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1 Intfoduction

The study of the Highly Correlated Electron Systems has attracted much attention re-
cently, especially after discovery of copper oxide superconductors and the new class of
heavy fermion compounds, coexisting with magnetism [1] - [6]. Although much work has
been performed during last years it is worthy to remind that the investigation of the exci-
tations in many-body systems has been one of the most important and interesting subject
for last few decades. The quantum field theoretical techniques have been widely applied
to statistical treatment of a large number of interacting particles. Many-body calculations
‘are often done for model systems of statistical mechanics using perturbation expansion.
The basic procedure in many-body theory [7] is to find relevant unperturbed Hamiltonian
and then take into account the small perturbation operator. This procedure, which work -
well for the weakly interacting systems, needs the suitable reformulation for the many-
body systems with complicated spectra and strong interaction. - For many practically
interesting cases the standard schemes of ‘perturbation expansion must be reformulated
greatly [8] - [12]. The most characteristic feature of the recent advancement in basic
research on electronic properties of solids i is development of variety of the new class of
materials with uniisual properties: high T. superconductors, heavy fermion compounds,
diluted magnetic semiconductors etc. Contrary to the simple metals, where the funda-
mentals very well known and the electrons can be represented in a way such that they
" weakly interact with each other(c.f. [13]), in these materials the electrons interact strongly
and moreover their spectra are complicated, i.e. have many branches etc. This gives rise
to interesting phenomena such as magnetism, metal‘msulator transition in oxides, heavy"
fermions etc., but the understanding of what is going on is in many cases only partial
if exist at all Therefore the theoretical studies of the Highly Correlated Electron Sys-
tems (HCS) are very important and actual.”A principle importance of of these studies is
concerned with a fundamental problem of electronic solid state theory, namely with the:
tendency of 3d electrons in TMC and 4f electrons in rare-earth metal compounds (REC)
and alloys to exhibit both localized and delocalized behaviour. The interesting electronic
and magnetic properties of these substances are intimately related to this dual behaviour
of electrons. In spite of experimental and theoretical achievements [1] - [6], still it remains -
much to'be understood concerning such systems. Recent theoretical investigations of HCS
have brought forth significant variety of the approaches which are trying to solve these
controversial problems. It seems appropriate to point.out that a number of perturbation-
theory or mean-field theory approaches which have been proposed in the past few years,
are in fact questionable or inadequate. In order to match such a trend we need to develop
a systematic theory of the Highly Correlated Systems, to describe from the first principles
of the condensed matter theory and statistical mechanics the physical properties of this
class of the materials. In the present paper we will present the approach which allows one
to describe completely the quasi-particle spectra with damping in a very natural way. This
approach has been suggested as essential for various many-body systems and we believe
that it bear the real physics of Highly Correlated Systems [14],-[15]. The essence of our
consideration of the dynamical properties of many-body system with strong interaction
is related closely with the field theoretical approach and use the advantage of the Green’s
functions language and the Dyson equation. It is possible to say that our method tend to
emphasize the fundamental and central role of the Dyson equation for the smgle-partlcle
dynamics of the many-body systems at finite temperature.
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Just this point differ our IGF approach from the complimentary many-body approaclllv
which is based on the moment expansion for the spectral functions. It was developed in
a very detail by W.Nolting [16] - [20].

2. Irreducible Green’s Functions Method

In this Section, we will discuss briefly the novel nonpérturbative approach for description
of the many-body dynamics of the HCES. At this point it is worthwhile to underline that

it is essential to apply an adequate method in order to solve a concrete physical problem; -

the final solution should contain a correct physical reasoning in a most natural way. The
list_of many-body techniques that have been applied to strongly correlated systems is
extensive. The problem of adequate description of ,many-body dynamics for the case of
very strong Coulomb correlations has been explicitly raised by Anderson, who put the

direct question: “... whether a real many-body theory would give answers radically dif- .

ferent from the Hartree-Fock results?” [21] (c.f. [22]). The formulation of the Anderson
model[21] and closely related Hubbard model [23], [24] dates really a better understand-
ing of the electronic correlations in solids, especially if the relevant electrons are modelled
better by tight-binding approximation [25),[26]. Both of the models, Anderson and Hub-
bard, are often referred to as simplest models of magnetic metals and alloys. This naive
perception contradicts the enormous amount of papers which has been publishing during
the last decades and devoted to attacking the Anderson/Hubbard model by many refined
theoretical techniques. As is well known now, the simplicity of the Anderson/Hubbard
model manifest itself in the dynamics of a two-particle scattering. Nevertheless, as to
the true many-body dynamics, there is still no simple and compact description. In this
paper it will be attempted to justify the: hse of a novel Irreducible Green’s Functions
(IGF) for the interpolation solution of the single-band Hubbard model and other basic
solid state models as s-f model [27], [28], Anderson model [29],[30], Heisenberg antifer-

tomagnet [31] and strong electron-phonon interaction model in modified tight-binding

approximatiom(MTBA) for normal and superconducting metals [32] and alloys [33], [34].
A number of other approaches has been proposed and the our approach is in many re-
spect an additional and incorporate the logic of development of the many-body techniques.
The considerable progress in studying the spectra of elementary excitations and thermo-
dynamic properties of many-body systems has been for most part due to the development
of the temperature dependent Green’s Functions methods. We have developed the help-
ful reformulation of the two-time GFs method which is especially adjusted [35] for the
correlated fermion systems on a lattice. The very important concept of the whole method
are the Generalized Mean Fields. These GMFs have a complicated structure for the
strongly correlated case and are not reduced to the functional of the mean densities of
the electrons, when we calculate excitations spectra at finite temperature. To clarify the
foregoing, let us consider the retarded GF of the form

G7 =<< A(t), B(t'") >>= —i6(t — t') < [A({t) B(¥')}, >,n = 1. (1)

As an introduction of the concept of IGFs let us describe the main ideas of this approach
in a symbolic form. To calculate the retarded GF G(t — ') let us write down the equation
of motion for it:

z - SF

wG(w) =< [4,A%], > + << [4, H]- | At >>,. (2)-

The essence of the method is as follows [14]. It is based on the notion of the “IRRE-
DUCIBLE?” parts of GFs (or the irreducible parts of the operators, out of which the GF
is constructed) in term of which it is possible, without recourse to a truncation of the
hierarchy of equations for the GF's, to write down the exact Dyson equation and to obtain
an exact analytical representation for the self-energy operator. By definition we introduce
the irreducible part (ir) of the GF

T << [AH]-|AT >>=<< [A, H]- — 24|A* >> . (3)
The unknown constant z is defined by the condition (or constraint)
< [[4,H]Z,A¥], >=0 (4)

From the condition (4) one can find:

_<[AH, A% > _ M

<[AA%],> M )

