from this equation. If one introduces an irreducible part for the 
right-hand side operator , then the equation of motion (2) can be exactly (or identically) 
rewritten in the form of the Dyson equation. 

G = G° +G°MG (7) 

which has well known formal solution of the form 

M = (G°)-1 - G-1 (8) 

The full problem cannot be handled and one makes the approximations. Note that in 
contrast to the standard equation-of-motion approach, the decoupling is introduced in the 
self-energy operator only. The general philosophy of the IGF method lies iii separation and 
identification of elastic scattering effects and inelastic ones. This last point is quite often 
underestimated. However, as far as the right definition of quasiparticle damping (i.e. true 
quasiparticles) is concerned, the separation of elastic and inelastic scattering processes is 
believed to be crucially important for the many-body systems with complicated many
branch spectrum and strong interaction. It was emphasized especially recently (-15), that 
the anomalous damping of electrons (or holes) distinguishes cuprate superconductors from 
ordinary metals. It is worth mentioning that, in general, the mean-field renormalizations 
can exhibit a quite nontrivial structure. To obtain this structure correctly, one must 
construct the full GF from the complete algebra of relevant operators and develop a 
special projection procedure for higher-order GF's in accordance with a given algebra. 

3 Hubbard model and t-J model 
) 

The model Hamiltonian which is usually reffered as to Hubbard Hamiltonian is gi,·en by 

u 
H = L l;;a't.,a;u + 2 L n;u11i-u 

ijt7 i<7 

(9) 

For the strong coupling limit, when Coulomb integral U » W. where W is the effective 
bandwidth, the Hubbard Hamiltonian is reduced in the low-energy sect.or to t-.l model 
Hamiltonian of the form 

· H = ~)t;;(l - lli-u )a't.,a;,,(l - n;-u) + H.C.) + J L S;S1 ( 10) 
~ ij 

This Hamiltonian play an important role in the theory of HTSC. The more refined and 
detailed derivations does not change the opinion that as regards to essential physics of 
HTSC this model is still instructive and workable. Let us consider the carrier motion. 
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The hopping at half-filling is impossible and this model describe the planar Heisenberg 
antiferromagnet. The most interesting problem is the behaviour of this system when the 
doped holes are added. In the t - J model (U-+ oo) doped holes can move only in the 
projected space, without producing doubly occupied configurations ( < n1 > + < n 1 >~ 
1 ). There is then a strong competition between the kinetic energy of the doped carriers 
and the magnetic order present in the system. According to Ref. (19], it is possible to 
rewrite first term in (10) in the following form 

H1 = t L, (a~S; Sf a;1 + at St s;a;1 + h.c.) (11) 
<ij> 

This form show clearly the nature hole-spin correlated motion over antiferromagnetic 
background. To describe in a self-consistent way a correlated motion of a carrier one need 
to consider the following complicated matrix Green's Function(c.f. (37], [38],(3-5]): 

( 

<< a;Jia~ >> 

G•(· ") - << a;dajl >> 
z,J - - + << S; la;1 >> 

<< st1°t1 >> 

<< a;1ia;1 >> 
<< a;da;l >> 
<< s;1at1 >> 
<< st1°t1 >> 

<< ai!ISf >> 
<< a;dSf >> 
<< si-1st >> 
<< stist >> 

<< a;rlS;- >>) 
<< a;dS; >> 
<< s;-1s;- >> 
<< st1s; >> 

(12) 

It may be shown after most straightforward but tediuos manipulations by using IGF 
method that the equation of motion (2) for the GF (12) can be rewritten as a Dyson 
equation (7) for two-time thermodynamic retarded GF: 

G(i,j;w) = Go(i,j;w) + L, G0 (i, m;w)M(m, n;w)G(n,j;w) (13) 
mn 

The algebraic structure of the full GF in (13) which follows from (8) is rather complicated. 
For clarity, we illustrate some features by means of,simplified problem. 

