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;Couplmg of Surface and Volume Modes

i The couphng of surface and volume collectlve ‘E 7» 0scrllat10ns is: taken’
.into; account in the schematlc random phase approxrmatlon (SRPA) Thls leads.
to‘a" cons1derable 1mproven‘lent of. descr1pt10n of: the” drpole plaSmon 4n neutral :
“‘and s1ngly charged (Z=+1) sodlum clusters Good agreement 0f the: SRPA resultsi[
with expenmental data testifies to the apphcabrhty of -the separable approximation
¢ used in the SRPA resrdual forces The predlctlons for E2 and E3 collective excnatlons“
are presented ‘The calculatrons ‘were: performed ‘with the’ Kohn Sham and- ‘Woods-
fSaxon srngle partlcle schemes New parameters for the Woods Saxon potentlali
‘are proposed ~ a ! S




Introductron

. Collectlve osclllatlons in metal clusters (MC), ﬁrst of all the dlpole plas-s_;"f‘ R

',';'ﬁeld [1 4 6 11] Fragmenta.tron of the collectlve strength over partlcle—hole:" .

."'V‘acterlstlcs, partlcularly in formlng the dlpole plasmon w1dth — :,, Ea

i ;ha.s recently been proposed for MC [9 11] Thls method explorts the sepa.—" _f‘:
Heh rable approxlmatlon when the resrdual two- body forces are presented in the i

Be 3‘;‘} ,kfactorrzed form through the: srgle—partrcle (partrcle—hole) matrix elements.:f'l' L "l
:V(pl,pz,h,,hl) = nq(pl,h )q(p,,hg) (1n the trme—dependent forma.hsm [11], Cvhe

the factorlza.tlon of the densnty va.na.tlon lnto tlme—dependent and spatla.l

"o parts s used) The separa.ble approxrmatlon allows to. reduce the RPA :
. matrlx to the srmple equatlon tha.t drastlca.lly s1mphﬁes the calculatlons ,\

;‘f.bThls 1s lmportant in the cases’ of deformed or very large MC when au lm—:f' ;

e pressrve pa.rtlcle-hole conﬁgura.tlon space is used The SRPA calcula.tlons{ 2
with. the Woods-Sa.xon srngle—partlcle scheme a.nd surface self-conslstent o

"1;',:/ resrdual mteractron have been performed for a. dlpole plasmon ln spherlca.l s ,

f.fga.nd deformed MC in- [11] a.nd good pelspectlves of the method ha.ve been SR 2

_ 'Ii:'demonstra.ted However, hke many other RPA methods wrthout exphclt oni
e fltreatmg the i 1on1c subsystem [4], the ca.lculatlons [11] somewhat overestl— »
'.f'»mated pla.smon energres, espec:ally for small clusters \Also, for clusters o

/wrth Ne >20 (N, is the number. of valence electrons) too’ strong hlgh—
P ienergy strength wa.s predlcted For exa.mple, for nge a.nd N g0, | the deole'

strength at’ the energles E >3. 4 eV exhausted 30% a.ud 44%, respectrvely, :
‘ -f-whxle the correspondmg expenmental da.ta. [12 13] gave 10-15% for clus—’““' i

_ : * ters of thls srze a.nd up to 20- 30% for larger clusters [23] Such a general
. ’,’blueshlft of the dlpole strength led to a consnderable ,underestlmatlon of
‘the statlc dlpole polanzablhtles i ;

S mon, is now a- field of lntenslve 1nvest|gatlons (see, rev1ews [1- 5]) ‘The - iy
o fIRPA methods descrrblng the La.ndau da.mplng are especlally useful in thxs: AL

I excrtatlons (Landau dampmg) plays an 1mporta.ut role i in many MC char- i ;,‘:\

“ . 'The SRPA method (otherwrse called as’ the v1bra.tlng potentral model) o e

1 i In the present paper, we remove these shortcomlngs by usmg the Kohn— k'
N Sha.m smgle—partlcle scheme with'a dlffused Jelhum and taking into account-

the coupling of surface and volume modes. The diffuseness of the jellium
simulates a pseudopotential folding [20] and, as is shown below, leads to
the redshift of the plasmon energy attaching it to the experimental value.
The coupling of surface and volume modes is included to decrease the high-
energy strength {1,4]. The volume modes are introduced following the local
RPA prescription [14]. As is shown below, such a coupling considerably
improves the description of the dipole plasmon. This finally provides strong
grounds in favour of the applicability of the separable approximation. The
calculations have been performed with the diffused Kohn-Sham [15,16] and
Wood-Saxon single-particle schemes. The latter was done to demonstrate
the applicability of the Woods-Saxon potential in the RPA description of
collective oscillations in neutral and singly charged MC.

