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1 Introduction 

To describe the large scale statistics of turbulence, many phenomenological or so­
called engineering closure models have been constructed. Their principal feature is 
the use of empirically estimated constant parameters. Recently great attention has 
been devoted to a deeper and more fundamental understanding of the turbulence 
essence and to the calculation of the above mentioned empirical constants. 

Fundamental statistical turbulence theories are prevailingly based upon the Na­
vier - Stokes equation or its modifications. The strong nonlinearity of Navier-Stokes 
equation at sufficiently high Reynolds numbers is responsible for the standard closure 
problem of the statistical turbulence theory. The important quantity present in the 
classical phenomenological models (e.g. in the basic Reynold's stress model for the 
evolution of the mean large scale velocity field) is the turbulent viscosity 11T. The ways 
of its determination are ambiguous. In the present work the attention is focussed 
onto the classical Heisenberg type turbul~nt viscosity [1]. 
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In the original Heisenberg's theory the phenomenological closure T( k, t) ~ [ E( k, t)] 2 

is introduced which ass9ciates. the mean energy transfer T(k, t) with the energy 
spectrum E(k, t). Instead of, we have applied a more fundamental form of statistical 
closure mediated by the scaling function F. This function of dimensionless argument 
k/K(t) (/K being the characteristic length scale) is completely determined with the 
universal turbulence decay model [2], formulated on the base of renormalization 
group theory results. Note that the renormalization group methods, applied for the 
first time to the turbulence theory within the framework of the model of randomly 
forced Navier-Stokes equation [3, 4, 5] belong to wide-spread approaches to·describe 
the developed turbulence. 

In accordance with Refs. [2, 6] the core of the scale-invariant theory consists in the 
presence of the time dependent characteristic length scale IK(t). The conclusions of 
above outlined theory have demonstrated its responsibility to valuable contribution 
to the explanation of past grid experiments summarized in [6]. In present paper 
the following qualitatively new theoretical and computational aspects appear: i) the 
application of non-traditional numerical technique to find the solution of systems of 
integro-differential equation~ determining the form of F; ii) the method of calculation 
of Heisenberg type turbulent viscosity as well as connected measurable universal 
constant parameter as an important consequence of the mod~!. 

2 Self - similar description of turbulence 
decay process 

One of the primary purposes of the present paper is t~ show the continuity between 
the recently developed model of universal turbulence decay [2] and the standard 
closure models. Before discussing the conseqences of the modified turbulent viscosity 
model we will display the main results and recapitulate the salient points of the 
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analysis (2]. 
It must be emphasized that the considerations are valid for the energy containing 

scales and for very large Reynolds numbers under the condition that the principal 
single independent scale of the system ( von Karman scale ) (7] ' 

(
2 )½ /K = d t: c:-1 (1) 

(where£ and t: are the mean kinetic energy and the energy dissipation rate, respec­
tively) is much larger than the mean size of dissipation micro-eddies. 

The second order statisti~s of turbulence decay process can be characterized by 
means of non ~tationary E( k, t) spectrum 

s kd-1 J 
E(k, t) = 

2
(
2

1r)d ddr exp (-ik.r] (vi(x, t)vi(x + r, t)) (2) 

In this equation, Vj(x, t) is velocity field, dis the spatial dimension, Sd = 21r1 irff] 
is the surface of a d_;dimensional sphere, r denotes Gamma function and brackets 
( · · ·) denote the statistical averaging over the v field realizations. 

The derivation of the governing equations for the scaling function F starts with 
the assumption that E(k,t) can be written in the scaling form 

E(k,t) = \r;m(t)lK(t) ~k x2 F(x), X = klK(t), (3) 

where Ck is Kolmogorov constant and the root of mean square velocity 

V,m(t) = J[(vj(X, t)vj{x, t))] 

is connected with the energy spectrum by relation 

v;m(t)= f''°dkE(k,t). 
2 lo ( 4) 

The scaling idea of Ref. (6] comprises the supposition that /K(t), V,m(t), [(t), c:(t) 
and Reynolds number Re1(t) undergo the following time dependencies 

2 3 

[K(t) = [K(tc) (t) 5 , V,m(t) = V,m(tc) (t)-•, (5) 

1 C)-1 11 

t:(t) = 2v;m(tc) t"; , c:(t) = 
5
~c v;Jtc) (t)-, 

(t ) _ 3 d½ [K(tc) 
Re1(t) = 

/K(t)V,m(t) 
V,m c - . 5 le ,· ' V 

where tc, [K(tc), V,m(tc) ar~ integration constants, v is the kinematic viscosity. The 
universal decay dynamics (3) can occur only during the finite time interval [6]. 

