


1 Introduction

Collective oscillations in metal clusters are a subject of intensive experi-
mental and theoretical investigations during the last decade (see reviews
[1-5] as well as some recent papers on the theory [6-16] and experiment
[17-22]). Most of the theoretical studies cover spherical clusters while
only a few are devoted to deformed ones [6,8,13,15,23]. The latter is
caused by a considerable computational effort which one needs for de-
formed clusters. In this case, the configurational particle-hole space is
very extended and we have to diagonalize RPA matrices of high rank. To
overcome this trouble, the RPA method with the self-consistent separa-
ble residual forces (SRPA) has been proposed [8,13-16]. Otherwise this
method is called the vibrating potential model. The SRPA exploits the -
separable ansatz which in a familiar convention [24-26] means the factor-
ization of a two-body interaction thrbugh the single-particle matrix el-
ements:  Tp, o, ko by V(P1,02, ha, 1) = K Ep py hoky 4(P1, h1)g(p2, he) where
q(p1, h1) are the single-particle (particle-hole) matrix elements of one-body
operators. The separable ansatz allows one to turn the RPA matrix into a
dispersion relation which drastically simplifies the eigenvalue problem. At
the same time, the SRPA enables us to treat the Landau damping as in a
full RPA [6,7,9-11].

The SRPA is especially attractive since, due to the consistency between
time-dependent variations of the single-particle potential and density, it
provides expressions for the strength constant « and one-body operators
of the separable residual forces. ‘So, this method does not need any ad-
justing parameters. First application of the SRPA to spherical and de- ~
formed sodium clusters has demonstrated good perspectives of this model
[14,15]. Quite recently the SRPA has been modified to take into account
the coupling of surface and volume dipole modes, and totally self-consistent

calculations have been performed for neutral and singly charged spherical
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sodium clusters in a wide size region [16]. Good agreement of the cal-
culated characteristics (dipole plasmon energies, Landau damping, static
dipole polarizabilities, main tendencies with increasing a cluster size) with
available experimental data has been achieved, which strictlyb testifies to
the validity of the separable ansatz for sodium clusters.

In this investigation, we present the SRPA results for dipole oscillations
in axially deformed singly charged sodium clusters Naj;, Naf;, Naj; and
Na3; for which thé precise photoabsorption experimental data have been
recently.obtained [18,22,27]. These clusters include the patterns of pfolate
and oblate forms as well as of large hexadecapole deformation (see Table
1 below). In addition to [15], the coupling of surface and volume mades
is taken into-account. This coupling was shown to considerably improve
the description of high-energy dipole strength [16].' Also, the coupling of
dipole and oct\upole excitations, a particular property of deformed systems,
is included. The larger deformation, the stronger this effect. Since some
. sodium clusters possess very large quadrupole deformation, the investiga-

tion of the dipole-octupole coupling is quite desirable.

The SRPA results will be shown to be in good agreement with the
experimental data, thus providing encouraging perspectives of this model
for a description of dipole oscillations in deformed clusters.

2 Main SRPA equations

A sketch of the SRPA will first be presented (for details see ref. [16]). Start-

ing with the Kohn-Sham density-dependent equations (with the jellium ap-

proximation for ions) and considering the density of valence electrons as a

sum of the static ground-state density and small time-dependent variation,

n(r,t) = ng(r) + dn(r,t), one separates a time-dependent single-particle

potential into static and dynamic parts

H(r,t) =T + Vy(r) + H(r,t) (;)
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where the latter is

d*y
OH(r,t) = (F5)nen, On(r, t) + /

%gg%dry (2)
Here, v(n(r)) is the exchange-correlation term in the local density approx-
imation [28], ng(r) = Ty |¢i(r)|? is the ground state density, ¢(r) is the
single-particle wave function. In the present paper, the static sihgle—particle
potential Vy(p(r),r) is approximated by the phenomenological Woods-Saxon
potential and the density ng.(r) is calculated through the Woods-Saxon
single-particle wave functions. |
The perturbed time-dependent wave function of the system is defined
through the scaling transformation ‘
L Ve r ;
U;(E1y s T, 1) = kl-_Il 10 (0) Z.-:llHo(r,-),fAuk(n)hpO(rl, TN, ), (3)
where Wy is the ground-state wave function (Hy¥y = 0) and j labels the .
number of the excited state. Both ¥y aud ¥, are the Slater determinants.
The local hermitian coordinate operators Frur(r) determine the kinds of
collective motion provided by the density variation. They influence the
cigenstates and eigenenergies of the system and should not be confused with
an external field operator. For the reasons given below, these op'érators are