2. Main SRPA equations

We start with the Kohn-Sham energy functional for a system of N, valence
electrons

B{n(F,1),7(M)} = 1/2 [ (7, )d + [ o(n(,1))dF
n(7,1) — ni(F))(n(r1,1) - ni(71)) ;=i
+1/2//( )= (lr)(r(ﬂ ) ( ),Jd (1)
which includes kinetic energy, exchange-correlation (in local density ap-
proximation [17]) and Coulomb terms, respectively. Here, n(F,t) =
Tk (7, 2)]? and 7(F,t) = S| v ¢(F,t)|? are density and kinetic energy
density of valence electrons, n;(r) is the ionic density in the jellium ap-
proximation and ¢(7,¢) is a single-particle wave function. The convention

e=m.=h=1Iis used.
The time-dependent single-particle potential is obtained as

H(F, )i, t) = mﬂ—’ft—) @)

and in the small-amplitude limit of collective motion is written as a sum
of the static

Hy(F) = ___+( )n=nu +/nn(f1) nl(rl)d’. (3)
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and dynamical parts

SH(1) = (23} (7, 1)+ R (4)
where n(7,t) = no(¥) + én(7, t) and ny(¥) is the static ground state density.
Exp. (3) constitutes the Kohn-Sham single-particle potential.

The perturbed time-dependent wave function of the system is defined
through the scaling transformation

|¥(2) >= elrm®OHnhul eimnx@Holruxl|g > (5)

Here, |0 > is the ground-state wave function (H,|0 >= 0), both |0 > and
|¥(t) > are the Slater determinants, ay () = ax“kcos(wt) are harmonic

collective variables, f).(F) = r7(Y),(0,¢) + Y, (0 $) (k=1,.,K) are.

local hermitian coordinate operators.
Having used (5), the density variation is written as -

5n(F, 1) = k)'_f @) - V@ + oS (6)

and includes both the surface ~ yny(F) and volume ~ ng(7) terms. For
divergency-free operator with p = ), exp. (6) has only the term of the
surface character. Just this case was considered in [11]. The opera-
tors with p; > ) lead to a volume collective motion. The importance
of volume degrees of freedom for dipole excitations was justified for both
atomic nuclei [18] and MC [1,14,19]. In [14], the set of local operators
with p = 1,4,7,10,13 was proposed. Our study has shown that the sets
r=1,4,7,10, p=2,4,6,8 and p= 3,5, 7,9 are most appropriate for the de-
scription of dipole, quadrupole and octupole oscillations, respectively. Just
these sets have been used in the present calculations when the coupiing of
surface and volume modes was taken into account.
Substituting (6) into (4) we have

SH(7,1) = é_(:l k()@ 4k (F) ‘ (7

with
Q) = (T o907 - F3t () + ()t ()

+ /(vno(ﬁ) 7 uk(F1) 4 16(F1)A frue(71)) 4. 8)

|7~ 71
Finally, substituting the Hamiltonian H(7,t) = Hy(F)+6 H(F,t) into the
time dependent Schraodinger equation and using the linear response of the
operator @)(F)

- K . N
6Qyu(t) = / Qrur(PYon(r, t)dr = - HZ_:I oy (e (9)
with

'“:\_;}kk' =- /Q»\uk("")(vno(’-") 7 frw (F) + no() A fr e (7)) dr (10)

one gets the system of homogeneous equations to determine amplitudes
RO

Ayk
Hz: Sz\;&kk’(w)a,\uk‘ (11)
=1
< Pl uklt >< pildaur €ph
S — = .. Pr . 12
Mk (W) ;;; )~ w? 26 kb (12)

The amplitudes af&)k regulate the ratios between contributions of different
local operators fy,x(7) to the collective states. It should be emphasized
that these amplitudes are not an input parameters but are calculated, i.e.
the system chooses itself the most optimal contributions of the input local
operators.
The condition

det | Syupp(w) |=0 (13)
provides non-trivial solutions to the system (11) and represents the SRPA
d.ispefsion equation for eigenenergies wy. In (12), €, is the energy of a
particle-hole excitation and | p > and | k > are particle and hole eigenstates
of the static Hamiltonian (3). It is seen that &,z have a physical meaning
of the strength constants of the residual forces (8). Due to the surface-
volume coupling, non-diagonal strength constants take place.



3. Results and discussion

The Kohn-Sham with sharp and diffused jellium and Woods-Saxon single-
particle schemes were used for calculation of the single-particle wave func-
tions and energies. For both neutral and charged clusters, we used the
same parameters of the Kohn-Sham jellium: rys = 3.96a.u. = 2.094 and
ag = la.u. = 0.5294 (aq = 0 for sharp jellium) [16].

