


L. INTRODUCTION

" One of the most interesting and enduﬁng probiem of plasma physics is the electrical con-
ductwnty To calcula.te transport coefﬁcxents in nonideal, strongly coupled systems various
methods have been elabora.ted {1} In dense nomdea.l systems many—partlcle eﬂ'ects like the
Debye-Onsager rela.xa.tlon effect, have to be ta.ken into account and modlfy the known re-
sults of ideal systems. To receive a microscopic expressions for the electrica.l conductivity we
use the generalized Zubarev method of line_ag response theory, which can be found in detail,
e.g., in [2]. Using this approach transport coefﬁcientsare expressed through equilibrium
correlatiort funetioﬂs and a systematical treatment of many-particle eﬂ'ects is possible. The
advantage of this method is, that known results of kivnet’ic theery are reproduced witheut
partial summations, as it is necessary in the Kubo approach.

We consider a fully ionized Hydrogen plasma consisting of a equal number of protons (mass
M, charge +¢) and electrons (mass m, charge -€). The Hamiltonian of the system '
Hs =} E.(k)a? (k)ac(k) + ~21- Y. Va(g)al(k—q)af(p+ 4)ad(P)ac(k) (1)
ck c,d,k,p,q
contains the kinetic energy E.(k) = K*k*/2m, and the Coulomb interaction
Va(g) = eced/(eoﬂqz), where k denotes the single-particle variables momenta and spin,
respectively. The‘indices c and d are used to identify the species (electron, protoﬁ), and
is the system volume tmder consideration. In the adiabatic case (m <« M) the electrical
conductivity o is given by the linear relation between the mean electrica.l current <j > and
the electrical field E ’ |
<j>= <l )3 ink) ~oE, @)
QT m
and is both a function of temperature and density of the system, o = a(n,T). In plasma

physics it is of use to introduce the dimensionless parameters
" 4meoksT
0= 2m:BT(3 2 )—-2/3 (3)
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. T'(n,T) describes the ratio between the mean potential energy and the kinetic energy and
. ©(n,T) denotes the degree of degeneration of an ideal electron gas. Using these quantities

the electrical conduci:ivity can be read as

(ksT)**(4mep)? o

0'(11, T) = oy , (4)

with a universal function o*(T', ©) depending on the characteristic plasma parameters. The
electrical conductivity of a fully ionized plasma with statically screened interaction is given

by the Spitzer formula [3]

* 1 3 -3 - .
o3, = 0.591 [5 In (EF )] , (5)
which is valid in the low-density limit (' < 1). To improve this equation we have to
include higher orders terms of the density expansion. A virial expansion for the electrical

conductivity was given in [4]
67 (n,T) = A(T)Inn + B(T) + C(T)n*Inn + ..., (6)

where C(T') is related to the Debye-Onsager relaxation effect, which is known from the theory
of electrolytes {5], see [6]. It describes the compensation of the electrical field, acting on a
charged particle, caused by the formation of an asymmetric screening cloud. Klimontovich
and Ebeling [7} investigated. this effect in weakly ionized plasmas, .where t};e assumption of
a local Maxwellian distribution is well founded. It was shown, that the relaxation effect can
only be described in a correct way, if the description contains two-particle correlations. In
contrast to the Onsager result, contributions to the order n'/?Inn a.ré obtained in the kinetic
theory [8,9], where only a pure one-particle picture is used. Hence, in the set of relevant
observables the pair-distribution function has to be included. Within a quantum statistical
approach, the relaxation effect was also investigated for fully ionized plasmas [4]. To arrive at
the Onsager result only the lowest moments of relevant observables (one-particle occupation
number, pair-distribution function) were used. This corresponds to a local Maxwellian

distribution for the momenta. Whereas this assumption is well founded for a weakly ionized

L

plasma because of the high collision frequency between the charged and neutral particles,
the distribution for the momenta in a fully ionized plasma can be different. As known _fromA
both the kinetic theory and from linear response theory, the inclusion of higher moments
can modify results for the transport coefficients. To obtain a Trigourous result for the virial
coefficient C(T') we want to include higher moments of the distribution functjons, what is

correspondent to distribution functions, which are not restricted to have a Maxwellian form.