chosen as

Frr(r) = (¥5,(0,0) + Y6, ) @
with k = 1,..., K. Further, aﬂl‘k(t) = afe‘kcos(wt) are the harmonic collec-
tive variables. Their normalized amplitudes aﬁk are calculated from the
final SRPA equations.

In virtue of eq. (4), the density variation can be written in the form

K .
on;(r,t) = 1?2:1 Dk () (Ve (v) - 7 Famk (r) + 7gr (£) A fri(r). - (5)
It is seen to include both surface ~ gny.(r) and volume ~ ng.(r) terms. If
Pk = A, we have a divergency-free operator (A fyi(r) = 0), and eq. (5) has
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only the surface term. This case has been considered in [15]. The operators
with px > A are responsible for a volume collective motion: they shift the
maximum of the density variation towards the interior of the system. The
volume degrees of freedom for dipole excitations are important in both
atomic nuclei and metal clusters [16,29,30,32,33]. Three groups of local
operators fauk(r) = 7 (Yau(8, ) +YL(9, #)) are used in the present paper
for every projection p: a) Apg = 11 (dipole mode of surface character), b)
Ap; = 13,15 (dipole modes of volume character), ¢) Apx = 33,35 (octupole
modes).

Substituting (1) into time-dependent Hartree-Fock equation and fol-
lowing the standard procedures [8,13-16], one finally gets the system of

homogeneous equations to determine the amplitudes aﬂk:

K .

Sk (W) =0 : R
ot :
with
_ < plQuuklh >< plQuurh > en 1 7
Skt () = %l: €2y — w? 265k @
The condition
det | Sy (w) |=0 ~ (8)

provides non-trivial solutions to the system (6) and represents the SRPA
dispersion equation for eigenenergies w; where j is the number of the root
of equation (8).

In eq.(7),

Qb (5) = () - (Fr(5) - ) + ) D o)

+ / (Vngr(r1) - V faur(r1) +”9r(r1)Af"“"(rl))dr1 9)

|r — 14}
is the self-consistent operator of the residual interaction and

ki = — [ Q) (Tee(e) - e (6) + ngr (R A e ())dr - (10)
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is the inverse strength constant of this interaction. If more than one lo-
cal operator is used, the nondiagonal strength constants take place. which
regulate in a self-consistent way the Hamiltonian after adding a new inter-
action.

It is worth comparing the SRPA with other RPA methods used for
description of the dipole plasmon’in deformed clusters. This is first the
local RPA [4,12,29-31] which, being based on K input local operators.
represents the system of ' coupled harmonical oscillators. By analogy with
the local RPA, the SRPA with K local operators represents the system of
K coupled RPA motions. However, the local RPA has ' RPA solutions
(usually K = 3+10) and can describe only gross-structure of the collective
strength, while the SRPA gives much more RPA roots (their number is
determined by the particle-hole basis) and can successfully describe not
only gross—strilcture but also the Landau damping. The principle point is
that, unlike full RPA methods [6,7,9-11], the SRPA does not need for this
aim a huge computational effort. Indeed, due to the separable ansatz the
rank of the matrix (7) is much smaller than the rank of the matrices in the
full RPA methods, which drastically simplifies the RPA calculations.

The connection of the SRPA with the familiar separable RPA is quite
evident in the case of one local operator. Then, the dispersion equation
(8) is reduced to the well-known equation Sy,(w) = 0 [24,26]. The same
dispersion equation would take place if we start with the Hamiltonian
containing the separable residual interaction Hy, = Hy — %h ,\,,Qf\ﬂQ,\“.