4 Hole Spectrum of t - J model 

In paper (10] the idea to write down the special ansatz for fermionic operator as a com
posite operator of dressed hole operator and spin operator has been proposed for the case 
J ~ t. They introduced hole operator h; corresponding to fermion operator at, on the 
spin-up sublattice using the ansatz a~ = h;S;- and similarly for spin-down sublattice. 
Then the Hamiltonian (11) obtain the form 

H1 = t L l;;hjh;(bt + b;) 
r ij 

(14) 

Herc b; and bj are the boson operators, which results from the Holstein-Primakoff trans
formation of spins into bosons. Equation (14) is not convenient form because of its 
non-diagonal structure. Caution should be exercised because the new vacuum is a dis
torted Neel vacuum. 
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The equation of motion (2) and (3) for the hole GF can be written in the following form 

w << h;lht >> -t L,l;n <En;><< hnlht >>= 8;k + t L, I;ner << hnEn;lht >>) 
n n 

Here En;= (b! + b;). The "mean-field" GF (6) is defined by 

L,(w8;; -tl;; < E;;.>)G0 (i,k;w) = 8;k 
i 

(15) 

(16) 

Note, that "spin distortion" < Emn > does not depend on (Rm - Rn)- According to eqs. 
(1) - (7), the Dyson equation (13) becomes 

G(g, k) = Go(g, k) + L, G0 (g,j)M(j, l)G(l, k) 
jl 

where self-energy operator is given by 

M(j,/) = l 2 L,f;n(ir<< hnEn;lh-::.Ekm >>i')fmk 
mn 

(17) 

(18) 

The standard IGF-method's prescriptions for the approximate calculation of the self
energy (c.f.(35], [37], [38]) can be written in the form 

M(j, l;w) = t2L,l;nlm11+00 dw1dw2 1 + N(w1) - n(w2) 
mn -oo W - Wt - W2 

(19) 

1 1 
(-Im<< En;IE1m >>w,)(-lmG(l, m;w2)) 
~ ~ 

In the present context, the three main weaknesses of the model (14) are the following. (i) 
The above presented formalism is relevant for quasi-static hole; (ii) The mass operator 
(19) is proportional to t2 ; (iii) The standard iterative self-consistent procedure of IGF 
approach for the calculation of mass operator encounter the need of choosing as a first 
iteration "trial" solution the non-diagonal initial spectral function ImGo. We shall see 
below that these drawbacks does not exist for the spin-fermion model. 
The initial hole GF _in paper [13] was defined as 

8jk 
Go(j, k;w) = w + iE 

(20) 

which corresponds to static hole, without dispersion. In contrast, the approximation for 
the magnon GF yield the momentum distribution of a free magnon gas. After integration 
in (19) , the mass operator is given by an expression quite similar to the one encountered in 
papers [13], where the Bogolubov-de Gennes equations has been derived. These equations 
for the inhomogeneous superconducting samples plays an important role as it was argued 
in Ref.[7] in the context of high Tc superconductivity. It can be checked that the present 
set of equations (17) - (19) gives the finite temperature generalisation of the results[lO], 
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[13]. As we just mentioned, one of its main merits is that it enables one to see clearly the 
"composite" nature of the hole states in an antiferromagnetic background, but, unfortu
nately, in the quasi-static limit. As a consequence, the formulation of the model, which 
tends to "reproduce" this composite nature of the carriers from the beginning, appears 
naturally if one wants to keep track of the relevant hole quasiparticle dynamics in copper 
oxides. This does not necessarily exclude the possibility of complementary studying of 
the both t - J and spin-fermion models. 

5 Spin-Fermion Model 

As far as the CuOrplanes in the copper oxides are concerned, it was argued [46] that a 
suitable workable model model with which one can qiscuss the dynamical properties of 
charge and spin subsystems is the spin-fermion ( or Kondo-Heisenberg) model [47]. This 
model allows for motion of doped holes and results from d-p model Hamiltonian [2]. We 
consider the interacting hole-spin model for a copper-oxide planar system described by 
the Hamiltonian 

H= H,+HK+HJ 

where H, is the doped hole Hamiltonian 

H, = - L (ta"tc,aju + H.C.) = L f(k)atuaku 
<ij>u ku 

(21) 

