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1 Introduction 

The study of the Highly Correlated Electron Systems has attracted much attention re­
cently, especially after discovery of copper oxide superconductors and the new class of 
heavy fermion compounds, coexisting with magnetism [1) - [6). Although much work has 
been performed during last years it is worthy to remind that the investigation of the exci­
tations in many-body systems has been one of the most important and interesting subject 
for last few decades. The quantum field theoretical techniques have been widely applied 
to statistical treatment of a large number of interacting particles. Many-body calculations 

· are often done for model systems of statistical mechanics using perturbation expansion. 
The basic procedure in many-body theory [7) is to find relevant unperturbed Hamiltonian 
and then take into account the small perturbation operator. This procedure, which work 
well for the weakly interacting systems, needs the suitable reformulation for the many­
body systems with complicated spectra and strong interaction. For many practically 
interesting cases the standard schemes of perturbation expansion must be reformulated 
greatly [8) - [12). The most characteristic feature of the recent advancement in basic 
research on electronic properties of solids is development of variety of the new class of 
materials with unusual properties: high r; superconductors, heavy fermion compounds, 
diluted magnetic semiconductors etc. Contrary to the simple metals, where the funda­
mentals very·well known and the electrons can be represented in a way such that they 

· weakly interact with each other(c.f. [13)), in these materials the electr~ns interact strnngly 
and moreover their spectra are complicated, i.e. have many branches etc. This gives rise 
to interesting phenomena such as magnetism, metal-insulator transition in oxides, he~vy · 
fermions etc., but the understanding of what is going on is in many cases only partial 
if exist at all. Therefore the theoretical studies of the Highly Correlated Electron Sys­
tems (HCS) are very important and actual. ;,A principle importance of of these studies is 
concerned with a fundamental problem of electronic solid state theory, namely .with the• 
tendency of 3d electrons in TMC and 4f el~ctrons in rare-earth metal compounds (REC) 
and alloys to exhibit both localized and delocalized behaviour. The interesting electronic 
and magnetic properties of these substances are intimately related to this dual behaviour 
of electrons. In spite of experimental and theoretical achievements [1) - [6), still it remains 
much to·be understood concerning such systems. Recent theoretical investigations of HCS 
have brought forth significant variety of the approaches which are trying to solve these 
controversial problems. It seems appropriate to point out that a number of perturbation­
theory or mean-field theory approaches which have been proposed in the past few years, 
are in fact questionable or inadequate. In order to match such a trend we need to develop 
a systematic theory of the Highly Correlated Systems, to des.;::ribe from the first principles 
of the condensed matter theory and statistical mechanics the physical properties of this 
class of the materials. In the present paper we will present the approach which allows one 
to describe completely the quasi-particle spectra with damping in a very natural way. This 
approach has been suggested as essential for various many-body systems and we believe 
that it bear the real physics of Highly Correlated Systems [14), [15). The essence of our 
consideration of the dynamical properties of many-body system with strong interaction 
is related closely with the field theoretical approach and use the advantage of the Green's 
functions language and the Dyson equation. It is possible to say that our method tend to 
emphasize the fundamental and central role of the Dyson equation for the single-particle 
dynamics of the many-body systems at finite temperature. 



Just this point differ our IGF approach from the complimentary many-body approach 
which is based on the moment expansion for the spectral functions. It was developed in 
a very detail by W.Nolting (16] - (20]. 