The parameters of the Woods-Saxon potential Vy(r) = WK":"—_RW
(ro =244, V; = -5.7eV and ay = 1.11A for neutral clusters and ry = 2.54,
Vo =-T7.2 eV and gy = 1.25A for singly charged clusters) were adjusted so
as to reproduce on average the diffused Kohn-Sham ground state densities.
The size region with N, = 8 — 138 was covered. As is seen from Fig.1,
the densities are well fitted even for charged clusters whose Kohn-Sham
potentials deviate considerably from the Wood-Saxon form in the surface
region and beyond. Fig.3 demonstrates that the Woods-Saxon potential
with the above parameters provides almost the same SRPA results as the
Kohn-Sham scheme. It should be noted that the Woods-Saxon parameters,
ro = 2.254, Vp = -6 eV and ao = 0.74 A, proposed in [21] for neutral clusters
lead to an overestimation of the plasmon energy and high-energy strength.

Two main kinds of the SRPA calculations are presented in Figs. 2-
4: with and without coupling of surface modes with volume ones. In
the first case, the sets of four local operators f,x(r) mentioned in the
previous section have been used. In the second case, when volume modes
are neglected, only the operators with p; = A have been taken into account.
The results of the calculations are presented in the form of the normalized

strength function
o(EXw) =2 wB(EX,gr — w)p(w —wi)[S(EY) (14)
t
where p(w - wy) = E%WAW‘A_IEF is the weight function with the aver-

aging parameter A = 0.05¢V, B(EX,gr — w;) is the reduced probability
of the EX transition from the ground state to the one-phonon state with

excitation energy w; and S(E1) is the energy-weighted sum rule
hle?
8rm,

S(EA)= S wB(EA, gr - w;) = A2A+ 12N <rP-25 . (15)
H

The expression (14) has a form similar to the photo-absorption cross section
for dipole excitations.

Let us consider results of the calculations. Fig.2 demonstrates that
Jjellium diffuseness leads to a considerable redshift of the plasmon energy
and thus improves the agreement with the experimental data. If only
divergency-free operator (p=1) is used, the calculations give rather strong
high-energy peaks at 3.5-4.5 eV in both cases of diffused and shaip jel-
lium. A similar result was obtained in ref. [11]. At the same time, the
experiment [12,13] does supports so strong much high-energy strength. The
description is improved if the coupling with volume modes is taken into ac-
count (p=1,4,7,10). Then, as is seen from Fig.2, the high-energy strength
is strongly redshifted and the main dipole strength is concentrated in the
region 2.5-3.5 eV.

The main SRPA results for the dipole plasmon, obtained with the cou-
pling of surface and volume modes, are presented in Fig.3 and Table 1. It
is seen that plasmon energies of charged clusters are slightly blueshifted
compared to the resonance energies of neutral ones. In clusters with
Ne = 40,58 and 92, a considerable Landau damping takes place which
should influence much the resonance widths. Table 1 shows that the calcu-
lated plasmon energies are in nice agreement with the experimental data.
The correct tendency of increasing plasmon energy with a cluster size is in
general reproduced. A good description of the static dipole polarizability
SDP =3;w B(EA, gr — wy) is also achieved.

Fig.4 exhibits the SRPA results for E2 and E3 collective oscillations in
singly charged clusters. It is seen that E2 and E3 strengths are mainly
concentrated in the energy regions 2.5-3.5 and 3-4 eV, respectively. Main
peaks are well pronounced. It is interesting that, like the dipole case, the
coupling with volume modes noticeably influences E2 and E3 excitations:
the high-energy strength is redshifted and the resonances become more
concentrated.
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Table 1: Energy centroids of the dipole plasmon @ (in eV) and SDP (in units R® with ' _— 2 / r [ A]
R = rysN3 sps = 3.96 a.u., N is the number of atoms). The experimental data for . % /
plasmon energies are taken from {12} (neutral clusters) snd {13,23] (charged clusters) - __“__’_,,,‘__.—J’//
and for SDP from [12,22] { >° 8 s '
o, eV SDP, R 3
Cluster | exp. | SRPA| ezp. |SRPA f 0.03
N 2.59 | 2.66 | 1. 1.78 s — \ +
as 1.77(3) 7 ﬁ @ 002 3 Na .
Nay 2.67 2.80 |1.68(10){ 1.57 { < _
Nag | 272 | 268 | 1.61(3) | 1.64 % o g0t
Nasg ; 2.83 ; 1.41 < 8 &\ 10 12 1
Na 985 141 l 0.00 .Inl.l.l_lJ;l.l.I.rrﬂlq_.LhL;_l
82 - . - . j b
N - 2.91 - 1.37 —_ :
G138 } > 2 : // r [A]
Naf - 2.66 - 1.44 ; G 4
Naj, |2.68(1)| 2.68 - 1.51 : o
e > 8 .
Najf, |2.62(1)] 2.75 - 1.51 ' N T /
Naf, | 28 | 28 | - 1.39 \ T
Nag, - | 288 - 1.36
Nat - . - . .ps . . :
ut 1 294 1.34 Figure 1. Ground state densities no(r) and single particle potentials