Here My and M, are the zeroth and first order moments of the spectral density. Therefore,
irreducible GF (3) are defined so that it cannot be reduced to the lower-order ones by any
kind of decoupling. It is worthy to note that the irreducible correlation functions are well
known in statistical mechanics. In the diagrammatic approach the irreducible vertices are
defined as the graphs that do not contain inner parts connected by the G%-line.. With the
aid of the definition (3) these concepts are translating into the language of retarded and -
advanced GFs. This procedure extract all relevant (for the problem under consideration)
mean field contributions and puts them into the generalized mean-field GF, which here
are defined as A A

ez (©

To ca.lculate the IGF << [A, H]-(t), A*(#') >> in (2), we have to write the equation
of motion after differentiation with respect to the second time variable #’. The condition
(4) remove the inhomogeneous term from this equation and is the very crucial point of
the whole approach. If one introduces an irreducible part for the right-hand side operator
as discussed above for the “left” operator, the equation of motlon (2) can be exactly
rewritten in the following form

G(w) =

G =G+ G°PG°. )
The scattering operator P is given by
P = (M) << [A, H-|[AY, H]- >>" (M)~ (8)

The structure of the equation (7) enables us to determine the self-energy operator M, in
complete analogy with the diagram technique

P=M+MGP. 9)

From the definition (9) it follows that we can say that the self-energy operator M is defined
as a proper (in diagrammatic language “connected”) part of the scattering operator M =



(P)?. As a result, we obtain the exact Dyson equation for the thermodynamic two-time
Green’s Functions:

G =G°+G°MG, (10)

which has well known formal solution of the form
G =[G - M.

Thus, by introducing irreducible parts of GF (or the irreducible parts of the operators, out
of which the GF is constructed) the equation of motion (2) for the GF can be exactly (but
using constraint (4)) transformed into Dyson equation for the two-time thermal GF. This
is very remarkable result, which deserve the underlining, because of the traditional form of
the GF method did not included namely this point. The projection operator technique [36]
has essentially the same philosophy, but with using the constraint (4) in our approach we
emphasize the fundamental and central role of the Dyson equation for the calculation of

the single-particle properties of the many-body systems. It is important to note, that for’

the retarded and advanced GFs the notion of the proper part is symbolic in nature [14].
However, because of the identical form of the equations for the GFs for all three types
(advanced, retarded and causal), we can convert in each stage of calculations to causal GFs
and, thereby, confirm the substantiated nature of definition (9)! We therefore should speak
of an analog of the Dyson equation. Hereafter we will drop this stipulation, since it will not
cause any misunderstanding. It should be emphasized that scheme presented above give
just an general idea of the IGF method. The specific method of introducing IGFs depends
on the form of operator A, the type of the Hamiltonian and the conditions of the problem:
The' general philosophy of the IGF method lies in the separation and identification of
elastic scattering effects and inelastic ones. This last point is quite often underestimated
and both effects are mixed. However, as far as the right definition of quasiparticle damping
is concerned, the separation of elastic and inelastic scattering processes is believed to be
crucially important for the many-body systems with complicated spectrum and strong
interaction. Recent paper [37] emphasizes especially that the anomalous damping of
electrons (or holes) distinguishes cuprate superconductors from ordinary metals. From a
technical point of view the elastic (GMF) renormalizations can exhibit a quite non-trivial
structure.  To obtain this structure correctly, one must construct the full GF from the
complete algebra of the relevant operators and develop a special projection procedure
for higher-order GF in accordance with a given algebra. The Hubbard model is a very
suitable tool for the applying of this approach [35],[38].

3  Hubbard Model

The model Hamiltonian which is usually referred to as Hubbard Hamiltonian
H= Zt'JawaJd + U/2ann|-a (11)
ijo

includes the intraatomic Coulomb repulsion U and the one-electron hopping energy ;.
The electron correlation forces electrons to localize in the atomic orbitals, which are
modelled here by the complete and orthogonal set of the Wannier wave functions [¢(F —
R;)). On the other hand, the kinetic energy is reduced when electrons are delocalized. The
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main difficulty of the right solution of the Hubbard model is the necessity to taking into
account of the both these effects simultaneously. Thus, the Hamiltonian (11) is specified
by two parameter: U and effective electron bandwidth

A= (NS )
3]
The band energy of Bloch electrons (k) is defined as follows
t.'j = N_l ZC(I-C.j exp[zl-c'(l_i. - R,‘],
E

where the N is the number of the lattice sites. It is convenient to count the energy from
the center of gravity of the band, i.e. #;; = Y, (k) = 0. The effective electron bandwidth
A and Coulomb intrasite integral U define completely the different regimes in 3 dimension
depending on parameter v = A/U. It is usually a rather difficult task to find interpolation
solution for the dynamical properties of the Hubbard model. To solve this problem with
a reasonably accuracy and describe correctly an interpolating solution from “band” limit
(v > 1) to “atomic” limit (v — 0) one need ‘more sophisticated approach than usual
procedures which have been developed for description of the interacting electron-gas-
problem. We evidently have to to improve the early Hubbard’s theory taking account
of variety of possible regimes for the model depending on electronic density, temperature
and values of 4. The single-electron GF

—

Gijo(w) =<< ajsla}, >>= N~ ZG (F,w) exp|—ik(R; — R; s (12)

which has been calculated by Hubbard [23], [39], has the characteristic two-pole functional
structure

Go(k,w) = [F(w) = e(k)] ™! (13)
where

w—(n},E_+ n-aE+)

(w—E4y —nZ,A)(w-—-E_ —nt /\) —nt nI N
and] is the certain function which depends on parameters of t.lxe Hamlltonian. If Xis
small (A — 0) then expression (14) take the form:

Fil(w) = (14)

n_ nt

ntcd ~a

o E —nt W E, —nn

which correspond to the two shifted subbands with the gap
w—wy= (Ey = E.)+ (n2, —nt,)A=U+ A2t
Herent =nandn~ =1—n; E, =U, E_ = 0. If X is very big then we obtain

A 1
[(w=E NI, +(w=E)nt, )N w—(t,E, —nl E.)

Fl(w) =

L4

This latter solution correspond to the single band, centered at the energy w =~ n?,U.
The two- pole functional structure of the single-particle GF is very easy to understand
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_within formalism which describe the motion of electrons in binary alloys [39], [40]. If one
introduce the two types of the scattering potentials ¢4 ~ (w ~ E+)7! then the two kinds

of the t-matrix T, and T_ appears which satisfy the following system of equations:

T+ = t+ + t+Gg_+T+ + t+Gg___T_

T_=t +t. G T +t.G,T,,

where G is the bare propa i i i
¢ gator between the sites with the energies £.. Th i
of this system has the following form ' oo s ® solution

T, = ty + .Gty _
(1 -G -G ) - GGty
t2' + G .

Gy R TR e e 1o

Thus, BY comparing this function;xl two-pole struct 3 « ”
solution [39] pole structure and well-known “Hubbard HI.