2. Irreducible Green's Functions Method 

In this Section, we will discuss briefly the novel nonperturbative approach for description 
of the many-body dynamics of the HCES. At this point it is worthwhile to underline that 
it is essential to apply an adequate method in order to solve a concrete physical problem; · 
the final solution should contain a correct physical reasoning in a most natural way. The 
list_ of many-body techniques that have been applied to strongly correlated systems is 
extensive. The problem of adequate description of.many-body dynamics for the case of 
very strong Coulomb correlations has been explicitly raised by Anderson, who put the 
direct question: " ... whether a real many-body theory would give answers radically dif­
ferent from the Hartree-Fock results?" [21) (c.f. [221). The formulation of the Anderson 
model[21] and closely related Hubbard model [23], [24] dates really a better understand­
ing of the electronic correlations in solids, especially,if the relevant electrons are modelled 
better by tight-binding approximation (25],[26], Both.of the models, Anderson and Hub­
bard, are often referred to as simplest models of magnetic metals and alloys. This naive 
perception contradicts the enormous amount of papers which has been publishing during 
the last decades and devoted to attacking the Anderson/Hubbard model by many refined 
theoretical techniques. As is well known now, the simplicity of the Anderson/Hubbard 
model manifest itself in the dynamics of a two-particle sca_ttering. Nevertheless, as to 
the true many-body dynamics, there is still no simple and compact description. In this 
paper it will be attempted to justify the!;;se of a novel Irreducible Green's Functions 
(IGF) for the interpolation solution of the"single-band Hubbard model and other basic 
solid state models as s-f model (27], (28], Anderson model (29],[30), Heisenberg,antifer­
romagnet [31] and strong electron-phonon interaction model in modified tight-binding 
approximatiom(MTBA) for normal and superconducting metals (32] and alloys (33], (34]. 
A ~umber of other approaches has been proposed and the our approach is in many re­
spect an additional and incorporate the logic of development of the many-body techniques. 
The considerable progress in studying the spectra of elementary excitations and thermo­
dynamic pr_operties of many-body systems has been for most part due to the development 
of the temperature dependent Green's Functions methods. We have developed the help­
ful reformulation of the two-time GFs method which is especially adjusted [35) for the 
correlated fermion systems on a lattice. The very important concept of the whole method 
are the Generalized Mean Fields. These GMFs have a complicated structure for the 
strongly correlated case and are not reduced to the functi~nal of the mean densities of 
the electrons, when we calculate excitations spectra at finite temperature. To clarify the 
foregoing, let us consider the retarded GF of the form 

G• =<< A(t),B(t') >>= -iO(t - t') < (A(t)B(t')J" >,TJ = ±1. (1) 

As an introduction of the concept of IGFs let us describe the main ideas of this approach 
in a symbolic form. To calculate·the retarded GF G(t-t') let us write down the equation 
of motion for it: 

wG(w) =< (A,A-+J" > + << (A,HJ-1 A+ >>w. 
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The essence of the method is as follows (14]. It is based on the notion of the "IRRE­
DUCIBLE" parts of GFs (or the irreducible parts of the operators, out of which the GF 
is constructed) in term of which it is possible, without recourse ·to a truncation of the 
hierarchy of equations for the GFs, to write down the exact Dyson equation and to obtain 
an exact analytical representation for the self-energy operator. By definition we introduce 
the irreducible part (ir) of the GF 

ir << (A,HJ-IA+ >>=<< (A,HJ- -zAjA+ >>. 

The unknown constant z is defined by the condition ( or constraint) 

< [[A,Ht,A+J" >= 0 

From the.condition (4) one can find: 

< [[A,Hj_,A+j" > M1 
z= =-

< [A,A+J" > Mo 

(3) 

(4) 

(5) 

Here Mo and M1 are the zeroth and first order moments of the spectral density. Therefore, 
irreducible GF (3) are defined so that it cannot be reduced to the lower-order ones by any 
kind of decoupling. It is worthy to note that the irreducible correlation functions are well 
known in statistical mechanics. In the diagrammatic approach the irreducible vertices are 
defined as the graphs that do not contain inner parts connected by the C°-line .. With the 
aid of the definition (3) these concepts are translatiO:g into the language of retarded _and · 
advanced GFs. This procedure extract all relevant (for the problem under consideration) 
mean field contributions and puts them into the generalized mean-field GF, which here 
are defined as 

G°(w) = < [A,A+J" > 
(w- z) · 

{6) 

To calculate the IGF ir << (A,H]-(t),A+(t') >> in (2), we have to write the equation 
of motion after differentiation with respect to the second time variable t'. The condition 
(4) remove the inhomogeneous term from this equation and is the very crucial point of 
the whole approach. If one introduces an irreducible part for the right-hand side operator 
as discussed above for the "left" operator, the equation of motion (2) can be exactly 
rewritten in the following form 

G = G° + G°PG°. (7) 

The scattering operator P is given by 

P = (Mot1 ir << [A,HJ-l[A+,H]_ >>ir (Mo)-1
. (8) 

The structure of the equation (7) enables us to determine the self-energy operator M, in 
complete analogy with the diagram technique 

P=M+MG°P. (9) 

From the definition (9) it follows that we can say that the self-energy operator Mis defined 
as a proper (in diagrammatic language "connected") part of the scattering operator M = 
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(P)P. As a result, we obtain the exact Dyson equation for the thermodynamic two-time 
Green's Functions: 

G=G'+G'MG, 

which has well known formal solution of the form 

a= [(Cf'rl - Mtl. 