II. LINEAR RESPONSE THEORY

We consider an open system, described by the system hamilton operator Hg (1) under

the influence of a statical electrical field E = Eé,. For the total Hamiltonian we write

Hyy = Hs — ER=Hs— EY ecrs,. )

X ‘ ‘ L
Linear response theory starts with a modified equation of motion for the statistical oper;tor
of nonequilibrium p,

ap 1 ,
—ag - EIHm,p] = —€(p— pret) ' (8)

where the correct boﬁndary condition; the weakening of ini‘tial correlations, is included in
form of a source ferm; If we identify the relevant operator with the statistical of)erator of
equilibrium we get the Kubo approach of linear response theory. The staté of the system in
the presence of the épplied feld is characterized through mean values of relevant observables
< B, >. These mean values are used to derive a generalized Gibbs state. In this form of
linear response theor& [10] we use a relevant operator of the quasi-equilibrium state

Prel = €XP [— Mo, B,,] /Tr exp [—— Yoo, B.,] ) 9

following from the principle of maximizing the information entropy subject to constraints of
given mean values Tr(preaB,) =< B, >. These mean values fix the response parameters 9,
Explicit expressions for the response parameters can be derived from the response equations

(generalized Boltzmann equation)




EN[B,] = 2 ¢,D[B,,B,) (10)

with the drift term

N[B.] = (R;B,)+ < R(e); B, > (11)
and the collision term
DB, Bl = (B, B,)+ < B(e)i B, > . (12)
In the response equation (10) we have defined the correlation functions

< A(); B >= /_0 dte(A(t); B),
1 8 R
(4:8) = 5 /0 dr'Tr{py A(~ih7)B], (13)

where we take the observables in the Heisenberg picture, pp = Z;? exp[—B(Hs — 3. p.N.)]
denotes the statistical operator of equilibrium, and the limit € — +0 has to be taken after
the thermodynamic limit.

In order to determine transport coefficients we have to solve th.e two problems:

i) Using the methods of quantum statistics (thermodynamic Green functions) we have to
calculate the correlation functions. By this wé,y it is possible to include many-particle effects
in a consequent way.

i1} Solving the generalized Boltzmann equation (10) we can determine the response éaram~
eter ®, as a function of the electrical field.

If we have the response parameter ®, at our disposal we can calculate the mean value of

the current operator (2) with

<j >=ﬂz®v(3v§j)~ (14)

After the evaluation of the response parameters in solving the response equations (10), the

conductivity o is expressed in terms of determinants using Cramer’s rule.
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II1. CHOICE OF THE SET OF RELEVANT OBSERVABLES

For small densities it is sufficient to take as a relevant observable the single-particle occu-
pation number B, = a}(k)a.(k)— < a}(k)ac(k) >o, which characterize the tilbnevquilibfium‘
single particle distribution function fi in the hdfnogeneoqs case. In this case, the response
eqﬁations (10) are equivélent to the Boltzmann equation for the single pa.rficie distribufion
function, where the collision integral is ‘eJ‘cpress;d in ierms of correlation functions. The
ordinary Boltzmann collision integral is obtained by evaluating the éorrelation function in
the ladder approximation (binary collisions) what is correct in the lowest order of density.
Many particle effects beyond the T-matrix approximation contribute to higher orders in
the density expansion, see [4]. In particular it can be shown that no contribution to the
conductivity in the order a2 inn arises.

In order to obtain the correct expression for the conductivity in the order n'/2 Inn with
respect to the density we have to include the two-particle distribution function. This means
in the homogeneous case that we have to enlarge the set of relevant observables B, by
inclusion of the two-particle observables . ‘

Snca(pkq) = al(k — ¢/2)al(p + ¢/2)aa(p - 9/Dac(k +¢/2). - -(15)
Hence, the response equations (10) have the form of a cqupled system of eqﬁations for the
single and two-particle distribution function.