Bo(w) = w— Fy(w)

it is-possible to identify the “scatterin corrections” and “ deni
tomsh I the folomces o g ns” and “resonance broadening correc-
Fy(w) = ww—U) = (w- Un_,)As(w)
w=Ull-n_)-A4,(w)

As(w) = Yo (w) + Yo, (w) = Y2, (U ~ w)

Yo = Fo(w) = G5 (); Goo () = N7' S Gy (w)
k

If we put A,(w) = 0 we immediately obtain the “Hubbard I” solution [23]. The “al-
loy analogy” approximation correspond to A,(w) = ¥,(w). Note, that the‘ “Hubbard
III” self-energy operator Zo(w) is local, i.e. do not depend on qllasimomentum The
anotfler drawback of this solution is very inconvenient functional representation .of the
elastic and inelastic scattering processes. The conoeptually new approach to the theor

of very strong but finite electron correlation for Hubbard model has been proposed bz
Roth (41]. She clarified microscopically the origination of -the two-pole solution of the
smgle:-}?article GF, what was the very unusual fact from the point of view of the standard
Fermi-liquid approach, showing that the naive one-electron approximation of the band
structure calculations is not valid for the description of the electron correlations in HCS

Thl.ls t!1e use of sophisticated many-body technique is required for the calculation of tht;
excxtatlo? spectra at finite temperature. This last point should be underlined, because
of the suitable modification of the Density Functional Approximation [42], [43],[’44] could
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give the reasonable description of the ground-state properties of HCS. We shall show
here, following the papers [35),[38) that the use of the IGF method permit to improve
substantially both solutions, Hubbard’s and Roth’s, by defining the correct Generalized
Mean Fields for the Hubbard model. ‘ ’ .

4 Hubbard Model. Weak Correlation

The concept of the GMFs and the relevant algebra of operators from which GFs are
constructed are the central ones to our treatment of electron correlation in solids. It will
be convenient (and much more shorter) to discuss these concepts for weakly and strongly
correlated cases separately. For the first time we must to construct the suitable state
vector space of the many-body system [45]. The fundamental assumption implies that
the the states of a'system of interacting particles can be expanded in terms of the states
of non-interacting particles [45]. This concept originate in perturbation theory and finds
support for weakly interacting many-particle systems(c.f. [5]). For the strongly correlated
case this approach needs the the suitable reformulation (cf. [46]) and namely in this point
the right definition of the GMF's is vital. Let us consider the weakly correlated Hubbard
model (11). In many respect this case is similar to the ordinary interacting electron gas
but with very local, singular interaction: It will be shown below that the usual creation
a}, and annihilation a;, second quantized operators with the properties

L af v = ue 00 = ¢

0¥ = 00,47 = 0,(i # )
are suitable variables for the description of the considering systems. Here ¥® and ¥ are
the vacuum and single-particle states respectively. The question now is how to describe our
system in terms of the quasiparticles. For a translationally invariant system, to describe
the low-lying excitations of the system in terms of quasiparticles [45], one has to choose
eigenstates such that they all correspond to definite momentum. For the single-band
Hubbard model (11) the exact transformation reads

ag, = N7/? Zexp(—izﬁ-')a-'a
1

Note, that for degenerate bands model the more general transformation is necessary. Then
the Hubbard Hamiltonian (11) in the Bloch vector state space are given by

H= Zc(k)ataaka +U/2N Za;'+,_qaa,,,a:_aa,_a (16)

ko . pgrs
If the interaction is weak, the algebra of the relevant operators is very simple: it is an
algebra of the non-interacting fermion system (axs, @f,, 74, = a}f ax,). For the calculation
of the electronic quasiparticle spectrum of the Hubbard model in this limit let us consider
the single-electron GF, which are defined as '

Grolt — t') =<< agoral, >>= —il(t — ') < [aso(t), 0}, ()4 >=
400

1/2n dw exp(—iwt) Gy, (w) =
+00 +00 Y I
yor [ dwexp(~iwt)l/2r /_ L (exp(Be) + 1) Ase(w) (17)
7



where B = (kT')-, and Ay, (w) is the spectral intensity. The equation of motion for the
Fourier transform of the GF Gy, (w) has the form

(W= €)Gho (W) =1+ U/N Y << Gipotty,_,a0-slaf, >>, (18)
Pq

Let us introduce, by definition, an “irreducible” GF in the following way

<< ak+poap+q—aap+q—aaq-0|ato >>,=
+
<< BhipobpigoGg—olat, >>, —bp0 < Ng-0 > Gio (19)

The irreducible (ir) GF in (19) is defined in such a way that it cannot be reduced to GF
of lower order with respect to the number of fermion operators by an arbitrary pairing of
ol;:erators or, in another words, by any kind of decoupling. Substituting (19) in (18) we
obtain

Gro(w) = GieF (@) + GHF(W)UIN 37 << aktpottyy_y0qalaf, >>.  (20)

rq

Here we have introduced the notations

Gie' () = (w= e(ko)) N e(ko) = (k) +U/N " < n, , > (21)

In this paper; for brevity, we confine ourself by considering the paramagnetic solutions

only, ie. < n, >=< n_, >. In order to calculate the higher-order GF on the r.h.s. of
(20) we have to write the equation of motion obtained by means of differentiation with
respect to the second variable ¢'. ‘Constraint (4) allows us to remove the inhomogeneous
term in this equation for £ << A(t),daf,(t') >>.

For the Fourier components, this is written in the form

(w—e(k)" << Alaf, >>,=<" [4,af,]s > +
UINY 7" << Ala}_arpemoOhbsr >>0. (22)
L]

The anticommutator in (22) is calculated on the basis of the definition of the irreducible
part

< ["(ak+p0“:+q—oaq—0)a af,]4 >=
+
< [ak+P¢7ap+q—aall'V— < a;'_,_q_aaq_, > Qkipoy a:o]"’ >=0 (23)

If one introduces irreducible part for the r.h.s. operators by analogy with expression (19),
the equation of motion (20) can be exactly rewritten in the form (7)

Gio(w) = Gi" () + GRF () Pio () GYEF () (24)

where we have introduced the following notation for the operator P (8)

B U2 . .
Pko(w) = J_V_g Z D;,’:,(p, QIrasv ) w) =
' pgrs
2
- v E-‘r <<a + + + ir
N2 k4poGpiq_oGq—c Iar—oa"+5'0ak+ao >>, (25)
pars

To define the self-energy operator according to the (9) one must separate the “proper”
part by the following way

: D;:';(pa q|r,s;w) = ;::,(p, q|r,s;w)
U2 'Ir» ir g !
+55 2 Li(palr's s w)GKS @)D, (¢ ¢/l 5) (26)

rl,lplql
Here LY, (p,q|r,s;w) is the “proper” part of the GF DY (p,q|r,s;w), which in accor-
dance with the definition (19) cannot be reduced to the lower-order one by any type of
decoupling. Using (9) we find )

Gro = GHF(w) + GHF ()M, (k,w)Gi o (w) (27)

Equation (27) is the Dyson equation for the single-particle two-time thermal GF. Accord-
ing to (10) it has the formal solution

