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1 . Introduction 

The systems with strong electronic correlations, showing unusual thermody-
11amic, magnetic, transport and superconducting properties are of great interest 
110w. Among them, are the heavy fermion compounds, the copper oxides, in which 
high-7~ superconductivity was discovered and other materials. Their microscopically 
quantum - theoretical investigation can be done using tbe periodic Anderson Model 
(PAM) [l}. W~ shall discuss the simplest form of this model with the Hamiltonian 

H = H~ + HJ + H,,.t (1) 

II~ = IJ(k) - µ)ct,,ck .. ; 
k," 

HJ= I)E1 - µ)J;;J; .. + u[J,tf;rf.1/ii; 
i,t:r 

II· = ~ "[c+ 1·· ikR, + /.';I-ck e-ikR,] 
mt ,/'ii L.J k<r '" _ ;," " 

,,k," 
(2) 

were ct .. (ck .. ) -are creation {annihilation) operators of conduction electrons with 
wave vector k ,energy E(k), band width W and spin O'j J;; (Ii,,.)- the corresponding 
operators for localized on site i !-electrons. U- is on-site Coulomb repulsion off -
electrons, µ.-chemical potential of the system. The local f • orbitals with site energy 
E1 are single site hybridized through V with conduction electron states. 

The PAM is rather complicated many-body problem and obtaining of some gen
cra.l relations and properties of the renormalized Green's f~nction is useful. 

The properties of PAM were discussed in a large number of papers [2-14] where 
t.he influence of Coulomb repulsion U and hybridization V on ground state .and 
energy spectrum of quasiparticles of the system, the existence of mixed valence of 
electrons, t.he phase transitions of them were investigated and different approaches 
and approximations were proposed. 

In this paper the thermodynamic perturbation theory is developed for the system 
with Hamiltonian (1) suppofling that hybridiza.tion Hamiltonian is a perturbation. 
ln zero order approximation f-electrons are considered localized and Hubba.rd [15} 
operators x;im are used to diagonalize Hamiltonian HJ. 

c· = x0
•" + JX-:-"•2

• r.+ = X?'_•0 + (lx?,-<r. H0 =VEX~•" ,a , J , J,u , , > J L.J ~ , (3) 
i,<\ 

where index 0/ enumerates four on site electron states: without f-lcdrons, with one 
electron having O' spin and with two electrons of opposite spins. Their energy are: 

Obu1;.,.~r1..iloln G:1~rJT I 
M~~.SHU acr,,~.l~~Atltll 
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Ea = O; Eu= E1 - µ; E2 = U + 2(E1 - µ). 

Conduction electrons in this approximation are considered free and determined 
by the wave vectors k, spins a. and band energy c(k). The grand partition function 
of the system in zero approximation is factorized by wave vectors for conduction 
and by sites i f~r localized electrons. In such a way the statistical averages with this 
partition function are calculated for c -electrons by making use of Wick theorem for 
the products of c -electron operators. But for the statistical average of localized f 
-electron operator products the generalized Wick th~orem proposed in papers [16-
18] is employed. This last theorem is based on the conception of many particles 
irreductible Green's functions or Kubo cumulants which appear in realization of 
these averages. · 

2. Perturbation theory 

The evolution operator of the thermodynamic perturbation theory is 

fl 

/

• 
00 (-1r 

U(/:1) = Texp(- lf,nt(r)dr) = [-, 1'(ll,nt(r1) ... H,nt(rn)) 
n. 

0 n=O 

The free energy of the system is equal: 

F = Fo -}ln(U(fi)}o;Fo = -ilnTr{e-P(H~+H1)} 

(4) 

(5) 

The average ( V (fi)}0 can be obtained taking into account only the even n = 2m 
degrees of perturbation theory because of the structure of Hint multiplies. Then in 
a such product of 2m multiplies there are in total 4m operators. Only the operator 
structures which have m operators c, c, f, f of each kind must be considered in 
the future because other operator combinations have zero statistical averages. The 
number of such structures is equal to C:J:,. and changing the indices i, k, a of summing 
and of r integration, we can prove that all of them arc equivalent. Taking one of 
such operator structure and multiplying by C:J:,. after dividing on (2m)! we obtain 

:'.:'.._ v2m j j 
(lT(/J)}o = l + L Nm(m!)2 .L ... . L dr1... dr2m 

rn.=l 11k1u1 &2m,k2m10'lm 

(7'ck, u1 ( r1) ... ck.,1r., ( Tm)Ck.,+t"m+t ( Tm+1) ... ck2m"1m ( T2m)}o* 

(T f,, u1 ( r1) ... fimum( Tm)f. .. +1 ( Tm+1) ... J.2 .. "1m( T2m))o* 

... 2 

exp{i(k1R1 + ... +kmRm-km+1Rm+1 - ... -k2mR2m)} (6) 

The statistical average of conduction electron operators calculated by using Wick 
theorem gives us the sum of m! member each of them equal to the product of m 
free conducting electron propagators Gc(o). 

By changing all, above mentioned, indices we can prove that all of them are 
equivalent and m! additional multiplier appears in the numerator of (6). 