Neglecting the direct Coulomb terms in the SRPA, one gets the model
for the self-consistent description of isoscalar collective excitations (giant
resonances) in atomic nuclei. Quite recently this model was successfully
applied to describe isoscalar EX giant resonances in deformed and superde-
formed nuclei [34].

For deformed clusters it is convenient to use the multiple expansion of



the ground state density n,.(r) = 25, m(r}Y,(d). Then, using (4}, the

operator (9) is writteén as

D (r) = l%; Yim(8) Z Q,\pum(") (11)
where
(%) 1YECLM d*v R
QAlem{ ) - T (ZL n 1)( lmkp +( ) lmk—ﬂ){(m)n:ngr /\Ll(r)
ar _ (3 L—
i / Ry (r)ri 2 dry 47 / Ry “ el (12)
and

- drylr nir 2
Ry = (Tt 10 iy, (13)

Here, C,fn‘{y is the Clebsch-Gordan coeflicient. Expressions for N{?, and
M ,{ L), are given in the Appendix.

Expression (12) shows that the coupling of the excitation of multipolar-
ity A with the spherical (I = 0) and deformed (I = 2,4,6,...) parts of the
single-particle potential (and density} leads to the appearance in the resid-
ual interaction of a family of modes with the moments fA—1 [< L < A+!
and the parity (—1)*. Due to the consistency between dn{r,¢) and d H(r,t),
the residual interaction takes into account all the deformation distortions of
the static single-particle potential V4(r) and ground-state density n,.(r).

3 Results and discussion

“As has been mentioned above, in the present study the static single-particle
potential V3(p(r)) is approximated by the phenomenological Woods-Saxon

potential

Ws(r) = L (14)

WS T 1+ expl(r = R(0)/aol)

where R(6) = Ro(1 + fo+ BaY20(0) + BaYua(0), Ro = rgN/3, N is the num-
ber of atoms in the cluster (for singly charged clusters N = N, — 1), B2
and 3, are the parameters of quadrupole and hexadecapole deformation,
the parameter (; ensures the conservation of the cluster volume. The pa-
rameters of the potential (rg = 2.54, Vp = —7.2 eV and ag = 1.254) for
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Table 1: Deformation parameters f and (; (experimental [18,22,27] and
calculated within the SAJM [35]) and diagonal elements of the inertia -
tensor ©, and O, (calculated within the SAJM [35,36] and with the Woods-
Saxon potential containing the deformation parameters from [35]). See

comments in the text.

Exp.[18] | Exp.[22,27] | SAJM [35] | SAJM [35,36] ] WS
Cluster B2 B2 B2 Ba 0. 0. 0. | 6,
Nafy - 0.38 0.384 | 0.234 | 0.70 1.15 0.68 | 1.16
Naj; 0.32 0.32 0.56 {-0.14 [0.68| 1.16 |0.65[1.18
Na3}, 0.23 0.21 0.37 | 0.11 | 0.74 1.13 0.72 | 1.14
Naj; -0.23 - -0.23 -0.27 1 0.03 | 1.15| 0.93 1.16 | 0.92

singly charged clusters have been adjusted in [16] so as to reproduce on
average the Kohn-Sham (with diffused jellinm) ground state densities in a
wide size region. Using these parameters, the description of dipole oscilla-

tions of the same quality as in the case of the Kohn-Sham single-particle ‘
scheme has been achieved. - The deformation parameters Gy and 34 have

_been taken from the calculations within the Structure-Averaged Jellium

Model (SAJM) [35] and extracted from the measured deformation split-
ting of the dipole plasmon [18,22,27] following the prescription of ref.[35].
These parameters are given in Table 1. It is seen that the SAMJ 3, val-
ues are systematically larger than the experimental ones (see comments in
[35]). Before using the SAJM deformation parameters in the Woods-Saxon
potential, we have checked the validity of this application by calculating di-
mensionless dlagonal elements of the inertia tensor ©; = f(r?—z? )ngr( )dr
(with j = z, z and normalization condition Tj=; . @ = 3) and comparing
them with the correspondmg SAJM values obtamed for valence electrons
[36] (see Table 1). The good agreement obtained certainly testifies to the
applicability of the SAJM deformation parameters in the Woods-Saxon
potential. The comparison of the calculated quadrupole and hexadecapole
moments confirms this conclusion.