As already discussed for the single-particle distribution function, for the leading order in
the density it is sufficient to evaluate the correlation functions arising in connection with the
two-particle distributionwfunction in Born approximation, where the Coul_opr interaction
is 1;eplaced by the statically screened Debye potential. A more detailed treatment of -th‘ei
collision term (dynamical screening, ladder summations) would result in corrections which
are of Ahigher order in the density. Because we are interested only in the coefficient C(T')
of the virial expansion of the conductivity (6) it is sufficient to consider all correlation-

functions in Born approximation, since the single particle distribution does not contribute

in this order. -



The full solution of the response equations (10)'for the single- and two-particle distri-
bution function is equivalent to the solution of a coupled system of integral equations if
we consider the ’indices’ k& and kpq, respective-ly, as continuous variables. We will find an
approximative solution of the response equations .by considering only a finite number of mo-
ments of the distribution functions. In particular, instead of solving the response equations
for the single-particle distribution we consider a finite number of moments

2191(n/2)
Po= S [0ttt (16)

For a sufficient high number of moments, the single-particle distribution function is ap-
proximated well, and the tonductivity is obfained by the algebraic solution of the system
of response equations. This procedure is identical with the Grad or the Chépman—Enskog
approch for solving the linearized Boltzmann equation. As well-known from the Kohler
variational principle, the inclusion of higher moments will improve the result for the con-
ductivity (increase). It has been shown [4] that the inclusion of a finite number of low order
moments gives a converging expression for the conductivity in the lowest order of density
(term A in the virial expansion, eq.(6)). |

The same argument can be applied for the two-particle distribution function. Instead of
treating integral equations we introduce moments of the two-particle distribution according

to

sn7i™ (q) = S k™p™ al(k — g/2)al(p + ¢/2)aa(p — ¢/2)ac(k +¢/2). (17)

These moments refer to the momentum distributions of both particles. Since the dependence
of q is taken in form of a variable, we are able to introduce the pair distribution function.

In particular, the pair correlation function is given by
neq(r, ') — nlnd = / dqei“('—")éng,’g(q). (18)

Higher moments are related to correlations of currents at different positions etc.
In the following, we will proceed as follows: In a first step, we only consider the moment

n23(q) in combination with arbitrary moments P, of the single-particle distribution. This

T

will improve the coefficient A as well as C, where the most important contribution comes
from 'P;. In a‘'second step we will confine us to Py, P, and will improve the two-particle

distribution by including the second moments.

IV. VARIATION OF THE SINGLE-PARTICLE DISTRIBUTION FUNCTION

- Following the discussion in the previous section, the set of relevant observables has been
enlarged by the moments of the single-particle distribution function P, for the electrons and

the pair-distribution function
= Z al(k — ¢/2)al(p +g/2)aalp — 9/2)ac(k +¢/2), (19)

for the electron-proton and the electron-electron density. Accordmg to eq.(10), the system

of coupled response equations is given by

ENIR = DB, P+ T T 642(-0) it (@), P (o)
) c,d g#0
EN[ng( 2 YD[Pa, sn2f ()] + 3 3 005 (~¢")DIonl%(d') 6n2(a))-  (21)
o d! g'#£0

This system of response equations serves for the determination of the response parameters
{Yn, B (—)}. The. relaxation effect is described usiné a pair-distribution function, which,
as a consequence of the applied electrical field, has an asymmetric form. The deviation of
the two-particle density from the equilibrium state is given from the response parameter

2%?(q). The most general form of this function can be read as

@21 () = Eaf (lal), (22)

where we have introduced a function f(|q|), which only depends on the distance between

the particles of species ¢ and d. This leads us to the symmetry relation
2(9) = ~220(—9) = —2%()- (23)
which should be reobtained from the calculations. We conlude, therefore, that the response -

parameter for particles of the same species ®%%(g) is zero, and the corresponding electron-

electron pair distribution function gives no contribution to the relevant statistical operator.