2 

According to Ref. (2] the results of perturbative renormalizati~n group theory can 
be adapted for the description of the states located near the statistical equilibrium 
- fully developed and stationary turbulent regime . Then the mean energy transfer 
(7] defined as 

s kd-1 j a . 
T(k,t) = _:}__)d ddr exp(-ik.r] (v,(x,t)vj(x+r,t)!lv,(x+r,t)) 

(21r uri 

can be rewritten into the scaling form 

3 • (2Q(d)) (d) - -
T(k, t) = cf c:(t) tK(t) 3d I [x; (FIF)], 

where Q(d) parameter is 

Q(d) = 3 d sd-i, 
2(d - 1)2 

9id1 (3 d../d+2 r[f l 
(21r)dSd = 2y; (d-1)2r[d;1] · 

(6) 

(7) 

(8) 

The value of the parameter "gidl, ( d > 2, dis the spatial dimension ) appearing in (8 ) 
has been fixed by the RNG theory [5] 

(d) _ 8(d + 2)(47r)fr(f) 
9• - 3(d-1) 

(9) 

in the frame of analytical regularization scheme. At the present stage of RNG theory, 
the perturbative analysis has been carried out up to one loop order of diagrammatic 
expansion. The understanding of formula (7) needs to define the bilinear functional 
form J(dl[.] : 

J!dJ [x; (AIB)] /! 100 dq 1" dB l{(O,d)(q,0) 

x { K(l,dl(q, O) A (xq) B (xp) + K!2,dl(q, O) A (xq) B (x) 

+ K!3 ,dl(q,O)A(xp)B(x) }, 

(10) 

where p(q,0) = ✓l-2q cos0+q2 , A(.) and B(.) are two arbitrary functions of 
single variable and the integral kernels 

K(O,d)( 0) _ (sin ot 1 q, - 2 2 2 , 
p l + q3 + p3 

K(l,d)( q, 0) 

K(2,d)(q,0) 

1{(3,d)( q, 0) 

p3-d q2 [d - 1 - 2d q cos 0 + 2( d - 2)q2 + 4q2 cos2 0,] 

q2 [(1- d)p2 + 2q2(1- qcosO) ,] 

p3-d l (2p2 cosO + (1 - d)q] 

3 
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are the functions of the rescaled internal momentum. 
The scaling forms (3) and (7) connected by the mean energy balance equation [7] 

oE(k, t) = T(k, t) 
at (11) 

are the basis of the self - similar description of the decay process for the scales where 
the viscous effects are negligible (v -t 0). The system of equations determining F 
and Ck -important measurable parameter 

x3· !! = .jc,, Q(dJ J(dl[ x; (FJF)], (12) 

2ck 1= 2-a lo dx x F( x) = 1 (13) 

has been derived using (3), (5), (7), (12), (13) and the integral identity ( 4 ). The inner 
structure of equations (12 ) and (13 ), supplemented by the asymptotical conditions 

x¥-F(x) 

F(x) 

1 + 0 ( x - l) , for x -t oo , 

0 (l), for X -t 0, 

(14) 

makes the calculation of F(x) difficult. The difficulties of the numerical treatment 
come from the following related aspects of the constructed model: the equations 
are quadratic in F, contain nonlocal terms and combinations of derivatives and in­
tegrals over F. To examine these equations we introduce an approximative method, 
where the explicit F(x) dependence is expressed through "particular spectral ob­
jects". From this point the investigation of (12), (13) and (14), we are going to 
perform, is restricted by the proposed linear parametrization ( Sect. 4. ), which 
enables to apply an optimization method ( Sect. 5.). 

