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The Ising model has been one of the most actively studied systems. In particular, spin 
- 1 and spin - 3/2 Ising models, which present a rich variety of critical and multicritical 
phenomena, are of special interest. 

The spin - 1 Ising model with bilinear (J) and biqtiadratic (K) nearest- neighbor 
interactions and a single-ion potential (A) is know as the Blume-Emery-Griffiths (BEG) 
model (1). The spin - 3/2 Ising model was introduced to explain phase transitions in 
DyV04 and its phase diagrams were obtained within the mean-field approximation (2]. 

· Later, this model was used in a study of tricritical proP,erties of a ternary fluid mixture 
(3). The complete phase diagram of the spin - 3/2 Ising model model with L = M = 0 has 
been fully analyzed with the use of two different approaches: mean field and Monte-Carlo 
techniques [4]. 

Most studies for two-dimensional lattice mentioned above, are performed for the square 
lattice, very few exact results for spin - 1 and spin - 3/2 Ising models have been carried 
out only for the trivalent lattices, such as the honeycomb lattice. Recently Horiguchi 
{5), Wu [6] and Rosengren and Haggkvist (7] using different theoretical approaches have 
exactly solved the BEG model for the honeycomb lattice in the subspace of interaction 
constants J and K 

exp(K) cosh J = 1. (1) 

The sam~ result was obtained also and for the.Bethe lattice (8]. 
Wu and Wu [9] and Kolesik and Samaj (10] have considered the BEG model in an 

external magnetic field ( H) and obtained an exact critical line for all values of H. Recently, 
Lipowski and Suzuki (11] and Ananikian and Izmailian (12] found the conditions under 
which the spin - 3/2 Ising model on the honeycomb lattice has the same partition function 
as the exactly· solvable zero-field spin - 1 /2 Ising model. Very recently, Horiguchi {13] 
proposed a general method by which a general spin-S Ising model in expressed in terms 
of an Ising mod.el of spin ±1 and spin less then S. This exact results provides an excellent 
tool for comparing the ac<;uracy of different approximation schemes mentioned above. 

In the present paper, we have solved ·exactly the most general spin - 3/2 Ising model for 
the two-dimensional square lattice in the subspace of the four- dimentional space spanned 
by the coupling co~stants J, K, L and M. We show that this model is reducible· to an 
eight-vertex model, for which the exact solution is not known at the present except for 
a few special cases (14, 15]. Moreover, we have e~tablished the equivalence of our model 
on the square lattice with one of the special cases, th~ so-called "free fermion model", 
which is the eight-vertex model under the "free fermion condition", along two lines in the 
four-dimentional space spanned by the coupling constants J, K, L and M. 

1. We consider the most general spin - 3/2 Ising model with an nearest-neighbor 
interaction and an up-down symmetry, which is described by the following Hamiltonian 

-{JH = L, {JS,S; + KS!SJ + LSfSj + ~ (S,Sj + S;Sf)} -A};,S?, (2) 
<•i>. • 

where S, = ±½, ±J is the spin variable at site i and < ij > indicates the summation over 
the pairs of nearest-neighbor sites. · _ ·-•=c•"""'"•"""·""•·-
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The equilibrium statistics of the system given by Eq.(2) is determined by the partition 
function Z = L{,} exp(-,8H), where ,8 = l/kBT is the inverse temperature and the sum 
is over all spin configurations. 

It is not difficult to show (for details see Ananikian and lzmailian [12)) that if 

where 

{ 
tanh2 J1 = tanh J2 tanh Jo 
exp(-4K) = cosh(J2 - Jo)' 

1 1 1 
Jo = 4J + 16 M + 64 L, 

3 15 27 
Ji = 4J + 16 M + 64 L, 

9 . 81 729 
J2 = 4J +'l6M + ML, 

we can write the following identity 

'{ S 2 2 3 3 M 3 3} exp J 1S2 + KS1S2 + LS1 S2 + 2 (S1S2 + S2Si) = 

1 · 1 = aoexp[R(S; + Si- 2)){1 + 4tanhJoS1S2exp[Ro(S; + Si -
2

)]}, 
where oo = exp(K/16) cosh Jo and 

exp(2R) = cosh J1 K 
cosh Jo exp( 2 ), 

tanh J2 
exp(4Ro) = 9tanh Jo· 

. Then the partition function defined by Hamiltonian in Eq.(2) can be written as: 