Gro(w) = [w— e(ko) — M, (k, )] (28)

where the self-energy operator M is given by

U? ;
Mo(k3w) = Ni E le:v(p*‘”r‘s“"') =
pars .
2
U ir + [ + gt > (29)
N? << ak+P"ap+q-aall"" Qpts0CrgCris—a . -

pyrs

The latter expression (29) is an exact representation (no decoupling has been made till
now) for the self-energy in terms of higher-order GFs up to second order in U (for the
consideration of the higher order equations of motion see Ref. [15]). Thus, in contrast
to the standard equation-of-motion approach the determination of the full GF has been
reduced to the calculation of the mean-field GF GM¥ and the self-energy operator A.
The main reason for this method of calculation is that the decoupling is only introduced
into self-energy operator, as it will shown in a detail below. The formal solution of the
Dyson equation (28) define the right reference frame for the formation of the quasipar-
ticle spectrum due to the its own (formal solution) correct functional structure. In the
standard equation-of-motion approach such a structure could be lost by using decoupling
approximations before arriving to the correct functional structure of the formal solution
of the Dyson equation. This is a crucial point of the IGF method. The energies of the
electronic states in the.mean-field approximation are given by the poles of GMF (21). Now
let us consider the damping effects and finite lifetimes. To find an explicit expression for
self-energy M (29), we have to evaluate approximately the higher-order GF in (21). It
will be shown below that the IGF method can be used to derive the damping in a self-
consistent way simply and more generally than other formulations.: First, it is convenient
to write down the GF'in (29) in terms of correlation functions by using the well-known
spectral theorem [45):

o+ _
<< ak+P0a:+q—oaq-"lak+war—aa"+=-" >,>“'_

1 too du’ +o0 )
(exp(pu) +1) [ explin
-0

o J w—
< a0 (1)a]_ o (V)arsamo()aripeatyy o q-a > (30)

9



Further insight is gained if we select the suitable relevant “trial” approximation for the
correlation function on the r.h.s. of (30). In this paper we show that the earlier for-
mulations, based on the decoupling or/and diagrammatic methods can be arrive at from
our technique but in a self- consistent way. Clearly that the choice of the relevant trial
approximation for correlation function in {30) can be done in many ways. For example,
the reasonable and workable one may be the following “pair approximation”, which is
especially good for the low density of the quasiparticles: '

< a:+aa(t)at—a(t)a"+l-a(t)ak+paa:+q_,aq_g >"r%
< a:ﬂa(t)akﬂ,, >< at ,()ag-s >< apyq-o(t)at,,_, >

6k+a,k+p5nq‘sr+:.p+q | (31)

Using (30) -and (31) in (29) we obtain the approximate expression for the self-energy op-
erator in a self-consistent form (the self-consistency means that we express approximately
the self-energy operator in terms of the initial GF and, in principle, one can obtain the
required solution by suitable iteration procedure):

U2 dw,dwzdws
Ma(ksw) - _]v; ;/‘m

[n(w2)n(ws) + (w1 )(1 = n(w;) = n(ws))]gp+e—o (w1 )gk4ps (W2)gg-o (ws) (32)

where we have used the notations
1 ' .
ko (W) = -—;r-ImG,,,(w + ig);n(w) = [exp(Bw) + 1]}

The equations (28) and (32) form a closed self-consistent system of equations for the single-
electron GF for the Hubbard model, but for weakly. correlated limit only. In principle, we
may use, on the r.h.s. of (32) any workable first iteration-step form of the GF and find a
solution by repeated iteration. It is most convenient to choose as the first iteration step
the following simple one-pole approximation: '

Gro(w) = §(w — (ko)) (33)

Then, using (33) in (32), we get for the self-energy an explicit and simple expression

U? Nptrg—o(l = Nikype — Ngeo) + NikppoTig-
M, (k, 2 ptg—o +po i +potq-o
() = 3 ) o 40) =<tk 4 o) e(a0) (34

The numerical calculations of the typical behaviour of real and imaginary parts of the
self-energy (34) have been performed [47] for the model density. of. states of the FCC
lattice. These calculations and many other [48] - [50] prove that the conventional one-
electron approximation of the band theory is not always a sufficiently good approximation
for transition metals like nickel. The simple formula (32) derived above for the self-
energy operator are typical in showing the role of correlation effects in the formation of
quasiparticle spectrum of the Hubbard model. It is instructive to examine other types of
the possible trial solutions for the six-operator correlation function in the eqn.(30). The
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approximation which we propose now reflects the interference between the one-particle
branch of the spectrum and the collective one:

< @ (Do ()00 (D htpr O g g Bomo >
< a:+.a(i)ak+w >< a:’_ai(t)a,.“-_',(t)a:ﬂ_,aq_a >+
< ar+--a(t)“:+q-a‘.>< at 4,0 (t)at s ()artpoaq—s > + o
<l (t)ag-s >< atﬂa(t)ar+l—0(t)a’=+r°a:+_q-b > (35)

It is visible now that the three contributions in this trial solution describe the self-energy

corrections that take into account the collective motions of electron density, the spin den-

sity and the density of “doubles™, respectively. The essential feature of this approxima-

tion is connected with the fact that correct calculation of the single-electron quasiparticle

spectra with damping require the suitable incorporating of the-influence of the collective

degrees of freedom on the single-particle ones. The most interesting contribution is re-

lated with the spin degrees of freedom because of correlated system are the magnetic or

have very well developed magnetic fluctuations. We follows the above steps and ca.lcul:?te
the self-energy operator (29) as o '

‘ 2 ptoo _

MyRw) = Lo 1 dioydy LN} = len)

N Jw

Zexp[-—iié(ﬁ; - ﬁj)](—-:;lm << SE|ISF >>u,)

1]

Ww—w — Wy

(—-%Im << ai.la}:, >?u,) (:{6}
where the folléyving notations have béen used: ' »
St =afai; S = afiait
N(w) = [exp(w) = 1]
It is possible to rewrite (37) in a more conveniem way now
M, (k,w) = %1; /}zu'(cot ‘12?:7,1' +tan %
| (< Limy™(h - g0~ wg@)). (3

The equations (28) and (37) form again another self-consistent system of equations for the
single-particle GF of the Hubbard model. Note, that both expressions for the self-energy -
depend on quasimomentum; in other words the approximate procedure do not broke the
momentum conservation law. It is important, because of the poles w(k, d) = e(k, o) —iI'(k)
of the GF (28) are determined by the equation R '

w — e(ka) — Re[M, (k,w)] = ilm[M,('k,w):] =0 (38)

It may be shown quite generally that the Luttinger’s definition of the true Fermi surface [7)
is valid in the framework of our theory. It is worthy to note that for electrons in a crystal
where there is a band index, as well as quasimomentum, the definition of the Fermi surface



are a little more complicated then the single-band one. Before the single particle energies
and Fermi surface are known, one must carry out a diagonalization in the band index. In
order to give a complete picture of the GMFs let us discuss briefly the interesting question
of the correct definition of the so-called unrestricted Hartree-Fock approximatior (UHFA).
Recently, this approximation has been applied for the single-band Hubbard model (11)
for the calculation of the density of states for CuO; clusters [51]. The following definition
of UHFA has been used:

Nicolis =< Mimg > Gip— < a7, 80 > iy (39)
Thus, in addition. to the standard HF term, the new, the so-called “spin-flip” terms,
are retained. This example clearly show that the nature of the mean-fields follows from
the essence of the problem and should be defined in a proper way. It is clear, however,
that the definition (39) broke the rotational symmetry of the Hubbard Hamiltonian. For

the single- band Hubbard Hamiltonian the averaging < af ,a;, >= 0 because of the .

rotational symmetry of the Hubbard model. So, in Ref. [51] the effective Hamiltonian

H_.g has been defined. We have analysed in detail the proper definition of the irreducible

GFs which include the “spin-flip” terms. The definition (19) must be modified in the
following way: ' .

ir ! + +
<< Bhtpobptg-oQptq—o Ui, >>0=<< Qktpolppq_oGq-o >>uw —

650 < Ngeo > Gro— < Brypoliy,_, ><< ag_qal, >>, (40)

From this definition follows that such a type of introduction of the IGF broaden the initial
algebra of the operator and initial set of the GFs. That means that “actual” algebra of

the operators must include the spin-flip terms at the beginning, namely: (a,,, al, nig,

a} ai—,). The corresponding-initial GF will have the form

<< a.,]am >> << a.,]a >>
<< ailaf, >> << a,_,|a . >>

In fact, this approximation has been investigated earlier by Kishore and Joshi [52].
They clearly pointed out that they assumed that the system is magnetized in z direction
instead of conventional z axis.