(10) 

Thus, by introducing irreducible parts of GF ( or the irreducible parts of the operators, out 
of which the GF is constructed) the equation of motion (2) for the GF can be exactly (but 
using constraint (4)) transformed into Dyson equation for the two-time thermal GF. This 
is very remarkable result, which deserve the underlining, because of the traditional form of 
the GF method did not included namely this point. The projection operator technique [36) 
has essentially the same philosophy, but with using the constraint (4) in our approach we 
emphasize the fund,J.mental and central role of the Dyson equation for the calculation of 
the single-particle properties of the many-body systems. It is important to note, that for· 
the retarded and advanced GFs the notion of the proper part is symbolic in nature [14]. 
However, because of the identical form of the equations for the GFs for all three types 
(advanced, retarded and causal), we can convert in each stage of calculations to causal GFs 
and, thereby, confirm the substantiated nature of definition (9)! We therefore should speak 
of an analog of the Dyson equation. Hereafter we will drop this stipulation, since it will not 
cause any misunderstanding. It should be emphasized that scheme presented above give 
just an general idea of the IGF method. The specific method of introducing IGFs depends 
on the form of operator A, the type of the Hamiltonian and the conditions of the problem; 
The general philosophy of the IOF method lies in the separation and identification of 
elastic scattering effects and inelastic ones. This last point is quite often underestimated 
and both effects are mixed. However, as far as the right definition of quasiparticle damping 
is concerned, the separation of elastic and inelastic scattering processes is believed to be 
crucially important for the many-body systems with complicated spectrum and strong 
interaction. Recent paper [37] emphasizes especially that the anomalous damping of 
electrpns (or holes) distinguishes cuprate superconductors from ordi~ary metals. From a 
technical point of view the elastic (GMF) renormalizations can exhibit a quite non-trivial 
structure. To obtain this structure· correctly, one must construct the full GF from the 
complete algebra of the relevant operators and develop a special projection procedure 
for higher~order GF in accordance with a given algebra. The Hubbard model is a very 
suitable tool for the applying of this approach [35),[38]. 

3 Hubbard Model 

The model Hamiltonian which is usually referred to as Hubbard Hamiltonian 

H = L t;;a1;,a;" + U/2 L n;"n;_" 
ije1 iCf 

(11) 

includes the intr:aatomic Coulomb repulsion U and the one-electron hopping energy t;;. 
The electron correlation force~ electrons to localize in the atomic orbitals, which are 
modelled here by the complete and orthogonal set of the Wannier wave functions [<fo(r -
.R; )]. On the other hand, the kinetic energy is reduced when electrons are delocalized. The 
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main difficulty of the right solution of the Hubbard model is the necessity to taking into 
account of the both these effects simultaneously. Thus, the Hamiltonian ( 11) is specified 
by two parameter: U and effective electron bandwidth 

6. = (N-1 L 1t;;l2)1/2_ 
ij 

The band energy of Bloch electrons f( k) is defined as follows 

t;; = N- 1 L f(k) exp[ik(.R; - R;], 
k 

where the N is the number of the lattice sites. It is convenient to count the energy from 
the center of gravity of the band, i.e. t;; = I:k t:(k) = 0. The effective electron bandwidth 
6. and Coulomb intrasite integral U define completely the different regimes in 3 dimension 
depending on parameter,= 6./U. It is usually a rather difficult task to find interpolation 
solution for the dynamical properties of the Hubbard model. To solve this problem with 
a reasonably accuracy and describe correctly an interpolating solution from "band" limit 
(, ~ 1) to "atomic" limit (, -+ 0) one need more sophisticated approach than usual 
procedures which have been developed for description of the interacting electron-gas­
problem. We evidently have to to improve the early Hubbard's theory taking account 
of variety of possible regimes for the model depending on electronic density, temperature 
and values of 1 . The sirigle-electron GF 

G;;"(w) =<< a;"la1"" >>= N- 1 L G"(k,w)exp[-ik(R;- .R;)], 
k 

(12) 

which has been calculated by Hubbard [23], [39], has the characteristic two-pole functional 
structure 

G"(k,w) = [F"(w) - f(k)t 1 ( 13) 

where 
F_ 1(w) = w - (n~"E_ + n="E+) - ,\ 

" (w - E+ - n=",\)(w - E_ - n~",\) - n~,.n=,.,\2 
(14) 

and,\ is the certain function which depends on parameters of the Hamiltonian. If ,\ is 
small(,\-+ 0) then expression (14) take the form: 

- + 
F _1( ) ~ n_" + n_,, 

(1 w ,_ + . 
w - E_ - n_",\ w - E+ - n=,.,\ 

which correspond to the two shifted subbands with the gap 

W1 -W2 = (E+ - E_) + (n=" -n~"),\ =er+ ,\2n~,.. 

