


1. Introduction

''he systems with strong electronic correlations, showing unusual thermody-
namic, magnetic, transport and superconducting properties are of great interest
now. Among them, are the heavy fermion compounds, the copper oxides, in which
high-T, superconductivity was discovered and other materials. Their microscopically
quantum - theoretical investigation can be done using the periodic Anderson Model
(PAM) [1]. We shall discuss the simplest form of this mode} with the Hamiltonian
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were cf (ck,) -are creation (annihilation) operaiors of conduction electrons with
wave vector k energy ¢(k), band width W and spin o; f (fis)- the corresponding
operators for localized on site ¢ f-electrons. U- is on-site Coulomb repulsion of f -
electrons, p-chemical potential of the system. The local f - orbitals with site energy
Ey are single site hybridized through V with conduction electron states.

The PAM is rather complicated many-body problem and obtaining of some gen-
eral relations and properties of the renormalized Green’s function is useful.

The properties of PAM were discussed in a large number of papers [2-14] where
the influence of Coulomb repulsion U and hybridizetion V on ground state and
energy spectrum of quasiparticles of the system, the existence of mixed valence of
electrons, the phase transitions of them were investigated and different appmacheq
and approximations were proposed.
~ In this paper the thermodynamic perturbation theory is developed for the system
with Hamiltonian (1) supposing that- hybridization Hamiltonian is a perturbation.
In zero order approximation f-electrons are considered localized and Hubbard [15]
operators X are used to diagonalize Hamiltonian H?.
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where index o enumerates four on site electron states: without. elecizons, with one
electron having ¢ spin and with two electrons of opposite spins. Thelr energy are:
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Eo=0;Ea=Ef—p;Ez=U+2(Ef—p).

Conduction electrons in this approximation are considered free and determined
by the wave vectors k , spins o and band energy (k). The grand partition function
of the system in zero approximation is factorized by wave vectors for conduction
and by sites : for loca.hzed electrons. In such a way the slatistical averages with this
partition function are calculated for ¢ -electrons by making use of Wick theorem for
the products of ¢ -electron operators. But for the statistical average of localized f
-electron operator products the generalized Wick theorem proposed in papers [16-
18] is employed. This last theorem is based on the conception of many particles
irreductible Green’s functions or Kubo cummlants which appear in- realization of
these averages. '

2. Perturbation theory
The evolution operator of the thermodynamic perturbation theory is

0 n.

U(p) = T exp(— / Hin(r)dr) = Z n' T(Hing(1)... Hine(12)) (4)
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The free energy of the system is equal:
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The average (U{f))o can be oblained taking into account only the even n = 2m
degrees of perturbation theory because of the structure of H;,, multiplies. Then in
a such product of 2m multiplies there are in total 4m operators. Only the operator
structures which have m operators c,¢, f, f of each kind must be considered in
the future because other operator combinations have zero statistical averages. The
number of such structures is equal to CT*, and changing the indices ¢, k, o of summing
and of 7 integration, we can prove that all of them are equivalent. Taking one of
such operator structure and multiplying by C*, after dividing on (2m)! we obtain

HiN DI /Tl_/drgm

m=1 ukm 3mK3m,03m

(776‘(1 [4] (Tl)"'_ékm”m(Tm)Ckm+l7m+l (T"H‘l)"'cklmalm (sz))O*

(Tf.“, 4 (Tl)---fi,;.a,,.(Tm)ﬁ‘m“ (Tm+1)--~fizm02m (TZm))O*

GXp{i(klRl + .+ kam - km+1R.,n+1 bl knggm)} (6)

The statistical average of conduction electron operators calculated by using Wick
theorem gives us the sum of m! member each of them equal to the product of m
free conducting electron propagators G4,

By changing all, above mentioned, indices we can prove that all of them are
equivalent and m! additional multiplier appears in the numerator of (6).

So we have )
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where

Gc(o)(kllellngng) = —<Tck101 (Tl)Ek,ﬁ (Tg))o.

The equation (7) has the form of the perturbation theory for Hubbard model if
the hopping of the f -electrons of this last model is considered as a perturbation:
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In (7) the instantaneous matrix elements ¢(i - 7) of Hubbard model are replaced
by dynamically propagators GX*) multiplied by V*

Tn the next the generalized Wick theorem of [16-18] is used. For m = 1 the
average (f1 f2)o is free propagator for localized and strong interacting f -electrons
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For m = 2 the average is equal [16-18]
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where 1= (11,01, 71)
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All the quantitics of right hand of equation (8) are one-site ones. They depend
on spin indices and 7 variables-and are independent of site indices. G'(Qo)" is the
two particles irreducible Green function or the Kubo cumulant. When Coulomb
interaction is zero such functions doun’t exist. .