5 Hubbard Model. Strong Correlation

When studying the electronic quasiparticle spectrum of the strongly correlated systems,
one must take care of at least three facts of major importance:

(i) The ground state is reconstructed radically as compared with the weakly correlated
case. Namely this fact lead to the necessity of the redefinition of the single-particle states.
Due to the strong correlation, the initial algebra of the operators-are transformed into
new algebra of the complicated operators. In principle, in terms of the new operators the
initial Hamiltonian may be rewritten as bilinear form and the generalized Wick theorem
can be formulated [53), [54]. It is very important to underline, that the transformation to
the new algebra of relevant operators reflect some important internal symmetries of the
problem and nowadays this way of thinking are formulating in elegant and very powerful
technique of the classification of the integrable models [55], [56] and exactly soluble models
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(see also[57]). ‘
(ii) The single-electron GF, which descrrbe the dynamical properties, must have two-pole
functional structure, giving in-the atomic limit, when hoppmg mtegral tends to zero, the

exact two-level atomic solution.’ .

(ii1)) The GMF's have, in general case, a very non- trrvra] structure The GMFs functional
cannot be expressed in terms of the functional of the mean particles density.

In this section we consider large, but finite, Coulomb repulsion. The inspiring ideas of
papers [39], [46], [54] where the problem of the relevant algebra of the operators has been
considered, are central to our consideration here. Following this approach we consider the
new set of relevant operators:

dias = n{_, 850, (a = i)y ;t = Nigy Ny = (1 —ni);

Z nia = 1 nwnw = 6aﬁnw| Z dmo’ = Gio (‘41)

The new operators dies and d;-ﬂa have complicated commutation rules, namely

" [diaos dipo)+ = ijbagni_,

The convenience of the new operators follows immediately if one write down the equation
of motion for them b '

[dias, H]- = Eadiog + 3 L (notso + aa.nb.,_n)
ij . .
bijo = (a}ajo — af”a,,,) (42)

It is possible to mterpret [23], [39] both contribution in this equat)on as alloy (maloyy
and resonance broadening correction. Let us consider the single-particle GF (12) in the
Wannier basis. Using the new operator algebra it is possible to rewrite identically GF
(12) in the following way

Gijo ( Z << diao|d}py >>u= Z F.{;f (13)

af

The equation of motion for the auxiliary matrix GF

.F2P

ijo

() = << diyold} o >>, << diz|dl, >>“,) ‘ . (44)
<< d.-,ld,+, >>, <<di_ ,ld, . D>

have the following form

(EF;ja(w) _ I&'j)aﬁ = Et” << n?__'aa,,-, + “ainb.‘l-gldﬁ;(, >>0 (45)
ol

Where the following matrix notations have been used

E=((“’_0E+) (w_OE_)‘);I;(”'S" "gn)._ | (46)
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In accordance with the general method of Section 2 we introduce by definition the matrix
IGF:

i (w) = (<< Zuld}, fro >>0 << Zpld}, ,>>u> _

ihj << Zald},, >>u << Znld, >>.
A‘*I-a o - B : o’ o'— ‘
S w1 (2 e i) (7

Here the notations have been used:
— R . '
Zy = Z12 = 0,081 + Gigbu_o; Za1 = Zp = n_ a1 — aigby_o

It is worth to underline that the definition (47) are in heart of the whole our approach to
description of the strong correlation in the Hubbard model. The coefficients A and B are
determined from the constraint (4), namely '

< [(DtlJ afls Jﬂa]+ > 0 ' ] (48)
After some algebra we obtain from (48) (i # ])

[Aios = a(< d,,,_,a,_, >+ <dip_oal, >)(n nf, )

[BI']OI[’ - [< nl-—a -0 > +Q,B(< awax—aal"aala > =

< ai,ai o0} af >)(n?,)7! (49)

As previously, we introduce now the GMF GF FY,, in analogy with (6), however, as it is
clear from (47), the actual definition of the GMF GF is very non-trivial. After the Fourier

transformation we get
it F2N 1 nt,b nl,d
(Fi’;f ) = @ =a\nte nla | (50)
The coefficients a, b, ¢, d are equal to '
=(w—Ee—N7"Y_ e(p)(A**(—p) — B**(p~q)))
P
€ _ y-1 + +
1= N Do) (AT (=p) = B¥(p - q)) (51)
P

Then, using the definition (43) we find the final expression for the GMF GF
LE- +nIaE+) A(k)

w — (nZ

MF
o (ko) = e (0 = B =m0 (R)) — o oatia®) 0D
Here we have introduced the fo]lowmg notations: o
= £ S AR B k) @
AT Ze(p (A= (=p) ~ B4 (p— &) (e

MkE)=(n -a) (A1 + A3) + (n5,) (A2 + A9)
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From the equation (52) it is obvious that our two-pole solution is more general than “Hub-
bard III” [39] and Roth[41] solutions. Our solution has the correct non-local structure,
taking into account the non-diagonal scattering matrix elements more accurately. Those
matrix elements describe the virtual “recombination” processes and reflect the extremely.
complicated structure of the single-particle state, which virtually include a great number
of intermediate scattering processes (c.f. interesting analysis in Ref. [58]).

The spectrum of the mean-field quasiparticle excitations follows from the poles of the GF
(52) and consist of two branches

w;(k) =1/2{(Ey —E_-+a1+ b)) V(Ey + E_ —a; — blr)" — 4cd) ‘(55)

where a;(b) = w — E; — a(b). Thus the Spectral Intensity Az, (w) of the GF (52) consist
of two peaks, which separated by the distance ‘

—= VU= —hF -~ U( - )+0(7) (56)

For the deeper insight into the functional struc_ture of the solution (52) and to coxﬁpa.re
with the other solutions we rewrite the (50) in the following form :

( a db“‘c) -1 ‘;l(_»_f__\_d&:i)—l N |
(w) <b(T ¥ a\nZ n=, ) . (57)

b:‘c)—x ("_b_ _ gl»_;_ig)—l
from which we obtain for the GMF (k,w)

nt,(1+cb™) | nI,(1+da”?)