Vo(r) in Nags and Nag, calculated with the diffused Kohn-Sham (solid
line), sharp Kohn-Sham (dashed line) and Woods-Saxon (dotted line)

single-particle schemes.
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Figure 3. E1 strength functions calculated taking into account coupling
with volume modes. The diffused Kohn-Sham (solid line) and Woods
Saxon (dotted line) single-particle schemes are used.
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Figure 4. E2 and E3 strength functions calculated with (solid line)

and without (dotted line) coupling with volume modes.
Kohn-Sham is used.
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The diffused

4. . Conclusions

The self-consistent schematic RPA has been generalized to take into ac-
count the coupling of surface and volume modes. Due to this coupling, the
excess of the high-energy dipole strength is removed and thus a descrip-
tion of the dipole plasmon and static dipole polarizability is considerably
improved.- Good agreement with the experimental data is achieved. The
predictions for E2 and E3 collective oscillations are given.

The present study proves the applicability of the separable approxima-
tion. The separable form of the residual interaction drastically simph'ﬁes
the RPA calculations and thus can be quite useful for the descrlptlon of
E X excitations in deformed and very large MC.

The new sets of the Woods-Saxon parameters are proposed for neutral
and singly charged sodium clusters. The calculations demonstrate good
applicability of this phenomenological potential for the description of the
dipole plasmon.

Acknowlegement. We are grateful to Profs. M.Brack, P.-G.Reinhard
and Dr. Th.Hirschmann for useful discussions. V.O.N. and V.V.G. are
grateful for financial support from INTAS (grant INTAS 0151) and INFN.

REFERENCES

1.. Kresin, V.V.: Phys.Rep. 220, 1 (1992)

2.. Nesterenko, V.0.: Sov.J.Part.Nucl. 23, 1665 (1992)

3.. de Heer, W.A.: Rev.Mod.Phys. 65, 611 (1993)

4., Brack, M.: Rev.Mod.Phys. 65, 677 (1993)

5.. Brechignac, C. and Connerade, J.P.: J.Phys. B27, 3795 (1994)
6.. Ekardt, W.: Phys.Rev. B31 6360 (1985)

7.. Yannouleas, C., Vigezzi, E. and Broglia, R.A.: Phys.Rev. B47, 9849
(1993)

13



10..

11..

12..
13..

14..
15..

16..
17..
18..
19..

20..
21..

22..

. Madjet, M., Guet, C. and Johnson, W.R.: Phys.Rev.. A51, 1327

(1995)

. Lipparini, E. and Stringari, S.: Z.Phys. D18, 193 (1991)

Nesterenko, V.O. and Kleinig, W.: Phys.Scr. T56, 284 (1995)

Nesterenko, V.0., Kleinig, W. and Gudkov, V.V.: Z.Phys. D34 271
(1995)

Selby, K., et al: Phys.Rev. B40, 5417 (1989)
Borgreen, J., et al: Phys.Rev. B48, 17507 (1993)

Reinhard, P.-G., Brack, M. and Genzken, O.: Phys.Rev. A41, 5568
(1990)

Hirschmann, Th., Brack, M. and Mejer, J.: Annalen Physik 3, 336
(1994)

Hirschmann, Th., Monta.g, B. and Mejer, J.: Z.Phys. D37, 63 (1996)
Gunnarson O. and Lundqvist B.I: Phys.Rev. B13, 4274 (1974)
Lipparini, E. and Stringari, S.: Phys.Rep. 175, 104 (1989)

Braci(, M.: Phys.Rev. B39, 3533 (1989)

Reinhard, P.-G., Weisberger, S., Genzken, O. and Brack, M.: Lect.Notes
Phys 404, 254 (1992)

Nishioka, H., Hamen, K. and Mottelson, B.R.: Phys.Rev. B42, 9377
(1990)

Knight, W.D. et al: Phys.Rev. B31, 2539 (1985)

.. Meibom, P., @stergird, M., Borggreen, J., Bj¢rnholm, B. and Ras-

mussen, H.D.: to be published in Proc. 8th Int. Symp. on Small
Particles and Inorganic Clusters, Copenhagen, 1996.