So we have • 

where 

00 

v2m j j 
(U(/3))0 = 1 + L Nmm! .L .... L dr1... dr2m 

m=l 11k1u1 •im,kim,<Tlm 

(Tck1u1 ( r1)cki,.uim ( T2m)}o .. ,(Tck.,u.,(rmh,,.+1"m+l (rm+1)}0* 

(T !iiu1 ( r1) ... f;,,.uJrm)h .. +1"m+1 ( Tm+1) ... n2 .. (uim)( T2m)}o* 

exp{ i(k1R1 + ... + kmRm - km+1Rm+1 - ... - k2mR2,,.)} 

Gc(0l(k1<11 rilk2<12r2) = -(Tck1u1 ( r1)cki"l ( r2))0, 

(7) 

The equation (7) has the form of the perturbation theory for Hubbard model if 
the hopping of the f -electrons of this l1U1t model is considered as a perturbation: 

Hint = - L t(j - i)J;:J.u 
iju 

In (7) the instantaneous matrix elements t( i- j) of Hubbard model are replaced 
by dynamically propagators ac<o) multiplied by V2 

In the next the generalized Wick theorem of [16-18} is used. For m = 1 the 
average (fi/2}0 is free propagator for localized and strong interacting f -electrons 

aJ(O)(k1a1r1lk2a2r2) = -(Tfk1"1(r1)A2a-1(r2))0 

For m = 2 the average is equal (16-18] 

('l'f1hh/4)0 = (Tfif4)o(Tf2Mo-

- (Tf1h}o(T/2/,,)o + (12134)~ (8) 

where 1 = (i1,a1, r1) 
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(1213-4-}ir G,(O)ir( • · 1 · • ) 
O = 2 tW1Ti, t20"2T2 Z30"3T3, t40"4T4 = 

= 8;1,l 0;1; 1 c\ ;/.:r10)ir ( 0"1 ~1, 0"2r2lo-ara, 0"4T4); 

G-,(O)ir( I ) 2 liJ Ti, 0"2T2 0"3T3, li4T4 = 

= (1'f"1 ( r1)f"l h)/~1 (r3)f"1 {r4))0-'- (Tf111 ( r1)f111 ( T4))0* 

*(Tf",(r2)f,,,(r3))0 + (Tf,,1 (ri)/11.,(r1))0 

('J'f111 ( T1)f111 ( 74)}0 (9) 

All the quantities of right hand of equation (8) are one-site ones. They depend 

on spin indices and r variables and are independent of site indices. c/4.0)" is the 
two particles irreducible Green function or the Kubo cumulant. When Coulomb 
interaction is zero such functions don't exist. 

The first two components of (8) are of Wick type but the last one is a new 
contribution conditioned by strong electronic correlations. Por m = 3 the existing 
tila.tistical average (T fihfddsla)o contains 3! Wick contributions each of them 
equal to the product of three propagators Q/(0). Then there are 9 contributions 
each of them equal to the product. of propagator Gf(O) and one irreduc:tible two 
particles Green's function and there is also one contrib11tion c>qual to three particles 
irreductible Green's function d.,0)i,. 

Jn general case of statistical average of 2m /-operators the generalized Wick 
theorem gives us m! components of Wick type, each of them equal to the product 
of m propagators, and t.lwn there are the sum of products of different kind of Kn bo 
rumulants, organized in such way that the number of particles in all these cumulants 
is equal to m. The sign of all these contributions is determined by the number of 
permutations of Fermi /-operators which is necessary to obtain the given cumulant 
;;tructnre. 

Some of vacuum diagrams are shown in Fig. I. Here the thin directed full line 
is the Qf(o) propagator and a direct.eel dotted line is Gci.0) one. The point of the 
cfo1gram contains hybridization V. I.a diagram is the simplest connected one but 
1.b diagram is disconnected one. More complicated connected diagrams are l.d,l.c 
(llt<,s. The aualysis of the vacuum diagram's structure gives us the equation 

(U(/3))0 = 1 t f [(U(,B?}ct = exp[(U(,B))il 
n. 

n=l 

(10) 

where (U(t'.l))0 is the connected part of all vacuum diagrams. This equation is the 
very well known theorem of connected diagrams of statistical physics. 
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:i. One particle Green's functions 

We shall discuss now the renormalized f-electron one partirlc Green's function: 

c;ff(xarlx'o-'r') = -{1'fxu(r)fx1r,1(r')U(P)}~ ( 11) 

where index c points out that. only connected propagator diagrams must. be consid
ered. 

Equation ( 11) can be transformed by using the arguments of the previous section. 
In such a way we obtain 

cf1(x/x') = ct(O)(xlx')- ~ V
2

"" ;· dr1••· ldT2m '\"""' 
· L_.; Nmm! L_.; 

r,,.=l i1 kl"l 

L {Tc1C2m}o * , .. {TcmCm+1}0 * {Tf,,fx 1 f1 ... 
tjmklmUlm 

.. .f mf m+I , .. f,m)o exp{ i(k1 R1 + ... + kmRm - km+1Rm+l -

- ... - k2mR2m)} (12) 

Here x and x' indir.es off -operators stand for xaT and x'a'r' correspondingly. 
The other indices of J -operators arc of the same kind, for example 1 = i1 a1 r1 but for 
c -electron operators we have 1 = k1a1 r1 and so on. The existence of the exponents 
gives us the possibility to use also local presentation for c -electron quantities or 
wave vector presentation for f -opera.I.ors. 