MF _
‘G" (kyw) = a—dblc b—ca-ld
- +
n n
- d - 5
w—E_.— n_,W,,(k) w—Ey —n= , Wt (k) (58)
where
nt s, WE (k) = N Zt;,- exp(—ik(R; — R;))
((< al-a iaJ‘U >+< a'-ﬂnwaJ-a >)+
(< nE,nE, >+ <aiaf 6500}, > — < a.,a,_,a;‘_aa; >)) (59)

are the shifts for the upper and lower splitted subbands due to the elastic scattering of
the carriers in the Generalized Mean Field. Namely W* are the functionals of the GMF.
The most important feature of the present solution of the strongly correlated Hubbard
model is a very nontrivial structure of the mean-field renormalizations (59), which is
crucial ‘to understanding the physics of strongly correlated systems. It is important to
emphasize that namely this complicated form of the GMF are only relevant to the essence
of the physics under consideration. The attempts to reduce the functional of the GMF
to the simpler functional of the average density of electrons are incorrect namely from
the point of view of the real nature of the physics of HCS. This physics clearly show that
the mean-field renormalizations cannot be expressed as a functional of the electron mean
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density. To explain this statement let us derive the “Hubbard I" solution (23] from our
GMF solution (52). If we approximate (59) as :

¥, nZ,W(k) = N7 tizexp(—ik(Ri — R;)) < nf n¥, > (60)

iJ
and makes the additional approximation, namely

< njoonioy >R 12,
then solution (52) goes over into the “Hubbard I” solution

Neo 1—n_,

U= (B @ — (k)1 —n_)

Ga(kyw) = — (61)

This solution, as it is well known, is unrealistic from the many points of view.

As regards to our-solution (52), the second important aspect is that the parameters
Xi(k) do not depend on frequency, i.e. depends essentially on the elastic scattering pro-
cesses. Such a dependence on frequency arises due to inelastic scattering processes which
are contained in our self-energy operator and we proceed now with the ‘derivation of the

explicit expression for it.

To calculate the high-order GF on the r.h.s. of (45) we should use the second time variable
(t") differentiation of it again. If one introduces irreducible parts for the right-hand-side
operators by analogy with expression (47), the equation of motion (45) can be rewritten
exactly in the following form

Faow) = FL () + Foo (@0)Pro @)FL (@) (62)
Here the scattering operato} P (8) has the form '

Poo(w) = I tutm; << DD >>u] I (63)
im

In accordance with the definition (9) we write down the Dyson equation
F = F° + F°"MF (64)

The self-energy operator M is defined by Eq. (9). Let us note again that the self-energy
corrections, according to (10), contribute to the full GF as an additional terms. This is
an essential advantage in comparison with the “Hubbard III” solution and other two-pole
solutions. For the full GF we find, using the formal solution of Dyson equation .

1

n_,

Gully) = (e =t ME¥ () +

-0

(b—nZ, M (k,w))

b (@t M) + (et M ()

-0 RS .

[det (S, (@)™ = Mo (k,w))]™ (65)
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After some algebra we can rewrite this expression in the following form, which is essentially
new and, in a certain sense, are the central result of the present theory

G w_(n+E—+n_E+)—L

T (w—E; —nL)(w— E_ —nt L)) —n—ntL;L, (66)
where
+
Li(k,w) = Mi(k) = === M} (k,w);
- n-
Lak,w) = Mo(k) = =2 M7~ (k)i
L(k,w) = Xo(k) + 252 M~ (kw);
n—o’
+
La(k,w) = Ay(k) + ::*’ M7+ (kow):
L(k,w) = A(K) + 0¥, nZ, (M** + b T MY oMt - (67)

Thl:s., n;[w we have to find the explicit expréssions for the elemeﬁts of the self-energy
matrix M. To ]?roceed we should use the spectral theorem again, as in Eq. (30), to
express the GF in terms of correlation functions ’

) M:"B’(ktw) ~<< D:::ﬂ(t) i > (68)

. ) tlor
For the approximate calculati
For the p culation of the self-energy wg propose to use the following trial
ir 4 ’ I A ’ i
< DTH)DT >m< ah, (ta, >< 0t (Ong, >
. o+ a s
+ <@ (t)nd, >< n;_,(t)a, > +6 < b;j_,,(t)a,, >< a:-',,(f)n}‘__,, >
+ : : '
+8 < bni_. (i, >< a},(t)ar, > +a < a}, (air >< n.;-’_,,(f)b,-,_a >
+a < ah, (b ><ni_ (bac, >
+af < b} (tais ><al (Dbie >
+
+af < bmj_o,(t)bﬂ_,, >< ajt(t)a,',, > (ﬁg)
It - -« - . - >~ . -
is quite natural to interpret the contributions in this expression in terms of scattering,

respr.lgnce-bro.exdening and interference corrections of different types. For example, let us
consider the simplest approximation. For this aim we retain the first contribution in (69)

[IMI)o = /

J
o W — W

+o0 ’

(exp(A’) + 1)

teo d .
/ gexp(zw't)N ! Z exp(—ik(R; — RB;))tat .,

~-00 o
ijlm

/dwln(w,)exp(iw,t)gm,,(w,) (—%lml\’i‘;ﬂ(w, - w’)) . (70)

gq:at:or}s (70) and (64) are the self—consistent system of equations for the single-particle
reen’s function. For a simple estimation, for the calculation of the self-energy (70) it
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is possible to use any.initial relevant approximation of the two-pole structure. As an
example we take the expression (61). We then obtain :

(IMI)op 2 ) le(k ~ )P Ky?

q

| ."-v ) l1—-n_, - .
[w‘U—f(k—q)n_a‘+w—e(k—q)(1_n_,)] (1)

On the basis of the self-energy operator (71) we can explicitly find the energy shift and
damping due to inelastic scattering of the quasiparticles, which is a great advantage of
the present approach. It is clear. from the present consideration that for the systematic .
construction of the approximate solutions we need to calculate the collective correlation
functions of the electron density and spin density and the density of doubles, but this

problem must be considered separately.

6 Correlationé in Random Hubbard Model

In this chapter we shall apply IGF method for consideration of the electron-electron
correlations in ‘the presence of disorder to demonstrate the advantage of our approach.
The treatment of the electron motion in substitutionally disordered disordered A,B._.
transition metal alloys is based upon certain generalization of Hubbard model, including
random diagonal and off-diagonal elements caused by substitutional disorder in the binary
alloy. The electron-electron interaction play an important role for various aspects of
behaviour in alloys, e.g. in the weak localisation.in Ti-Al alloys{59] (for recent review
see [60]). There are certain aspects of the High-T. superconductivity where disorder
play a role and recently it have been discussed in papers[61], [62], where the distribution
of magnetic molecular fields has been. treated within the single-site Coherent Potrntial
Approximation(CPA) [63]. The CPA has been refined and developed in many papers (e.g.
(64], [65]) and-till now[66] are the most popular approximation for theoretical studying of
alloys. But the simultaneous effect-of disorder and electrorn- electron inelastic scattering
has been considered for some limited cases only[67),[68] and not within the self-consistent
scheme. Let us consider the Hubbard model Hamiltonian on a given configuration of alloy
(v . : '
H(u) - Hl(u) + ng) : L (72)

HY = Z eini, + Z tiia} aj,
' io

ijo

Hé") =3 Z Uinini—, : o (73)

where N

Contrary to the periodic model (11), the atomic level energy €, the hopping integrals ¢;}*
as well as the intraatomic Coulomb repulsion U} here are the random variables, which
take the values €, t*# and U*, respectively; the superscript v(u) refers to the atomic
species (v,u = A, B) located on site i(j). The nearest-neighbour hopping integrals are

included only. . v .
To unify the IGF method and CPA into completely self-consistent scheme let us consider
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;h;, szlﬁleelechron GF (17) G.-{-, in the Wannier representation for a given configuration
v). e corresponding equation of motion has the form(for brevity we shall omit the
superscript (v) where its presence is clear) ‘ '