The main results of our calculations are presented in Table 2 and Figures




1-6. In the figures the strength function
o(EMw) =Y w;B(EX, gr = w;j)p(w — w;)/S (EX) (15)
7 .

normalized to the energy-weighted sum rule

h2e2

S(EX) =Y w;B(EM gr = wj) =
7 871'

ACA+1)2N <25 (16)

and averaged by the weight function
1 A
21 (w — )+ (4/2)?
is presented. In (15)-(17), B(EX,gr — w;) is the reduced probability of

the E'A transition from the ground state to the one-phonon state with the

plw —wj) = (17)

excitation energy wj, A is the averaging parameter. Expression (15) has
a form similar to the photo-absorption cross section for dipole excitations.
However, this is not exactly the photo-absorption cross section but only
a convenient form of presentation of the RPA results where the values
" w; B(EA, gr — w;) are averaged to avoid unnecessary details.
In Figs. 1-4, the strength functions for dipole oscillations are given
for three cases: a) only surface mode (Apy = 11), b) surkfa‘,ce and volume
" modes (Apr = 11,13,15), c) surface and volume modes as well as the cou-
pling with octupole modes (Apx = 11,13,15, 33, 35). Thelphysical ground
for these modes has been discussed in Section 2. As compared with the
previous calculations for deformed clusters [15], the couplings with volume
and octupole modes are added, the optimized parameters of the Wood-
Saxon potential are used and the Gunnarsson-Lundqvist prescription for
the exchange-correlation term is exploited.

As is seen from Figs. 1-4, the dipole plasmon exhibits deformation
splitting into p = 0 and g = 1 parts. The coupling of the surface and
volume modes considerably changes the description. It influences the po-
sition and fragmentation of the plasmon and redshifts the high-energy di-

pole strength. The latter is especially important for clusters with N, > 20
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where the calculations with surface forces only {(Apy = 11) overestimate
the high-energy dipole strength (see also [15,16]). The influence of the
coupling with octupole modes turns out to be negligible in all clusters.
including strongly deformed Naj; and Naj;. The effect of hexadecapole
deformation considered in Na{j, the cluster with very large hexadecapole
deformation (3; = 0.234), is more noticeable. If the hexadecapole deforma-
tion is neglected, the ¢ = 0 peak is splitted and the yz = 1 peak is redshifted
by about 0.1 eV. Starting with Naf;, the calculations demonstrate large
fragmentation (Landau damping) of right plasmon peaks. which should
considerably contribute to the plasmon widths. The plasmon peaks at 2-
3.5 eV are mainly of surface character while the peaks at 5 ¢V represent

very fragmented volume plasmon.

Figs. 5 and 6 compare the experimental data [22,27] with the SRPA re-
sults obtained for the maximal set of local operators (Apy = 11.13.15.33. 35)
when both surface-volume coupling and influence of octupole excitations
are taken into account. The strength functions with the small (A =
0.05eV) and large (A = 0.25eV') averaging are presented. The large aver-
aging simulates the thermal widening of the plasmon and makes easier the
comparison of the theoretical and experimental results. For example. in
Naj; just the large averaging allows one to demonstrate the correct ratio
between left and right peaks obtained in the calculations. Figs. 5 and 6
exhibit the SRPA results obtained with the deformation paranicters calcu-
lated within the SAJM and extracted from the experimental data [22.27].
In the first case, the calculated deformation splitting of the dipole plasmon
is considerably overestimated (see also Table 2) while in the second one it
is described quite well. It is seen that in general the SRPA results arc in
good agreement with the experimental data. Comparison of the strength
functions with a small and large averaging demounstrate an important role
of the Landau damping in forming the plasmon width in deformed clusters
starting with Naf;. Due to the Landau damping, the ratios between peaks
and such details as a strong high-energy-side shoulder of the right peaks in
Naj; - Na3; and mainly one-peak structure of the plasmon in oblate Na;
are well described.
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Fig. 1. Normalized E1 strength functions calculated for N aﬁ within
the SRPA for the cases of: a) surface mode (Ap; = 11), b) surface and
volume modes (Ap; = 11,13,15), c) surface and volume modes as well o
as the coupling with octupole excitations (Apr = 11,13,15,33,35). On
the panel c) the strength function with 84 = 0 is also presented (dashed - Fig.2. The same as in Fig. 1 (except for the case with f; = 0) for Naf.
curve). The panel d) contains separate g = 0 (dashed cufve) and p =1
(solid curve) components of the strength function. The SAJM deformation