T'he first two components of (8) are of Wick type but the last one is a new
contribution conditioned by strong electronic correlations. For m = 3 the existing
statistical average (T'f1f2fsfofs ﬂ,)o contains 3! Wick contributions cach of themn
cqual to the product of three propagators G/©®). Then there are 9 contributions
cach of them equal to the product of propagator G/%) and one irreductible two
particles Green’s function and there is also one contribution equal to three particles
irreductible Green’s function GO

In general case of statistical average of 2m f-operators the generalized Wick
theorem gives us m! components of Wick type, cach of them equal to the product
of m propagators, and then there are the sum of products of different kind of Kubo
curmulants, organized in such way that the number of particles in all these cumulants
is equal to m. The sign of all these contributions is determined by the number of
permutations of Fermi f-operators which is necessary to obtain the given cumulant
structure, o

Some of vacunm diagrams are shown in Fig.1. Here the thin directed full line
is the G/ propagator and a directed dotted line is GX°) one. The point of the
diagram contains hybridization V. 1.a diagram is the simplest connected one but
1.b diagram is disconnected one. More complicated connected diagrams are 1.d,1.c
ones. The analysis of the vacuum diagram’s structure gives us the equation

e =1+ O _ oy (10

n=1

where (U(f))5 is the conuccted part of all vacuum diagrams. This equation is the
very well known theorenr of connected diagrams of statistical physics.
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3. One particle Green’s functions
We shall discuss now the renormatized f-electron one particle Green’s function:
GH(xo1[x'o"T') = ~(T fo(7) oo () U (8))5 (1)

where index ¢ points out that only connecled propaga,tor diagrams must be consid-
cred.
Iiquation (11) can be transformed by using the arguments of the previous scction.
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/drl /(lrgm Z

i]klal

* f'-(Témcm-H)O * (fofz’fl-"

GH(ale') = GO al') - Z
=1

Z (T(fl Cam >0

- Hmkimﬂrn

"'fmfm+l"'ﬁm>0 exp{i(klRl + o + kam - km+1Rm+l°— )
T T kaRZm)} B (12)

Here = and 2’ indices of f -operators stand for xo and x'o’r’ correspondingly.
The other indices of f - operators are of the same kind, for example 1 = 4,0, 7; but for
¢ -clectron operators we have 1= k0,7 and so on. The existence of the exponents
gives us the possibility to use also local presentation for ¢ -electron quantities or
wave vector presentation for f -operators.

If iv the last statistical average of (12) we take into account only chk type con-
tributions we obtain the chain iype diagrams shown in Fig.2 Here all the irreducible
Green’s functions were omitted. All this diagrams are weak connected because they
can be divided in two parts by cutting onc line. '

All these diagrains can he sununed up by using Fourier-presentation. We obtain
Hubbard | approximation for Dyson equation:
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In this approximation it 1s easy to obtal also the Dyson equation for renor-
malized conducticn electron Green’s function G%(k|iw,). Free clectron propagators

are
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The energy spectrum of quasiparticles is determined by equation:

(B - ) = V(1= /(B - o)+ 8/ (E - x)] = 0.

For large values of Coulomb interaction U — oo three energetic branches are:
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The chemical potential of the system with N, ellectrons is determined from
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This equation is reduced to
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where in the hmit of large U value U — oo these coefficients aze
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(k) = [1= (o = 1)/ /(e — &) + 4V2(1 = 7)]/2.

In this limit there are two subbands with energy gap between them. The sum of
the widths of these two subbands is equat to thie width W of bare conduction band
but the distance between the botiom of the lower subband and the top of the upper
subband is equal to W plus the width of energy gap.

The dependence of the electron number on the chemical potential of the system
have been obtained also. For example, il the case when the chemical potential is
situated 1nto the lower subband this dependence is

Ne _(at W) Vi(i-n)
WNW (Ey - )W

Because the local initial level E is situated in the energy gap
of this renormalized system in our case of zero temperature Ey — 1 > 0 we have the
average 7 = 0. When 4 is higher than the top of the upper subband N, = 3N.

The calculated values of the renormalized quasiparticle cnergies as function of
tofW for T=0 and different values of the main parameters of the theory are shown
in Figures 3-6. The origin of the energy is at the bottom of the bare conduction
clectron band. The bare energy band of conduction electrons can remain unsplitted
by the hybridization energy (Fig. 3.), can be splitted in two subbands (Figs.4-5) or
in general case can be splitied in three subbands (Fig.6.). :
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I'he first situation is realized when one of the following inequalities hold:
a) E;+U <0;b) E;>W;c) W-U <Ef<0;
The appearance of two subbands is realized at the conditions:
0<pu< EforEf+U<u<W
and the last situation takes place when

D<E<p<Bp+U<W

Conclusions

The approach we have described provides a general framework to investigate the
properties of the systems with strong ‘electro'n correlations. This new diagramm
method of investigation admit the next discussion of the role of the spin and charge
correlations on the system many-particle properties by taking info account many-
particle one-site irreducible Green functions. The numerical results we have pre-
scnted illustrate the gencral features of the three branches of energy spectrum in

Hubbard I approximation as a function - of the eof/W at different values of main theory
parameters of the theory. : ' :
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