- W—e) << ailal, S>0=6+ Y tin << anlal, >>,
n

Ui << nic,a5la}, >>, (74)

In dt,hti1 pre.sent paper, for brevity, we will confine ourselves by the weak correlation case
and the diagonal disorder only. The generalization for the case of strong correlation or

()ff-dia.gona.l diSOI del iS str a.l. i i i
ah ghtfol‘wald but its len th con de at
; i i i . 3 g S1 rations preclude us fl‘om

Using the definiti i : jon ¢
an algloy Zs z,nr:wl:n (3), we define the IGF for a given (fixed) configuration of atoms in

ir o ai et =
<< nisailal, >>=<< NiogGislal, >> — < n;_, ><< aislaf, >> (75)

This time, contrary to (19), because of lack of translational invariance we must take into

account the site dependeﬂce Of < Nigp >. Ihen we rewrite the equa-t]on Of IDOtlon 16 n
t—o ’ ( )

Z[(w -6 —-U; < Nico >)6.'j —vt,',.] << a,..,laf, >>,=

b + Us("<< Ni—saislal, >>,) (76)

In accor da.nce wlth the geﬂel a.l ﬂlethod Of y
SeCthﬂ 2 we ﬁnd theﬂ the D son equatio
( ) v q 0on fol‘

Gijo (w) = G () + Z Glone () Myang (10) G () (77)
The GMF GF GY;, and the self-energy operafor M ‘are defined as |
zm: Hing Gy () = 6
‘Pm.na = Mumns + E Mo G3, Pins
Himo = (w —&i = U; < :i—o >)im = tim

P,,,,w(w),= UM("T<< "m—oamol"n—oa:o >>Z)Un (78)

In ordt?r to calculate the self-energy operator M self-consistently we have to express it
a.ppro.xlmately. by the lower-order GFs. Employing the same pair approximation as (31)
(now in Wannier representation) and the same procedure of calculations we arrive at th

following expression for M for a given configuration (») : )

®) (o) = 1
M) = Unlnzts [ Rn,n,00)

ImGO)_, (@)ImGY)_, (wn) TG, (ws);
R= dwydoydws (1 - n{wi))n(ws)n(ws)

wtw —w; —ws n(wg+w3—w1)

(19)
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i j done for
i i tions just presented have been
entioned previously, all the calcula just p ne X0
> "f':nh::flf?gluration otP atoms in, alloy. All the quantlt.les in our theory (lG, aG:r,os C,opi<):
Zeglends on the whole configuration of the alloy. To o.btam a theory ?f a l:e:;x ;:n roscopic
sarrr)l le, we have to average over various configurations of atoms in the Te ﬁe,‘lce we.
conf?gu,rational averaging cannot be exactly rrlxax.ie f;))r a m:;r(;s;::ﬁl(; ns:rr;;) M lence we
itional approximation. It is obvious ha - . :
ixlrllus; lr:list(i)z;:.loo?nGa(xili!n::ly M }:)M {G]. If the process of taking configurational averaging
e fu ,
i G, than we have o .
is denoted by G, G G° 4 TONIT
. ey i
Few words are now appropriate for the description of general.posmblhtl&s. Tllle ‘;a};]cul:e;(;gi
F G° can be performed with the help of any relevant available schemei n 5 :kz
:a)vork for the sake of simplicity, we choose the single-site CPA[63], namely we
]

exp(ik(Rm — R,))

N o 80) .
Grno) = N L SRS (

. , ) . - d
’ : i f nearest neigbours of the site 0, and
=37 _ tuoexp(ikR,), z is the number o ‘ pe 0, ar
:-:lc;erecz(lgrentzr:)zzéntigl ¥?(w) is the solution of the CPA self—con51stepcy equatloné or
the A.B;_. these read

B (w) = 265 + (1 = 2)e ~ (€ — B)F(w, 5°)(ef — 2°);

Fo(0,5°) = G2 o (w) (81) -

’ i 5. To
Now, let us return to the calculation of the conﬁgur.atlonally averaged toti.ixrlmiznG !
perfc:rm the remaining averaging in the Dyson equation we use the approx

GOMG ~ G°MG

. . in use
The calculation of M requires further averaging of the product of matrices. We again
the prescription of the factorisability there, namely

. M = (UaU,) (ImG) (ImG) (ImG)

. . " 4 3 t .
However, the quantities U,,U, entering into M are averaged here according to
’ .

UnTn = Uz + (Us = Uz)ban
Uy = 2% +22(1 — 2)UnaUp + (1 — 2)*U} .
U, = zU2% + (1 — 2)U} (82)

The averaged value for the self-energy is

Mo (w) = Uz R(w1,wsz,w3) IMGnm—o(w1) ImGrmn—o (w2) IMGrins (w3) +
mno o
U - U,

2nt

6, /R(w1,wz,wg,)lmé,.m_,(w])Imémn_, (w2)ImG o (w3) (83)
] A . . th ,
The averaged quantities are periodic, so we can introduce the Fourier transform of them

i.e.

Monne (@) = N7 37 Mo(k, ) exp(ik( R — Fn)
k
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and similar formulae for ¢ and-G°. Performing the configurational averaging of Dyson
equation and Fourier transforming the resulting expressions according to the above rules,

we obtain :
Gro(w) = (w = €(k) = 5°(w) — M, (k,w))™! (84)
where
_ Sl ar A _
M (k) = 210 3 / R(w1, w2, wa)N TG,y (w0 ) Im G, ()
rg .
- S (U - U N
OatmGugpotn) + DB S el (85)
g

The simplest way to obtain the explicit solution for the self-energy M is to start with
suitable initial trial solution as it was done for the periodic case (33). For the disordered

system, it is reasonable to use as the first iteration approximation the so-called Virtual
Crystal Approximation(VCA):

-1
—ImG 74 (w + i€) ~ §(w - Ep)

where for the binary alloy Az By_; this approximation read

V=2zVAy(1-2)V5 E] =7 4 ¢(k)

s

& =ze4 + (1 ~ 2)e5,

Note, that the using of VCA here is by no means the solution of the correlation problem
in VCA. It is only the using the VCA for the parametrisation of the problem, to start with
VCA input parameters. After the integration of (83) the final result for the self-energy is

_ U? n(E;? 1 —n(E;7) — n(ES )+ n(EL, Wn(E7)
Molk,w) = g >0 === Wt E? —E;:p— R

pg P+e k+p .
(U, - Us) Z n(E ) — n(E;7) - (B, )] + 77(Ei"+p—g)n(Eq_a) (96)
e Pg w+ E;:v By - Efﬂ,-y ‘

It must be emphasized that the equations (84)
consistent description of inelastic electron-e
CPA. We take into account the randomn.
Hamiltonian but also in a self-
the self-energy operator.