3 · The model of turbulent viscosity 

There are a few definitions of the turbulent viscosity. In this work Heisenberg's 
definition was used [1]: 

vT(k, t) = fokdqT(q,t) 
k • 

2 f0 dqq2 E(q,t) 
(15) 

Taking into account (3 ), (11 ) and (15 ) we have derived the scaling form of the 
turbulent viscosity 

· d½ £2(t) 
vT(k, t) = v Re1(t) Cµ(x)4 = Cµ(X) c:(t) , (16) 

4 

where __ 4_ [3 fox dxx2F(x) - x3F(x)] 
Cµ(x)- 3d3 f

0
xdx x4 F(x) ( 17) 

From the connection .::( t) = 2v ft d k k2 E( k, t) [1] and relations ( 11) and ( 15) fol­
lows that the turbulent viscosity of very small scales 

vT(oo,t) = -[c:(t)J-1v r= dkT(k,t) 
· lo 

(18) 

is equal to v, which is zero order quantity at the energy containing scales. 
The form of (16 ) has been chosen to be compatible with so-called k - t _model 

(see [8, 9]) where 

VT = Cµ(0) £
2 

• 
E 

( 19) 

It is obvious that (16) can be considered as a generalization of (19) for the turbulent 
decay statistics using x dependent Cµ instead of constant one. The Eq. (16) can be 
also viewed as a rough analogue of the equation used in the kinetic theory of molecular 
gases. If the inertial eddies are taken as "molecules" with the characteristic mean free 
path /K, zero diameter and mean collision frequency V,m(t)//K, then the kinematic 
viscosity of such a "gas'' is given by the expression vT(t) ~ V,m(t)/K(t) obtained from 
( 19). 

4 The linear parametrization of the scaling func­
tion 

The explicit form of the linear parametrization of F is proposed: 

n n 

F(x) = L b;cp;(x) - hAs L WJ"PJ(X)' 
J=l J=l 

where the functions cp;, "PJ were chosen in the form 

c/>1(\) 

c/J;(x) 

[ 
2 11 

X + µ;r•, 
Nf c/>1(x)xJ-2 e -,;f;;, 

1J,,(x) = x2 Lx2 + 1i~.r1t ' 

"PJ(X) = NJ' 1J,1(x)xJ-2 e -~, 

µq, = 1.7' µ,µ = 5.3, 25,J5,n 

and calibration conditions are given by 

b1 = W1 = l. 

5 

(20) 

(21) 

(22) 



The leading terms Qf F of the order O(x-¥-) and O(x-lf-) coming only from d>1(x), 
1111 ( \:) functions are responsible for the conservation of the Kolmogorov k-½ behaviour 
and its k-f infrared correction (3) in the limit of large wavenumbers k ~ l;/. 

The normalization parameters NJ , N:f and parameters Y<P, y,t, are defined by 
integral conditions 

100 

dxx2<f>J~2(x) 

1"° dxx21/JJ~2(x) 

1= dxx2<f>1(x) = Y"', 

r= dx x 21/J1 ( X) = y,t, . 
lo · 

(23) 

The motivation for the selection of linear F parametrization in bJ, WJ, hAs is to sep­
arate the numerical and optimizational stages to make the solution of the equations 
less time consument. 

Using (14) we obtain the asymptotical expansion of the left (lhs(x)) and right 
hand sid'e (rhs(x)) of (12): 

lhs(x) 

rhs(x) 

11 5 7 __ x-3 + O(X-3) 
3 

-hAs .jc; Q(d) 1!:,> x-½ + O(x-f), (24) 

where 1!:,> = 1(d) [x; (FIF)] x-= . The equating of the amplitudes corresponding to 

O(x-i) asymptotics gives 
11 

hAs=-----
3 ,/c; Q(d) l!:,) 

Taking into account ( 13), (20 ) and (23) the Kolmogorov constant 

4 
C - 2 

k - Y4' L]=I bJ - hAs y,t, I:]=1 WJ 

can be expressed by means of the representation 

[b, w] = (b1, b2, b3, · · · bn, Wi, W2, · · · Wn,) 

From (2.5) and (26) we obtain the explicit expression 

where 

C = (Ca+ Jc~ +ct) 
2 

k 2q ' 

2 n 

Ca= -Y"'~b d L.., J, 
J=I 

22Y'P I:]=l WJ 
Cb= 3dQ(d)l~) 

6 

(2.5) 

(26) 

(27) 

(28) 

(29) 

Substituting (20) into (12) the equation for spectral balance can be rewritten as 

where we denote 

n n 

L b/D~(x) - hAs L WJ'DJ(x) = .;a; Q(d) 
J=I J=I 

x t { bK bJ 1<dJ [x; (1/>KJ<l>J)] 
K,J=I 

hAs bK WJ (I(d) [x; (<PKl1PJ)] + 1(d) [x; (¢Ji.PK)]) 

+ h!s WK WJ 1(d) [x; (1PKl1PJ)]} + 6(x), 

"' ) - 3d,PJ . ,i, ) - 3dif,,J 
Vi(x = X dx' 'DJ(X = X dx . 