(22) 

where a"tc, and a;" are the creation and annihilation second quantized fermion operators, 
respectively for itinerant carriers with energy spectrum 

f(q) = -4tcos(l/2qx)cos(l/2qy) = h1(q). (23) 

The term HJ in (1) denotes Heisenberg superexchange Hamiltonian 

""" - - 1 """ - -HJ= L., JSmSn = 2N L., J(q)SqS-q 
<mn> q 

(24) 

Here Sn is the operator for a spin at copper site Gi and J is the u.n. superexchange 
interaction· 

J(q) = 2J[cos(qx) + cos(qy)] = J,2(q) (25) 

Finally, the hole-spin (Kondo type) interaction HK may be written as (for one doped 
hole) 

HK= I:I<u;S; = N-I/TL L I<(q)[s.::;atuak+q-u + ZuS.~-qatuak+qu) (26) 
i kq u 

This part of the Hamiltonian was written as the sum of a dynamic(or spin-flip) part and 
a static one. Here K is hole-spin interaction energy 

I<(q) = I<[cos(l/2qx) + cos(I/2qy)] = K,3(q) (27) 
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and sign factor Zu is given by 

Zu = (+or-) for a= (j or l) 

We start in this paper with the one doped hole model (21 ), which is considered to have 
captured the essential physics of the multi-band strongly correlated Hubbard model in 
the most interesting parameters regime t >J, IHI. We apply the IGF method to spin
fermion model (21). It will be shown that we are able to gi,·e a much more detailed and 
self-consistent description of the fermion and spin excitation spectra than in papers [HJ 
- [53], including the damping effects and finite lifetimes. 

6 Hole Dynamics in the Spin-Fermion Model 

The two-time thermodynamic Green Functions to be studif'd here arc• gi'"_ell b~· 

G(ka,t - 1
1

) =<< llku(l),at,,(t') >>= -iO(I - 1
1

) < [a..,,(l).at,,(I')]+ > 

x+-(mn, t - t') =<< S;!;(t), S,~(t') >>= -iO(I - t') < [S,;.(I). S,~(I')]- > 

(28) 

(29) 

In order to evaluate the GFs (28) and (29) we need use the suitable information about 
a ground state of the system. For the 20 spin 1/2 quantum antifc·rromagnd in a square 
lattice the calculation of the exact ground state is a very difficult problem [2] - [Ci]. In 
this paper we assume the two-sublattice Neel ground state. According to Neel modf'l. t hf' 
spin Hamiltonian (24) may be expressed as [34],[39] 

JIJ = L L J"f3 Smc.Sn,3 (:lO) 
<mn> o,/J 

Here (a,/3) = (a,b) are the sublattice indices. 
To calculate the electronic states induced by hole-doping in the spin- f<'rmion modd ap
proach we need to calculate the energies of a hole introduc<'d in t lw N,·el ant iferromagnd. 
To be consistent with (30) and (12) we define the singl('-particl,, frrmion CF as 

G(ka,w) = (<< a.(ka)la;;(l,a) >> 
<< ab(ka)la;;(ka) >> 

<< a.(ka)lat(hr) >>) 
<< ab(ka)lat(i•a) >> (:lt) 

Note, that the same fermion operators a,,(ia), annihilates a f,·rmion with spin a on th<' 
(a)-sublattice in the i-th unit cell has been used in paper [-IS]. The <'qttat.ion of motion 
for the Fourier transform of the clements of GF ( 11) arc written as 

L(w80 ,. - f
0 f3(k)) << a,.(ka)la!(ka) >>= Dc.r << ..\(ka,n)lati >> (:l2) 

,. 
where 

A(ka,a) = N- 112 L K(v)(s.::;oaa(k + p- a)+ ::,,S:,,.,ac,(k + ]'<7)) (:n) 
p 
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We make use of the general Irreducible Green Function(IGF) approach (35),(36)(see Sec
tion 2) to threat the the equation of motion (32). It may ,be shown that equation (32) 
can be rewritten as the Dyson equation (7) for two-time thermodynamic retarded GF 