If ii, the la8t statistical average of (12) we take into account only Wick type con
t.ribut.iou,; we ohta.iu the chain type diagrams shown in Fig.2.Here all the irreducible 
Crccn's fundio11ti were omitted. All this diagrams are weak connected because they 
can be divided in two parts by cutting one line. · 

All the~e diagrams can be summed np by using Fourier-presentation. We obtain 
llubhard l approximation for Dyson equation: 

G!1(kliwn) = G!(0l(iw.,,)(l t v2cc(o)(kJiwn)C!f(kJiwn)); 

n1f(kliw )' = [Gf(O)(iw )-1 - v2cc(0l(kliw )]-1· ·u n -u \ n , n , 

ln this approximation it is easy to obtain also the Dyson equation for renor
malized conduction electron Green's function c:(kliwn)• Free electron propagators 
;Jf(' 
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'.·f.~-· I 

: I . I 

t ,· 

-11,: ',, 

G~c(O)(kJiwn) = (iwn - Eot1; Eo = E(k) - µ 

f(oJ ) 1 - n_,,. n_" E U + E GIT (iwn =. +. ;c1= 1-µ;E2= 1-µ; 
tWn - €1 tWn - €2 

n = (/uf,,.)o = {exp(-,Bc1) texp[-,B(Ei + E2)]}{lt 

2 exp(-,Bc1) + exp[-,B(c1+E2)]}-
1. 

'l'he energy spectrum of quasiparticles is determined by equa.tion: 

(H- Eo)- V2[(1 - n)/(E- E1) + n/(E- E2)] = o. 
For large values of Coulomb interaction U -. oo three energetic branches are: 

E1,2(k) = [Eo + F.1 ± ✓(co - c1)2 t4V2(1- n)]/2+ 

v2n + 2E
2 

[l ± (co - E1)/ J( Eo - E1)2 + 4V2(1 - n)1 + o(l/U2
); 

E3(k) = €2 + V2
n/E2 t o(l/U2

) 

The chemical potential of the system with Ne ellectrons is determined from 

(1//3) L I)a!1(kJiwn) + a:(kliw,..)] exp(iwno+) = Ne. 
"'• ku 

This equation is reduced to 

L L{Ar,(k)/[exp(,BE1u) + l] + Bu(k)/[exp(,8E2u + 1]+ 
" k 

tC,,.(k)/[exp(,BE3u) + ll} = N. 

where in the limit oflarge U value U -. oo these coefficients are 

where 

Au(k) ~ 1 - n1i(k); Bu ~ 1 - nt.2(k); Ou(k) ~ ii; 

u2(k) = ~ [1 + (co - c1)/J(co - c1)2 + 4V2(1- n)] 
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1,:z(k) = [1 - (co - ti)/ Jh - £i)2 + 4 V2( I - n)J/2. 

In this limit there are two subbands with energy gap between them. The sum of 
the widths of these two subbands is equal to the width W of bare conduction band 
but the distance between the bottom of the lower subband and the top of the upper 
subband is equal to W plus the width of energy gap . 

The dependence of the eler.tron number on the chemical potential of the system 
lii!vc been obtajue<l also. For example, iii the case when the chemical potential is 
siLuat.cd into the lower subband this dependence is 

N, (.:1 + W/2) V2(1 - n) 
·-= ---+--'----
2N W (f1 - 11.)W 

Because the local initial level E1 is situated in the energy gap 
or this renormalized_ system in our case of zero temperature E1 - µ > 0 we have the 
average ii= 0. When µ is higher than the top of the upper subband N, = 3N. 

The calculated values of the renormalized quasipartidc cnergie~ as function of 
rn/W for T=O and different values of the main parameters of the theory arr shown 
in Figures 3-6. The origin of the energy is at, the hot.I.om of t,he bare conduction 
electron band. The bare energy band of conduction electrons can remain unsplitted 
hy the hybridization energy (Fig. 3. ), can be split.tcd in two subbands (Figs.4-5) or 
in general case can be splitted in three subbands (Fig.6. ). 
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'J'he first situation is realized when one of the following inequalities hold: 
a) E1 + U < 0; b) E1 > W; c) W - U < E1 < 0; 
The appearance of two subbands is realized at the conditions: 

0 < µ < E1 or E1 + U < µ < W 
and the last situation takes place when 

o < E1 < µ < E1 + U < W. 

Conclusions 

The approach we have described provides a general framework to investigate the 
properties of the systems with strong electron correlations. This new diagramm 
method of investigation admit the next discussion of the role of the spin and charge 
correlations on the syst.em many-particle properties by taking into account many
particle one-site irreducible Green functions. The numerical results we have pre
sented illustrate the general features of the three branches of energy spectrum in 

Hubbard I approximation as a function of the Eo/Wat different values of main theory 

parameters of the theory. . 
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