- (85) give the general niicroscopic self-
lectron scattering in alloy in the spirit of the
ess not only through the parameters of the
consistent way through the configurational dependence of

7 Electron-Lattice Interaction and MTBA

In order to understand quantitatively the electrical, the
ties of metals and their allo

ys one needs a proper descri
too [32], [69]. A systematic, self-consistent simultaneot

rmal and superconducting proper-
ption an clectron-lattjce interaction
15 treatment of the electron-electron
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and electron-phonon interaction plays an important role in recent studies of strongly corre-

lated systems. It was argued from the different points of view that in order to understand

quantitatively the phenomenon of high-temperature superconductivity one needs a proper

involving of electron-phionon interaction, too (70]- [87]. A lot of theoretical searches for the

relevant mechanism of high temperature superconductivity deal with the strong electron-

phonon models. This mechanism is certainly valuable for bismuthate ceramics [88] and for

fullerens. Recently [89] a new family of quaternary intermetallic LuN i2B,C compounds
has been shown to display superconductivity with Tec = 16.6 K for LuNi;:B:C, which,
besides that studies of their physical properties are still in the early stages, suggest that
electron-phonon coupling is responsible for the superconductivity.

The natural approach for the description of superconductivity in such type of compounds
is MTBA [32], [69]. The papers [32], [33],[34] contain a self-consistent microscopic theory
of the normal and superconducting properties of transition metals and strongly disor-
dered binary alloys in the framework of Hubbard Model (11) and random Hubbard model
(73). It'is worthy to emphasize that in paper [34] a very detailed microscopic theory of
strong coupling superconductivity in highly disordered transition metals alloys has been
developed on the basis of IGF method within MTBA reformulated approach [33]. The
Eliashberg-type strong coupling equations for highly disordered alloys has been derived.
It was shown that the electron-phonon Spectral Function in alloy is modified strongly. An
interesting discussion [90], [91], [92] clarified many uncertainties in this important- issue

(c.£. (93} [97)).

8 Other Applications of the IGFs Method

GF method is related with the investigation of non-local

Another important application of
correlations and quasiparticle interactions in Anderson model [29], (30]. A comparative
ty and periodic Anderson

study of real-many body dynamics of single-impurity, two-impurit;
model, especially for strong but finite Coulomb correlation, when perturbation expansion
in U does not work (c.f. [98]) has permitted to characterize the true quasiparticle excita-
tions and the role of magnetic correlations. It was shown that the physics of two-impurity
Anderson model can be understood in terms of competition between of itinerant motion of
carriers and magnetic correlations of the RKKY nature. The correct functional two-pole
structure of the propagator has been found for the strongly correlated case. This issue is
still very controversial [99] and the additional efforts must be applied in this field.

The application of the IGF method to the theory of magnetic semiconductors was Very
succsessfull [27], [28]. As a remarkable results of our approach let me mention the fi-
nite temperature generalization of the Shastry-Mattis theory for magnetic polaron (28],
which clarified greatly the true nature of the carrier in magnetic semiconductors. There
are some analogy of the Kondo-lattice type of model in [27] with the Kondo-Heisenberg
model of copper oxides, however the physics are different. There is a dense system of
spins interacting with smaller concentration of holes in HTSC. The application of IGF
method to spin-fermion model [100] has been done by using the theory of Heisenberg

antiferromagnet [31] and allows one to consider carefully the true nature of the carriers
in CuO; planes.

And finally, the new interesting application of the IGF method for consideration of dy-
narnics of quasiparticles and dynamical conductivity of single electron resonant tunneling
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systems has been done recently i
) y in papers [101], [102] (c.f. [103]). Thi i
IGF method has much in common with the approach of pa;lner []1)04]. s reformulation of

9 Conclusions

In th ‘ ‘we hav |

ideasi fptlile:er:ap:perﬁwe have formulatt?d the theory of the correlation effects using the
dtas o) the :1 fl:hl.ln; eld tht.eory. for the interacting electron system on a lattice. The main
achieverne, of this ormula’tlon is t%le derivation of the Dyson equation for two-time ther-
mo¢ Sy : lxlmc retar(%ed Green s Functions instead of causal ones. Such a formulation permit
o usien ltzehcot{wemeut anz.xlytlcal properties of retarded and advanced GF and advznzgnle
of usin ogr th: Szlrfn;lels-(g);utlon odf t:f Dyson equation, which, in spite required approximi—

r - provide the correct functional struct i
pons & ! a rect structure of the single-elect F.
o sczl (r:zrllgt ipomtf o{l our appro;%ch do not give the possibility of direct apslicationrzlfli?to
he caloulal ;)11; (l:al:de };;l\iv;l;ia;tlcled(}l}?‘s.hlnhthis paper we have considered in details the
4 - rd model, which is one of the simpl i
ide ' , e simplest (in the sense of f -
i ;:‘;,t::th::)‘: :}:)iutlon} an(:hmgstfpopular model of correlated lattice fermions W: ;?Se
novel method of calculation of the i i hi
prese ' ) quasiparticle spectra for this model
suﬁic?e;xlosz tre:?reselgtf'a,tlve exam?le. We hope that this explanation have been done 2vi:h,
Supcient appTi Csa:?onr;‘ng out l.ih:lr sfcope and power, since we believe that such techniques
v o a variety of many-body syst i i
;trong interaction, as it was shown in Seztion g yotems with gomplicated spectrom =nd
ns i i . ‘ l
o :fn;g:la:t);,o r\l\rslliile tl.;smg !GFt lrlnel;}hod we were able to obtain the closed self- consistent
rmining the electron GF and self-ener, i '
1atio ; ron gy. These equat d
renormalization coeflicient of the one-electron GF(7], defined for a POi?lt (11025I _ef(li‘;)the
, W= :

P S—
(1 — M)

» dw )w:t(k) (87)

Th . . » - )
act:r:z:)irmal}za:or{ coefﬁc:en't (87) is an one of the most important notion for the char-
B :nso : e smFgle—partlcle behaviour of the quasiparticle excitations in correlated
A : o}f'scs:x;:i t.or thfef H:b})a.n;l) model, these equations give the general microscopic
ation effects for both the weak and strong Coul i
o oo : . rong Coulomb correlation, de-
plete interpolation solution of the Hubbard mod 'thi
approach gives the workable scheme for’ ition o Gt Mo
: , r the definition of the rel i
approach gives the workab ; e relevant Generalized Mean
appropriate correlators. The most i i
Fields writien in term : . ost important conclusion to
' present consideration ‘is that the GM
Coulomb interaction have i ivi ; e b roed te e
a quite non-trivial structure and b »
mean-density functional. This last st e rtution: with the
. atement resemble ver h ituati i
} nctio ; y much the situation with
an:lrllg}llytnogequl'hbnum system, where the single-particle distribution function oxllly :1}::
o dgcoro 1 is.cnbfe th? essence of. the strongly nonequilibrium state and more compli-
c BogOquoi :)nnd uMnct’loZns must be taken into account, in accordance with general ideas
ori-Zwanzig. The IGF method is intimatel tec j ;
of Dogolubey and Morl-Zwansi } ntimately related to the projection
press the idea of a “reduced description”
m ) 1 ex ' “reduced description” of the system i
Cotrsn ml::t gex;erallfform. .ThlS line of consideration are very promising for develf));nemtlllle.1
plete and self-contained theory of the strongly interacting many-body systems )
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