Since we are only interested in the first correction term for the the virial expansion of the
electrical conductivity, the correlation functions are evaluated in the Born approximation,
and by using a statically screended Debye potential Vs(g) = €2/(e0f(g? + 42)). In order to
solve the first response equation we us the results from the literature [4], which are given in

Born approximation by

: _eNT(%7)
D 24
[Pa] = (B; Po) = T »
and D[P, P,] =< P.:(€); P. >. The contribution of the lowest moment yields
< By(@): By >= S (2m) VAN Lmd/ 262 et L' ‘- (25)
i Fo 3 Q (4meg)? M

where Ly = L [;° #(z+x%) "2 exp(—ph*z/8m)dz denotes the Brooks-Herring type Coulomb
logarithm. For higher order moments, also the electron-electron interaction contributes to

< P",(e);P,, >, and we obtain

Aty = < Pg,.:(e);f”g,. >/< Po(e);Po >
go=an =1, ay=apn=2, a11—2+\/_

an =ap =6+11/V2, ap =24+ 157/V8. (26)

As a new term, a correlation function appears between the moments of the single-particle
distribution and the pair-distribution function, D[Jn %(q), Pl = (Jno %(q); P, ) This corre-
lation function can be evaluated in the non-degenarate case and we get the result (see the
Appendix)

rese), : ree

) ig. N* ~ BT )tqznz(q) (27

«f(g® + nz)
The second response equation (21) is transformed via a partial integration in N[dn%(q)]

(6727(), Pa) = —

and D{onl)(¢'),8n20(q)]. By this way, the dependence on the the single-particle moments

is eliminated, and we have to solve

(R Jnou(q)) Z¢, O(~ q)(Jn (q'); 0 (q)) ‘ o (28)

770

This serves for the determination of the response parameter ®%°(—q). The Lh.s. is calculated
using the result (27) and the correlation function (6n° %(q'); 6% (q)) is transformed using
the idendity (A; B) = 5'5 < [B, A] >¢. The result is

(535000 63880) = = Gy I = N (29)

giving us the response parameter

1

#30(q) = ieBa.a B L
"1 Qe (g? +&2/2)

(30)

in explicit form. If we exchange the indices for the species in equation (28) we will find,
that the response parameter <I>2;,°(q) is indeed subjected to the supposed symmetry relation
of eq.(23). Having the response parameter at our disposal, the set of coupled response
equations is reduced to an algebraic system of equations for the determination of the reponse
parameters v,. Using Cramer’s rule, the electrical conductivity is related to the ratio of two

determinants

0 (R Pn) - E#O er( q) (Jn (q) P)
(R‘l Pn’) - q;&O ep( q) (J‘n’ (q) P"') < P"'(e); P" >
| < Pu(e); P> |

o=5
Q
(31)

Taking the first three moments of the single-particle distribution function we obtain for the

conductivity

1 Be*x

. -1 a1 o A
o = 0-583LBH 1 3(2 + ‘/5) 41l'€0

(32)

As discussed in [4], the first term is related to the Spitzer formula (5), and the correction fac-
tor coincides with the Onsager result. Obviously, it is sufficient to assume a local Maxwellian
distribution (hydrodynamic approximation) for: the single-particle distribution function in
order to describe the relaxation effect. The used single-particle moments improve the kinetic
part of the transport coefficient, but does not change the hydrodynamic contribution to the

electrical conductivity.



V. VARIATION OF THE PAIR-DISTRIBUTION FUNCTION

. To continue bur discussion, we want to invgstigate, to what extent higher bmoments of
the pair-distribution function influence the Debye-Onsager correction factor. The inclusion
of the second moment of the single-particle distribution (the energy current) yields the main
contribution to the improvement of the coefficients A and C in the virial expansion of the
electrical conductivity. Therefore we will focus on the second moments of the pair distribu-
tion function. The set of relevant observables now consists of the variables Po, P, 6030 (q)
and én"(g). There exist several ways to construct these higher moments én7}"(q), in par-
ticular they can depend on 6 variables (momenta, scalar products). Since we were able to
reproduce the Onsager result in the adiabatic case (m <« M), we will neglect the momenta
of the protons, which reduces the dependence on three variables. Using these we can then
define the. moments of the pair distribution function up to the second order, writing