(30) 

(31) 

It can be expected that (30) is not satisfied for any ad hoc class of ,PJ, 1PJ functions 
and (b, w] parameters. In the large x region,'the connection (25 ) guarantees the 
supression of 6(x) deviation [ since 6(x) = lhs(x) - rhs(x) -+ O(x-f )]. For the 
suitable functions ,PJ and 1PJ the satisfactory enough minimization of errors 6(xm) 
at each point of the non uniformly distributed mesh x m, m = l, 2, • • • mesh can be 
achieved by finding the appropriate values of [b, w] parameters. 

The advantage of the above mentioned separation of the numerical and optimiza­
tion parts is that many times repeated 6(x) evaluations (Sect.5) require only a single 
numerical calculation of each matrix element 

l(d) [Xmi {cpK(Xm •' •)lcpJ(Xm · · ·))]' 

l(d) [Xmi {1PK(Xm · · ·)lcpJ(Xm · · ·))]' 

l(d) [Xmi (cpK(Xm · · ·)Jif,,J(Xm · · ·))], 

l(d) [Xmi (1PK(Xm · · ·)Jif,,J(Xm ·. ·))] · 

From the parametrization (21) it follows that the Taylor expansion of F around 
the zero of x contains the term of the order O{x). Consequently the lowest order of 
vr [see Eq.(17 )] is proportional to (l/x)(b2 - 2b3µ,t,N; /Nf) as x -+ 0. Assuming 
the special type of relation 

b2 = hJ 2 µ,t,Nt 
N."' . 

2 

(32) 

this singularity can be removed and the substitution of (21) and (32) into (20) gives 
a finite value 

Cµ(0) = 
ll ( 1 r,J,) ll ( ,t, "') 12hAsµ; 1 + W2JV 2 + µJ 22 + 47µ,t,bJN3 - l2µ;b4N4 

9d
3 

2 ¥, ( "') 2 µ"' µ,t, l + 2µ,t,b3N3 
(33) 

7 
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5 Determination of scaling function 

The optimum approximative scaling function F(x) (given by the set of [b, w] parame­
ters) must satisfy (30) with as small ~(X) as possible. In our work the determination 
of the corresponding [b, w] set was carried out as the multiparameter optimization 
procedure over the [b, w] parameter space. The aim of the optimization was to find 
the set of [b, w] providing the minimimum value of some functional constructed from 
~(x). 

To find the optimum parameter set the Genetic Algorithm (GA) approach [10, 11] 
was applied, having been claimed to be a robust global optimization technique over 
poorly understood nonlinear parameter spaces [12, 13]. 

The GA mimics the evolution of biological species. The most salient features o~ 
the GA are the encoding of a parameter set (i.e. a point in the parameter space) 
on the string over the low cardinality alphabet (the most often binary) and using 
the population of the strings instead of the only point. The initial population of 
the points is randomly generated, all the, following populations (next generations) 
are created by means of genetic-like operators (mutation, recombination and sur­
vival of the fittest) from the previous one. As it was shown [10, 11], the search is 
gradually biased to the most promising partitions of the parameter space during the 
optimization process. 
Objective function. Success of the GA used as the function optimizer crucially de­
pends on the appropriate definition of the objective function expressing the validity 
of the parameter set. Generally, the task GA solves consists in the search for the set 
of parameters providing the minimum ( or maximum) value of the objective function. 

In our case the objective function represents the above mentioned conveniently 
defined functional constructed from the ~(x). 

The equation (30 ) was investigated in the mesh points Xm,•m = 1, 2, ... ,mesh= 
112. The distribution of the mesh points was given by 

_ { Xm-1 + 0.1, m = 1, 2 
Xm -

Xm-1 + 0.3, m = 20, 21 

where xo = 0.1. 