G(ku,w) = G0 (ku,w) + G0 (ku,w)M(ku,w)G(ku,w) (34) 

Here Go(ku,w) = n-1 describes the behaviour of the electronic subsystem in the Gener
alized Mean-Field(GMF) approximation (for the detailed discussion of the GMF concept, 
see (35),(36)). 1he n matrix have the form 

n k ( (w - ta(ku)) -fab(k) ) 
( u,w) = -fba(k) (w - fb(ku)) (35) 

where 
fc,(ku) = f00 (k) - z(IN- 112 L K(p) < s;o > Dp,O = t 00 (k) - z(IJ(Sz (36) 

p 

Sz = N- 1l2 < S~0 > 
is the renormalized band energy of the holes. 

The elements of the matrix GF G0 (ku,w) are found to be 

where 

G,aa(k ) u2(ku) v2(ku) ·u w - --'--'-- + ----'---'--
0 ' - w - f+ ( ku) w - c ( ku) 

Gab(k ) _ u(ku)v(ku) _ u(ku)v(ku) _ 0,ba(k ) 
o u,w - - O u,w 

w - t+(ku) w - f_(ku) 

G,bb(k ) _ v2(ku) u2(ku) 
o u, W - ---- + ----,--

w - f+(ku) w - c(ku) 

u
2
(ku) = 1/2(1 - z" :(!/ v2

(ku) =: 1/2(1 + z" ~!) ); 
f±(ku) = ±R(k) = ((tab(k)2 + 1(2S;)l/2 

(37) 

(38) 

(39) 

(40) 

(41) 

the simplest assumption is that each sublattice is s.c. and f""(k) = O{"a = a,b). In spite 
that we have worked in the GFs formalism, our expressions (37) -(39) are in accordance 
with the results of the Bogolubov (u,v)-transformation for fermions, but, of course, the 
present derivation is more general. 
The mass operator M in Dyson equation (34), which describes hole-magnon scattering 
processes, is given by as a "proper" part (35) of the irreducible matrix GF of higher order 

. ((ir) << A(ku,a)j;t,+(ku,a) >>(ir) (ir) << A(ku,a)jA+(ku,b) >>(ir)) 
M(ku,w) = (irJ << A(ku,b)jA+(ku,a) >>Cirl Cir)<< A(ku,b)jA+(ku,b) >>(irJ 

(42) 
To find the renormalization of the spectra t±(ku) and the damping of the quasiparticles 
it is necessary to determine the self-energy for each type of excitations. From the formal 
solution (8) one immediately obtain 

G±(ku) = (w - t±(ku) - E±(ku,wW1 (43) 
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Here the self-energy operator is given by 

E±(ku,w) = A± Maa ± B(Mab + Mba) + A'f Mbb {44) 

where 
A±= (u 2

(ku)) 
v2(ku) 

B = u(ku).v(ku) 

Equations ( 43) determines the quasi particle spectrum with damping (w = E - if) for the 
hole in the AFM background. Contrary to the simplified calculations of the hole GF in 
Section 4, the self-energy {42) is proportional to K 2 but not t2(c.f.eqn. {19)) 

M"/J(ku,w) = N-11(2 ~ 1+00 dw1dw2 1 + N(w1) - n(w2) 
~ -oo W - WJ - W2 

. q 

(45) 

(F:r"(q,wi)gop(k ~ q- u,w2) + F;iJ(q,wi)gop(k + q,w2)) 

Here functions N(w) and n(w) are Bose and Fermi distributions, respectivefy, and the 
following notat.ions have been used for spectral intensities 

.. 1 . . 
F,::'p(q,w) =--Im<< s;0 1S:~-q/J >>.., 

7r 
(46) 