(3) 

(4) 

(5) 

Z = (aoe-¥t2: IJ.{1 + 4tanhJoS;Sj ex~[Ro(S; + SJ - !m II exp(-.6.oS;), (6) 
{s} <ii> · • 2 i 

where E is the total number of edges, .6.0 = .6. - 1 R, "I is the coordination number of 
a lattice, and the first product in Eq.(6) is extended over all pairs of neighbouring sites. 
This result is valid for. any arbitrary !attic~'.· It should be noted there that Eq.(3) is an 
analog of the condition in Eq.(1) for the spin - 1 Ising model. 

Thus, we obtain the condition given'in Eq.(3), which defines the surface in the space 
spanned by the coupling constants J, K, Land M, where the partition function is written 
in the form of Eq.(6). Recently, the equivalence of the spin - 3/2 Ising model on the 
honeycomb lattice with a zero-field spin - 1/2 Ising model on the same lattice in the 
subsp~ce given in Eq.(3) have been established [11, 12]: · · · 

.2. In the present section, we investigate the most general spin - 3/2 Ising model on 
the square lattice, described by the Hamiltonian in Eq.(2). We show that this model is 
reducible to an· eight-vertex model and can be exactly solved on the two nontrivial lines 
in'the surface given by Eq.(3). . . 

Now, consider a square lattice (where the coordination number 'Y is equal to four) 
composed of N sites (or ve.rtices) and of 2N lattice edges. Then we expand the product 
TI<ii> in Eq.(6) and represent graphically each term in the expansion as follows: draw a 
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dotted ,or ·solid line over the lattice edge ( ij) if the corresponding term in the expansion 
contains the factor 1 or 4 tanh J0 S;S; exp[Ro(S; + SJ - ½ )]. This leads to eight different 
kinds of configurations, shown in Fig.l, that can occur at a vertex. We assign a Boltzman 
weight { w;} to a vertex having 2n solid and 4 - 2n broken edges. When, the summations 
for all sites are carried out, we obtained the following values for weights to vertices: 

{ 
~ . a = 2c • [l + €-2Ao], 

L tns;exp[(nRo - .6.o)S;] = b = 21e-¥[1 + 9e
4
Ro-2AoJ, 

-±' 3 2 ~ ••- ,,±; C = 2t e- , [l + 8Je8Ro-2Ao], 
=0, 

n=O 
n=2 
n=4 
n = 1.3 

where t = tanh J0 and 11 is the number of lines with site i as an end-point. 

(7) 

These facts enable us to rewrite Eq.(6) in the form where the sum is over all line 
configurations on the square lattice having an even number of lines into each site. For the 
square lattice, this leads to an eight-vertex model shown in Fig. l with the vertex weights 

w1 = a, W2 = c and w3 = ... = tl's = b, 

where a, band care given in Eq.(7). 
Thus, we obtain the exact equivalence 

· _!!Jl.)2N { }) Z=(o0 e. •· Z8.,( tt'; , 

where Z8v( { w;}) is the partitio11a functio~ of eight-vertex model gi\•en by 

Zsv( {w;}) = 2 L II w;. 
all linf' configurahon$ i 

(8) 

(9) 

(10) 

The factor of 2 comes from the fact that a reversing of all spins leaves the line config
urations unchanged. 

The eight-vertex model on the square lattice plays an important role in the study of 
phase transitions in lattice systems. Unfortunately. except in some special cases [14. 15] 
the behavior of this general model is not known. The exact expression of the free energy 
of this model was first obtained by Fan and Wu [15] and by Baxter [14] in respective 
conditions. In particular, the former authors solved the "free fermion model". This 
model is defined as a particular case of the eight-vertex model in which the vertex weights 
satisfy the relation: 

W1W2 + W3W4 = WsWs + W7Wg, ( 11) 

which is called the "free fermion condition", as in the S - matrix formulation of the 
eight-vertex problem, this condition is equivalent 'to the consideration of non-interacting 
many-fermion system [16]. 