19 
mesh (34) 

For further purposes, the value of left hand side of (30 ) in them-th mesh point 
is denoted as lhsm and the term rhsm represents lhsm - ~(Xm), The definit_ion of 
the objective function Of was based on the lhsm and rhsm values and it was taken 
as the multiplication of the parts Of1, Of2 and Of3. 

Of1 represented the most significant criterion based on the root mean square 
deviation between the lhsm and rhsm, m = 1, 2 ···mesh: 

Of1 = · · ( Xm - Xm-1 ) J lhsm - rhsm J l mesh ( ) 2 

mesh~ 0.l + j lh~==~~:;' I ' 
(35) 

8 
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where mesh is the number of the mesh points. To weaken the influence of the 
deviations in the steep parts of the left hand side of (30 ) on the Of1 value, each of 
the deviation between the lhsm and rhsm was divided by the numerical derivation of 
the left hand side of (30 ) in the corresponding mesh point. Of2 provided gentle _bias 
of the optimization procedure to the partitions of the parameter space resulting in 
good agreement between the minimum lhsm, m = 1, 2 ·••mesh value and minimum 
rhs 111 , m = 1.2 ···mesh value denoted as Min{lhsm} and Min{rhsm}, respectively: 

Of2 = 1 + 0.1 (1 + gen) (Min{lhsm} - Min{rhsm} J (36) 

Of2 was generation-dependent as it contained the current generation number (gen 
parameter). 

To push,_out the strings representing the parameter sets providing positive rhsm 
values (which do not seem to be probable) from the population, the third partial 
objective function Of3 was defined as: 

Of3 = 1 + 0.05 Nrhs, (37) 

Nrhs being the number of mesh points in which rhsm > 0. 
As it was mentioned above, the total objective function consisted of the three 

partial objective functions taken multiplicatively: 

Of = Of1 . Oh . Of3 . (38) 

Selection scheme. In GA theory, selection scheme represents the reflection of the 
objective function value of the string in the number of its offspring. For our purposes, 
fitness value was constructed for each string on the base of its objective function value 
using the monotonic assignment Junction. The number of offspring was proportional 
to its fitness value. 

The following assignment function was used: 

fitness;= { { [N-~"-'""'•]2} 
exp - o.s( N -bett) 

if Of< threshold 

otherwise 

where N is the population size, rank; is the rank of the i-th string according to its Of 
value (the rank of the string with the highest Of value is 0), and the param·eter bett 
is the number <:>f the strings with Of< threshold in the corresponding generation. 

As only the rank of the string according to its objective function value appears in 
the assignment function (instead of the objective function value itself), the applied 
selection scheme is the type of ranking [14]. 

The threshold function was ad hoc defined: 

( 
gen) ( gen) threshold = 103 exp - 10 + exp - 75 (39) 

9 



where gen is the current generation number. 
The reason we have introduced the threshold strategy was to lower the probability 

of the premature convergence [11 ], i.e. being stuck in the local optimum in [b, w] 
space. At first, the equity of the convergence into many local optima is kept by the 
high threshold value. As the search proceeds, lowering of the threshold values forces 
GA to focus on fewer and fewer local optima. We assume that the application of 
the threshold strategy has enhanced the exploration phase. Nevertheless, more exact 
assessment of the influence of the threshold strategy on the GA optimization and its 
comparison with the other GA-alternatives have not been carried out yet. 
Parameters of applied GA procedure. The generational Gray coded [15] GA was 
applied, 32 bits per parameter (as a result, each parameter set was represented by 
32 x 13 = 416 bits long string), the standard 2-point crossing over [11 ], the population 
size of 10000 strings and mutation rate 1 per 1000 bits. [b, w] ( except b1,W1 and b2) 
were restricted to the grid values: 

b: -0.5, -0.5 + HB, -0.5 + 2HB, 
w: -1.0, -1.0 + Hw, -1.0 + 2Hw, 

... , 0.5 - 2HB, 0.5 - HB, 0.5 

... , l.0-2Hw, 1.0-Hw, 1.0. 

where H8 = 2-32 and Hw = 2-31 • The b1 and w1 were kept equal to 1.0, b2 was 
calculated using Eq.(32 ). 

Gradual decreasing of the objective function value during the optimization pro­
cedure is depicted in Fig. l. 

objective function 

0.0-5 ~--~--~--~--~----.----,r--~ 

0.045 

0.04 

0.03-5 

0.03 

' 0.02-5 
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0.005 '-------'----L----'-----'-----'---_,__ _ ___. 
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Fig.l. The best achieved objective function value vs. generation. 