9afJ(ku,w) =_.!_Im<< aa(ku)lat(ku) >>..,; i,j = ( +, -, z). 
7r 

The equations (45) and (34) forms the self-consistent set of equations for the determining 
of the GF (31). It need hardly be remarked that the advantages of the present formulation 
permits: 
i)to make much more exact statements about interacting hole-spin system 
ii)to calculate in controlled manner beyond the Hartree-Fock approximation, 
iii) with IGF method we can make a one-to-one correspondence between each complete 
set of contractions arising in each term of diagrammatic expansion(c.f. (48],- (49]). 
Coupled equations ( 45) and (34) can be solved analytically by sui_table iteration procedure. 
In principle, we can use, in the right-hand side of ( 45) any workable first iteration step 
for of the relevant GFs and find a solution by repeated iteration. It is most convenient to 
choose as the first iteration step the simplest two-pole expressions, corresponding to the 
GF structure for a mean field, in the following form 

90 p(ku,w) = R+6(w - E+(ku)) + R_6(w - E_(ku)) . (47) 

where R± are the certain coefficients depending on u(ku) and v(ku). The magnetic 
excitation spectrum corresponds to the frequency poles of the GFs {29). In view of the 
discussion elsewhere of the spin dynamics of the present model, we shall content ourselves 
with the simplest initial approximation for the spin GF occuring in (45) (c.f. (39)) 

2 
ls F;j"(q,w) = L+6(w - ZuWq) - L_6(w + Zt1Wq) 

z,, z 
{48) 

9 



Here wq is the energy of the antiferromagnetic magnons and L± are the certain coefficients 
(see (391). We are now in a position to find an explicit solution of coupled equations 
obtained so far. This is achieved by using (47) and (48) in the right- hand-side of (45). 
Then the hole self-energy in 2D quantum antiferromagnet for the low-energy quasiparticle 
band E_(ku) is 

E-(ku,w) = I<2S, "C2 ( 1 + N(wq) - n(E_(k - q)) + N(w) + n(E_(k + q))) (49) 
2N L.., - w-wq-E-(k-q) w+wq-E_(k+q) 

q 

+ 2K2S; L D2 N(wq+p)(l + N(wq)) + n(E_(k + p))(N(wq) - N(wq+p)) 
N - w+wq+p-Wq-E-(k+p) , qp 

Here we have used the notations 

· C: = (Uq + Vq) 2
; D: = (UqUq+p - Vq ¼+P)2 

where the coefficients Uq and Vq appears as a results of explicit calculation of the mean
field magnon GF [39]. 
A very remarkable feature of this result is that our expression ( 49) accounts for the hole
magnon inelastic scattering processes with the participation of one or two magnons. It will 
be important for the consideration of Cooper pairing processes as we will show elsewhere. 
The self-energy representation in a self-consistent form (45) provide a possibility to model 
the relevant spin dynamics by selecting spin-diagonal or spin-off-diagonal coupling as a 
dominating or having different characteristic frequency scales. As a workable pattern, we 
consider now the static trial approximation for the correlation functions of the magnon 
subsystem [39] in the expression ( 45). Then the following expression is readily obtained 

!{2 1+00 dw' 
M" 13 (ka,w) =NL -oo w - w'( < s=;/3s;c, > 9013(k + q - u,w') 

q 

(50) 

+ < (S~q13t(s;"t > 9a13(k + qu,w')) 

Taking into account ( 49) we find the following approximative form 

E-(k ) ~ !{2 "x-+(q) + x'•'(q)(l - .( )) 
u,w~2NL..,w-E_(k+q) ')'i(J 

q 

(51) 

The dynamics of spin-1/2 Heisenberg antiferromagnet with nearest-neighbor exchange 
constant J, on a two-dimensional square lattice deserves a more detailed discussion. This 
will be done in the near future. 1 