Sny™(q) = Z). B a,_q/zabﬂ/zab —g/2014q/2 : (33)
with B = {1,‘lq,12,l, I(lq)}. It has been shown by Kalashnikov [13], that if‘we include in
the set of relevant obseﬁables the moment dn2;%(q), it is not necessary to consider 612:0(q),
as it would not change the results for the transport coefficients. By this way we find, that

we can restrict us to dnf;’(g) and

Jnl ; (@)= Z 1 al—a/20b+q/2 Qh—q/201+g/2
Lh
6n3; O(q) Z r a’—q/zah+q/zab—q/2“l+q/2 (34)

" for the moments of the pair distribution function. Using this set of observables, the relevant

statistical operator reads

2 N

Prel = Z;;; exp I: (HS - Z /‘cN + Z'YnPn "" Z Z ¢ ( q)‘sn (q))] (35)
m=0q#£0 . .

The related response equations (10), i.e., the coupled equations for the moments of the

single-particle and the two-particle distribution function are given by

10

EN[P.} = Z'r,.'D[P..' P+ Zoqg‘?"'"( 9)D[5n3°(q), Pu] (36)
EN[nZ(9)] = 3 4 D[Pa, 607" (9)] + Z ;_: ¢L’§'°(—q')D[5n:";'°(q’);5n2’,‘;°(q)] (37)
n m'=0¢'#0

and serve for the determination of the response parameter {,, $7:°(g)}. We start by in-
vestigating eq.(37) for 6nl(q). In particular, we have to calculate both the collision terms
< 8al0(q,€),6aL0(q) > and < 6a%%(q,€), P, >. Tt caﬁ be shown that these terms are of
higher order in the density. As'a consequence of different tensor character the moment
6nl’(g) does not couple with §n2%(q) and 6n%?(g). Partial integrations in (37), as already
discussed for the derivation of equation (28), leads to
EN[Jn Z Z <I> ')D[Jfl °(¢"), Jn (q)] (38)
mi=0,2 ¢'#0
Considering the drift term N[6n]%°(q)], we find that < R(e); 6 772%(q) > vanishes in Born
approximation and we get the result
N (@) = - & (Pioint(a) = e, & 2T, ()
m m ByT
which can be found using (27). Furthermore we have to evaluate the collision term
D[s#m0(q');627°(q)]. The correlation functions < 677 °(¢'); 670%(g) > are of order
O(g*/¢) and can therefore be omitted in the ¢ — 0 limit. Consequently, the contributions

to the collision terms are given by

DI[8aZ,°(¢'); 647°(9)] = Do, = (6873°(¢'); 67272°(q))

5 35
Do =Dy = iDo.o D;; = '*Do 0y (40)

see the equation (29). Again, the system of equations for the determination of the functions

$%9(g) und $2°(g) is reduced to an algebraic system of equations and is given by

ieBauma(a) = ¢ [N = Nma(a)] (#:(0) + 20a(0))

ieBam(o) = 7V - ()] (S2u(0) + Pau(a) (1)

11



which gives us the response parameters in explicit form. From eq.(41) we find

290(q) = 200() #(q) = ~3u(g)

eZ

—ieBqqP 42
Do(q) = ieEq.q Geald@ +772) (42)
The correlation functions in the response equation (36) are known from the discussion in
Section IV. The new term is D{dn7:%(q), Fa]. Similar to the calculations in the Appendix

we find

Dléng; °(q), Pl = (637°(a), P) (43)

(3+n) P(3+m+n) e2
3 )T Vr Teal@ e

By using the results for the response parameters $7°(q), we can solve the equations for the
determination of 7,. Having all the response parameters at our disposal we calculate the
conductivity applying the scheme outlined in the previous section. The expression for the

conductivity

o' =0.578L5Y |1~ ———(1+ 0. 078)ﬂ ° | D

1
3(2+v2)
contains a corrected Onsager coefficient. Hence, by inclusion of higher moments of the pair
distribution functiorll, we improve the Onsager correction factor. In difference to the result
of ;eq.(32) we obtain ﬁnother prefactor caused by the inclusion of only the second moment
of the single-particle distribution function. We will rgobtain the prefactor of eq.(32) by

considering also the third moment.