As a result of the optimization procedure the set of [b, w] parameters providing 
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the minimum Of value was achieved: 

b2 = 6.15447702741973010-2, W2 = -2.57404933510675310-1 (40) 

b3 = 5.01292772940661010- 2
, W3 = -8.33162716085362010-1 

b4 = -l.76859040902196210-1
, W4 = -3.32600752667663810-1 

b5 = 6.02334650606460610-2
, w5 = -l.02254231717031010-1 

b6 = 5.38767086234587910- 2
, W6 = -3.80170521647709110-1 

b7 = -6.04551705905364810-2 
,. W7 = 9.89421240750099810-2 

b8 = 2.57542940149443010-2
, w8 = -3.30607159373026110-1

. 

Hamming distance. This metrics [16] is used to express the similarity of two binary 
strings. It is equal to the number of distinct bits in the corresponding positions. 
Hamming distance shows the convergence properties of the GA optimization proce­
dure. 

In our work only the 8 most significant bits out of 32 total bits per parameter 
were included into Hamming· distance. The average Hamming distance of the two 
strings in the randomly generated initial population is 52 ( 4 x 13). 

Hamming distance 
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Fig.2. Hamming distance between the string providing the lowest Of value and the 
previous best string. It can be seen that the Hamming distance decreases with the number · 
of generations. In the end, the variations between the strings are very small meaning that 
the population has converged and the improvements of the Of value are negligible. 
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6 The calculation ~f the velocity skewness 

It is interesting to calculate the so-called skewness factor S(r, t) with an obvious 
definition 

S(r, t) = ( [ [vi(x+r,t)-vj(x,t)]r;]3) 

( [ [ vj{x + r, t) - vi(x, t) ] rJ )3/2 · 
(41) 

From the supposition that E(k,t) and T(k,t) are of specific scaling behaviour [6] 
follows the scaling form of the averaged squared and cubed finite differences [vj(X + 
r, t) - vi(x, t)]rj. Thus we can introduce the functions 

Jr;(() = ( [ [ vj{x + r, t) - vj{x, t)] rjr ) 
v~m(t) as n = 2,3. (42) 

The dimensionless parameter ( = r/IK(t) represents a separation distance of point 
x + r, x in the Karman units. Using the standard procedures, aiming to connect the 
x and wavenumber representations, it is possible to connect h(O and h(() functions 
with F(x) via the convolutions 

fn(O = c-s 100 

dyKn(y)F (z) 
with the integral kernels 

2Cky
2 

( 2 ) K2(y) = -
3

- 3 - KE(Y) , J<3(y) = -:~: d: [y
2
KE(Y)] 

containing 
· ( d

2
) siny KE(y)= l+- - . dy2 y 

The skewness factor ( 41 ) can be expressed as 

h(t) 
S(r, t) = S(OK(t), l) = .rg12(e). 

(43) 

(44) 

(45) 

(46) 

In Fig.3. we present S(r, t) dependence as a function of ( calculated using relations 
(43), (44), (45) and (46). 
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Fig.3. Skewness factor as a function of dimensionless ( variable 

7 The results of numerical analysis 

The set of [b, w] parameters was found by the numeric optimization (Sect. 5). Substi­
tuting (40) into (20) the scaling function F(k/K) has been constructed ( Fig.4. ). The 
sum of terms -hAs I:]=1 WJ1PJ(\) of the scaling function F(x) shows the asymptotic 
behaviour x-13 / 3 as\ - oo (Fig.5). Substitution of the scaling function (20) with the 
set of parameters (40) into Eq.(30) gives satisfactory agreement of its right and left 
hand sides (Fig.6) and corresponding Cµ(y) dependence (Fig.7). Using the equations 
(33), (25) and (26) with the set of parameters ( 40) substituted, the values of principal 
constants have been calculated: Ck = 1.615, hAs = 0.634, Cµ(0) = 0.068, S(0, t) = 
-0.218. These predictions are close to the empirical values Cµ(0) = 0.09 [8] and 
S(0, t) = -0.45 [l]. . 
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Fig.4- Figure shows the behaviour of the scaling function F(x) 
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Fig. 5. Figure shows the sum of the terms of the order O(x- 1313 ) included in F. 
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Fig.6. Comparison of the left lhs(x) and right rhs(x) hand sides of Eq. (12). 
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Fig. 7. The Cµ(X) dependence calculated from Eq.(17). 
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8 Single stationary large scale vortex decay in 
the frame of Reynolds stress model for mean 
velocity field 