It should be noted, however, that in order to make this kind of study valuable as one 
of the directions to studying the mechanism of HTSC the binding of quasiparticles must 
be taking into account. This very important problem [46],(48],[54] deserves the separate 
consideration. In spite offormal analogy of the our model (21) with that of a Kondo 
lattice, the physics are different( c.f. [551). There is a dense system of spins interacting 
with a smaller concentration of holes. As many authors have mentioned, for the obtain
ing the magnon exchange mediated superconductivity (of the non-s-wave character most 
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probably) the suitable effective interactions between two fermions, which is relevant for 
the case, is two-magnon exchange-type of interaction. Whese the fermion-magnon bound 
state formation has to be suppressed or not for promotion of the appearance of the su
perconductivity is not quite clear problem [56]. This q~estion is in close relation with the 
right definition of the magnon vacuum for the case when J{ ,/ 0. 
In this Section we has considered the simplest possibility, assuming that dispersion rela
tion t:""(k) = 0 (a= a, b). In paper [57] a model of hole carriers in an antiferromagnetic 
background has been discussed, which explains many specific properties of cuprates. The 
effect of strong correlations is contained in the dispersion relation of the holes. The 
main assumption is that the influence of antiferromagnetism and strong correlations is 
contained in the special dispersion relation, t:(k), which was obtained using a numerical 
method. The best fit corresponds to[57] 

t:(k) = -1.255 + 0.34coskr cos ky + 0.13(cos21.·r + cos21.·y) (52) 

As a result, the main effective contribution to t:(k) arises from bolt> hopping between sites 
belonging to the same sublattice, to avoid distorting the antiferromagnetir background. 
Our analitycal approach is similar in spirit to numerical approach of the paper[57]. Our 
IGF method is essentially self-consistent, i.e. do not depends on the special initial form 
for the hole propagator. For the self-consistent calculation by iteration of the self-energy 
(45) we can take as the fist iteration step the expression (-17) with the dispersion relation 
(52). This must be done for the calculation mean-field GF (:l5) and dispersion relation 
(41) too. This approach will be discussed elsewhere. 

7 Conclusions 

In summary, in this paper we have presented calculations for normal phas<• of IITSC, 
which are describable in terms of the spin-fermion model. \Ve ha\'f' characterized the true 
quasiparticle nature of the carriers and the role of magnetic correlat.ions. It was shown 
that the physics of spin-fermion model can be understood in terms of competition l)('tm•en 
antiferromagnetic order on the CuOrplane preferred by sup<'r<'xchange J and th<' itiner
ant motion of carriers. It appears plausible that similar arg11nw11ts apply to nikulat ion of 
the static hole states fort - J model since the latter are intimately relatPd to that of spin
fermion model. It is thus highly advisable to investigat<' comparatin· hole quasiparticle 
dynamics of the both models. In the present paper we do not JHesPnted all th<' details as 
regards for different possibilities of the definition of the relevant. generalized mean fields 
in this formalism. Carrying this procedure to other possibilities leads to a much more 
rich set of solutions for the spin-fermion model. In the light of this situation it is cl1·arly 
of interest to-explore in details how the hole motion relate with that of the Zhang-Hice 
singlet and other compozite "carrions" in the framework of the presPnt formalism. Con
sidering that the carrier-doping results in the HTSC for th<' n·alistic parampli•rs range 
t ~ J, J(, corresponding the situation in oxide supercond11ct.ors. tlw rnrf'ful examination 
of the collective behaviour of the carriers for a moderately dop1·d system 11111st he p<'r
formed [58]. It seems that this behaviour can be very diff<'rent from that of si11p;le hole 

11 



case. The problem of the coexistence of the suitable Fermi-surface of mobile fermions and 
the antiferromagnetic long range or short range order has to be clarified. The volume of 
the Fermi surface is an important problem, which was discussed recently[59]. The ques
tion was considered how to model doped cuprates. Should one model them by a system of 
quasi-particles which corresponds to the doped holes and populate the dispersion relation 
calculated for a single hole (rigid-band approximation).This is very intriguing problem, 
which deserves the careful analysis. Finally, in the present paper we have considered the 
simplified spin-fermion model, taking into account a Kondo-like spin coupling K between 
the oxygen hole and two nearest copper spins, arising from the strong d-p hybridization 
of the three-band extended Hubbard model [2]-[5]. However hybridization induces effec
tive spin-preserving hopping and spin-exchanging hopping terms also, implicitly taking 
into account the charge-transfer processes. The picture of the charge-transfer processes 
is modified greatly by taking into account the long-range screened Coulomb interaction 
within d-p model[60]. Work is in progress to refine the present approach for calculating 
of two-hole dynamics and the binding of quasiparticles for more general models. 
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