VI. DISCUSSION

The work we have described allows a systematic treatment of the Debye-Onsager relax-
ation effect in fully ionized plasmas. Now we review on the principle ideas we have used and
discuss them.

Our approach has been to consider higher moments of the relevant observables which
were used to derive the DeBy'e—Onsager correct‘ion factor in the virial expansion for the elec-

trical conductivity. In order to derive this term it is sufficient to make a hydrodynamic

12

approximation for both the single-particle and the two-particle distribution function [7].
The inclusion of higher moments of the single-particle occupation number is related to dis-
tributions which are not restricted to have a local Maxwellian form. These moments yield a
contribution to the coefficients A(T') and C(T). By this way we derived an improved expres-
sion in the kinetic dependence for the conductivity (prefactor in (32)). The hydrodynamic
part is unchanged, and the calculations leads to the result, that the hydrodynamic approach
for the single-particle distribution function in fully ionized plasmas is justified in order to
describe the relaxation effect properly.

The inclusion of higher moments of the pair-distribution function is related to fluctua-
tions of the density at different positions and improves the hydrodynamic approximation for
the two-particle density. Considering the first two moments of both the single-particle dis-
tribution function and the pair-distribution function we improve the correction factor C(T).
Hence, the Onsager result has to be corrected in the case of a fully ionized plasma. By using
the approach of linear response we were able to find corrections beyond the hydrodynamic
approximation. Applying the Kohler variational principle we improve the contribution of

the two-particle distribution function by the inclusion of higher moments.

The authors acknowledge helpful discussions with W. Ebeling, V. Morozov and

K. Morawetz.. We also like to thank D. Holste for careful reading the manuscript.

VII. APPENDIX
By using the idendity (A; B) = ﬁ < [B, 4] >¢ we find for the coorelation function (27)
(558003 Pr) = =75 < [onsf(a), P >
-5 [ﬂhz]"ﬂ 3+ n) %;q,r' < O ops0 o Ohmarirass > - (4§)

The correlation function < af_q/za,fﬂ/zah_q/zauq/z > is associated with a Green function,

which can be evaluated in ladder approximation including only one interaction line (Born

13



apj:)roximatibn). Thus, we ha;;é to calculate
G(12,1'7) = Go(11')Go(22') + Go(13)Go(24)V (34, 3'4')Go(3'1')Go(42). . (46)

Applying the Matsiibara technique of standard quantum statistics [12], the Green function
G(g,wa) is given in the limit of small densities (f < 1) by

L20)) I S R,
G(q,wy) = —= - - 47
(g,n) AE (wx— Ey_gp2 — Eiygpa wa— Epygpn — Ei_yp (47)

with AE = Epy g2 + E_g2 — Epn—gj2 — Eiyg2- The connection between the spectral densxty

A(g,w) and the Green functxon is given via
A(g,w) = i[G(g,w +i€) - G(g,w — {g)]. , ‘7 . | : | (48)
Expléiﬁng the Dirac ideﬁdity, we get
Aq,w) = (q)27f [5(w - Eh—q/z ~ Eiyqp) “ - 8(w — Ehigr2 ~ él—qn)] ’.(49)

Composing all expressions we can calculate the correlation function

Yopdw 1
<A )20 g/20M-g/2011gj2 > = / o o A w)

= V( ) [ﬂB(Eh-q/z + Eiyg2) — np(Ehtqsz + Er-gp2 )]
2 (27BR°)°
= BVsa)n® _papars XPl=B(Bh—gp + El+q/2)]’ (50)
with the Bose distribution function ng(w) = [e:;p(ﬁw) — 1]7L. For the calculation of (50)
we took into account, that the Bose aistﬁbution function can be replaced by a Maxwell
distribution at sufficient high temperatures. We end up with the determination of the
correlation function

r(s). &
Ty N s Ay

(6280(q); Pa) = (51)
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