The separation of scales between the mean and fluctuating fields is based on Kol­
mogorov's concept that turbulence is more isotropic and homogeneous at small scales. 
The simplest classical closure model approximating the strongly turbulent Navier­
Stokes dynamics at very large scales is the Reynolds stress model 

au; ·u au; ap "U aR;i -+ j-=--+vo ;+--at axj ax; axj 

with the continuity equation 
auj = o, 
axj 

(47) 

(48) 

where R;j is the Reynolds stress, U; is the component of mean velocity field, P is the 
mean pressure. In the first order modelling, the simple eddy-viscosity representation 
(Bussinesq approximation) of the Reynolds stress [9] is given by 

2 ( au; auj) R;i ~ -3 cD;j + vT axi + ax; . (49) 

We assume that strongly turbulent structures create the background of single large 
eddy and the turbulence of scales, less or comparable with the length /K, is statisti­
cally homogeneous whereas the inhomogeneities are of the typical size of oo ~ R ~ 
lK. 

To describe the evolution of the background fluctuations we have employed the 
model non-equilibrium turbulent viscosity [ see Eq. (16 ) ]: 

vT(0, t) = Cµ(0) £
2

(t) 
c(t) · 

(50) 

After its embedding into incompressible Reynolds stress model (47) and (48) a com­
bined model emerges, which can be investigated for various geometries. As we are 
planning to study the single vortex (with fixed center position) in the infinite spatial 
domain (unbounded problem) it is convenient to suppose the cylindrical symmetry. 
Assuming that 

U = Ucp(R, t) ecp, P = constant , (51) 

(where Risa distance from the eddy center and ecp is unit polar vector) the continuity 
equation aUcp/ ar.p = 0 is satisfied automatically, large scale non linearity vanishes 

(U.v')U = ~ ~U = 0 
. r.p 

16 

and with the help of (50) the equation (47) can be replaced by 

aU.,,(R,t) = vT(O,t),6.RU-.,(R,t), 
at with Laplacian • 1 a ( a) 

b,.R = RaR RaR 

Assuming the special property 

U.,,(R, t) = V,m(t) ~( 'ii ), 
R 

'ii= lK( t) ' 

'(52) 

(53) 

(where~ is some continuos function of single variable 'ii) the substitution of (53 ) 
into (52 ) gives 

dv,m(t) <I>(-) - V,m(t) d/K(t) -<I>(-)= vT(t)v,m(t) ,6.-<I>(-). 
dt TJ IK(t) dt TJ TJ l~(t) 1/ TJ (54) 

Taking into account the time dependences in (5) complete time and scale 'ii separation 
is possible in Eq. (54 ) and the following equation can be derived: 

2 d<I>(17) • _ 
<I>(TJ) + 37/dry + l:!..,,<I>(TJ) = 0' 7/ = 7/ 

3/~(tc) 

5tcvT(tc)' 
<I>(17) =~('ii)' (55) 

which connects only the 7J-dependent quantites. We have investigated the problem 
( 55 ) in limit case of large 7/ ratio. The solution of this differential equation can be 
expressed in the form of asymptotical series. The evolution of the Ucp(R, t) in the 
region distant enough from the eddy center (R ~ /K), where the inhomogeneity of 
the turbulence is smaller than near to the core of eddy is described by 

3 ( 27 3969 480249) . 19 

<I>(17) = <I>ooT/-, 1 + 167]2 + 5127]4 + 81927]6 + 0(17-2), as 7/-+ oo. (56) 

From the supplementary condition the integration constant <I>00 can be determined. 

9 Conclusion 

In our work the properties of "self similar solutions" of decay turbulence spectrum 
have been investigated. The presented method combines the analytical and numerical 
approaches. It has been shown that variational formulation and consequent multi­
path optimization strategy can provide information about the solution of nonlocal 
and nonlinear problems. Acceptable values of the Kolmogorov constant, skewness 
factor and also constant included in the formula for turbulent viscosity have been 
obtained. 
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