parameters [35] and the averaging parameter A = 0.05¢V are used.
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Table 2: Experimental [18,22,27] and calculated within the SRPA energy
centroids (eV) of the dipole plasmons with projections g = 0 and 1. The
SRPA results have been obtained with the deformation parameters cal-
culated within the SAJM [35] and extracted from the experimental data
[22,27]. See the comments in the text.

Exper. SRPA
[18] (22,27] . .| B2 and B4 from [35] | B: from [22,27]
w Aw w Aw w Aw w Aw
Naj, - | 2.18,2.80 | 0.62 | 2.05, 294 | 0.89 |2.10,2.84 | 0.74

Naf, | 2.20(8), 2.77(2) | 0.57 | 2.26, 2.78 | 0.52 { 2.22,2.92 | 0.70 |2.32,2.83 | 0.51
Nai, | 2.42(1), 2.83(1) | 0.41 | 2.48,2.82 | 0.34 | 2.44,3.02 | 0.58 | 2.52, 2.92 | 0.40
Nad, | 2.56(1), 2.87(2) | 0.31 | 2.60, 2.94 | 0.34 | 2.45,3.12 |- 0.67 | 2.48,2.88 | 0.40

Table 2 also demonstrates a good agreement of the SRPA results with
the experimental data. The éingle exclusion is a systematic overestimation
of the plasmon deformation splitting Aw while using the SAJM deforma-
tion parameters [35]. Like many other models (see, review in [12]), the
SAJM gives (B, values much larger than the experimental ones. Neverthe-
less, the local RPA well describes the plasmon deformation splitting with
the SAJM deformation parameters [36]. As has been shown above, the
calculations with the Woods-Saxon potential reproduce the inertia-tensor
diagonal elements and other values which are sensitive to the deformation.
However, these calculations have used only single-particle wave functions
but not energies, thus not providing a comparison of the single-particle

spectrum in deformed Kohn-Sham and Woods-Saxon potentials. In prin-
’ ciple, the influence of the deformation on the dynamical response within
the local RPA and SRPA could also be somewhat different. Unfortunately,

there are no systematic calculations for deformed clusters within other
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theoretical models to come into more sight with this problem.

4 Conclusions

The RPA model with the separable self-consistent residual interaction
(SRPA) has been applied to describe the dipole plasmon in singly charged
deformed sodium clusters, and quite appropriate agreement with the avail-
able experimental data is achieved. For the moment, the application of
the full RPA to deformed clusters is limited to the simplest case of Najg
[6]. The local RPA has successfully been used for deformed clusters with
N, < 60 (23] but this model does not describe the Landau damping. So. the
SRPA now seems to be a single RPA method which can describe the dipole
oscillations in deformed sodium clusters, taking into account the Landau

damping and not needing for this aim a large computational cffort.
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APPENDIX

The coefficients used in expression (13) have the following form:
N{Z = (e + 2+ VAN - (B - L)
~( = PO+ DN +3)(BY) - AR,
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MY = (g + 2+ DYAEY = D((0+ 1B, +140))
+(h— VO F DA+ 3)(( + DB, +147)

+(h = pe)(pe + A + V(A + 1) (21 + 1)Cii

where

1+101-10>
{ 1

_____(l+1 x-1 L
A = I+ 1)(20+3) ( ) .CH

I+1 M2+1 L
2
AE\L)1= (l+1)(2l+3)( \ ] 1)'012310“10,
-1 Xx=1 L

by l 1 ) ' CIL—OIO/\—107

-1 A+1 L
B/(\2L)I: 1(21"1)( i )'CIL—Olo,\Ho-
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