It is readily verified, using Eqs.(7) and (8), that the "free fermion condition" in Eq.( 11) 
is satisfied if, and only if 

1 
cxp(4Ro) = g· 
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This equation together with Eqs.(3) and (5) give us the following two nontrivial lines 
in the four-dimensional parameter space spanned by coupling constants J, I{, L and M, 
i.e., 

{ 
(i) 16J = 49L = -14.M+ I{= O; (J0 = ~J) 
(ii) l6J = l69L = -26.M, [{ = O; (Jo= 1

3
6V)' (13) 

on which the spin - 3/2 Ising model is equivalent to exactly solvable free fermion model. 
Here, we remark that except at the trivial point (J = L = M = /{ = 0) for special 
(M = 0) spin - 3/2 Ising model, in general the exactly solvable case can not be obtained 
[11]. 

The equivalence, given explicity by Eqs.(9), (10) and (13) permits us to deduce exact 
analytic properties of the general spin - 3/2 Ising model. 

The condition given by Eq.(13) can be also interpretated in another way. Consider, 
for example, the case (i): Introducing the two new spin variables u; and t; 

4 2 7 
u· = -S·(S- - -) 

' 3 ' ' 4 ' 
t; = s~ _ 5 . -4 

we can write the Hamiltonian given by Eq.(2) in the form 

9 5 
-(3H =-LL O'jO'j-6.Et; - -6. 

16 <ii> i 4 

(14) 

As it easy to see from Eq.(14) the two states S; ·= i, -½ were transformed into u; = 1 
and two states S; = ~J, ½ into u; = -1, while the states S; = ±J and S; =±½into t; = 1 
and t; = -1 respectively. This gives a one-to-one correspondence between S; and a pair 
of spins (u;,t;). So we can say that the our new spin variables u; and t; are independent 
and consequently the summation in L(u,t) exp(-(3H) can. be carry out separatly. 

Now, we consider the thermodynamic properties of our model. A closed expression 
for the free energy of the free fermion model is well known [15] and after some algebraic 
manipulation, we obtain, in the large N limit, the free energy for the spin - 3/2 Ising 
mod~! on the square lattice in the subspace given by Eq.(13) 

6. 1 12,r 12,r 
- (3f = In {2V3exp(--)[l + exp(-2S)]} + -

8 2 
dt'J drpln[c2 + s(cos iJ + cosrp)], 

4 7r O 0 

/ (15) 
where c = cosh2J0 , s = sinh2J0 and J0 is determined from Eq.(13). 

Since the second derivative of the free energy in Eq.(15) diverges logarithmically at 
s = Sc = 1, the critical behavior of our model are summarized as follows: The spin - 3/2 
Ising model exhibits a first-order phase transition ifs > I, a second-order phase transition 
if s = l and no transition at all if s < l. Thus, a second-order phase. transition occurs 
at a temperature determined by sinh 2J0 = 1. This critical condition gives us the two ,\ -
lines in the space spanned by J and 6. 

(i) J = !! ln(l + V2) = 3, 0886... and 6. - arbitrary, 
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] 
i) 

~ 
) 

(ii) J = 
1
:; ln(l + V2) = 2,6631... and 6. - arbitrary, 

where the spin - 3/2 Ising mo1el exhibits an Ising-type phase transition (logarithmic 
specific heat singularity). 

Besides the intrinsic interest surrounding the spin - S Ising model and possible ap
plications in real physical situations, one is further attracted to the search for obtaining 
exact nontrivial solutions. So far soluble problems are very few in numbers. In this pa
per, an exact solution for most general spin - 3/2 Ising model is obtained. It is shown 
that this model is equivalent to exactly solvable free fermion model along two lines in the 
parameter space given by Eq.(13). In particular, the analytical expressions for the free 
energy per spin the ,\ - lines of Ising-type phase transition were found exactly. 

Finally, we point out, that our resuit suggests that equivalence of .spin - 3/2 Ising 
model to the free fermion model can he extended to a most general Ising model with an 
half-integer spin. That is, the existence of the exact solvable case for the Ising model with 
an half-integer spin results from the absence of the Sf = 0 state. 

++++++++ 
W1 ,· W2 

Figure 1. 

W3 W4 w, w, w, 

The eight-vertex configurations for a square lattice and the 
associated weights . 
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