Here n+ = n and n- = 1 - n; E+ = U, E_ = 0. If,\ is very big then we obtain 

-1 ,\ 1 
F" (w) ~ + = + · [(w- E_)n=" + (w - E+)n_"),\ w - (n_,.E+ - n=,.E_) 

This latter solution correspond to the single band, centered at thr energy w ~ n~"U. 
The two- pole functional structure of the single-particle GF is vrry easy to understand 
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within formalism which describe the motion of electrons in binary alloys [39), [40). If one 
introduce the two types of the scattering potentials t± ~ (w - E±J-1 then the two kinds 
of the t-matrix T+ and T_ appears which satisfy the following system of equations: 

T+ = t+ + t+~+T+ + t+~_T_ 

T_ = t_ + LG°___T_ + LG°__+T+, 

where ~P is the bare propagator between the sites with the energies E±, The solution 
of this system has the following form 

T± = t± + t±~t± = 
(1 - i+~+)(l - L~_) - ~+~-t+L 

t~I+~ 
-1 -1 ao ao CC! . (15) (t+ - ~+)(t_ - __ ) - -+ +-

Thus, by comparing this functional two-pole structure and well-known "Hubbard III" 
solution [39] 

E,,(w) = w - F,,(w) · 

it is possible to identify the "scattering corrections" and "resonance broadening correc-
tions" in the following way: · 

F,,(w) = w(w - U) - (w - Un_,,)A,,(w) 
w - U(l - n_,,) - A,,(w) 

A,,(w) = Y,,(w) + Y_,,(w) - V:,,(U - w) 

Y,, = F,,(w) - G0;(w); Go,,(w) = N-1 L Gk,,(w) 
k 

If we put A,,(w) = 0 we immediately obtain the "Hubbard I" solution [23). The "al­
loy analogy" approximation correspond to A,,(w) ~ Y,,(w). Note, that the "Hubbard 
III" self-energy operator E,,(w) is local, i.e. do not depend on quasimomentum. The 
another drawback of this solution is very inconvenient functional representation of the 
elastic and inelastic scattering processes. The conceptually new approach to the theory 
of very strong but finite electron correlation for Hubbard model has been proposed by 
Roth [41). She clarified microscopically the origination of the two-pole solution of the 
single-particle GF, what was the very unusual fact from the point of view of the standard 
Fermi-liquid approach, showing that the naive one-electron approximation of .the band 
structure calculations is not valid for the description of the electron correlations in HCS . 
Thus the use of sophisticated many-body technique is required for the calculation of the 
excitation spectra at finite temperature. This last point should be underlined, because 
of the suitable modification of the Density Functional Approximation [42), [43),[44) could 
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give the reasonable description of the ground-state properties of HCS. We shall show 
here, following the papers [35),(38) that the use of the IGF method permit to improve 
substantially both solutions, Hubbard's and Roth's, by defining the correct Generalized 
Mean Fields for the Hubbard model. 

4 Hubbard Model. Weak Correlation 

The concept of the GMFs and the relevant algebra of operators from which GFs are 
constructed are the central ones to our treatment of electron correlation in solids. It will 
be convenient (and much more shorter) to discuss these concepts for weakly and strongly 
correlated Ca8eS separately. For the first time we must to construct the suitable state 
vector space of the many-body system (45]. The fundamental assumption implies that 
the the states of a'system of interacting particles can be expanded in terms of the states 
of non-interacting particles (45]. This concept originate in perturbation theory and finds 
support for weakly interacting many-particle systems(c.f. (51). For the strongly correlate'd 
case this approach needs the the suitable reformulation ( cf. (461) and namely in this point 
the right definition of the GMFs is vital. Let us consider the weakly correlated Hubbard 
model (11). In many respect this case is similar to the ordinary interacting electron gas 
but with very local, singular interaction. It will be shown below that the usual creation 
at, and annihilation a;,, second quantized operators with the properties 

atiJl(O) :::: iJIP)j a;iJl(l) = iJl(O) 

a;w<0l = 0; a;wp> = 0, (i =/- j) 
are suitable variables for the description of the considering systems. Here iJl(O) and iJl(l) are 
the vacuum and single-particle states respectively. The question now is how to describe our 
system in terms of the quasiparticles. For a translationally invariant system, to describe 
the low-lying excitations of the system in terms of quasiparticles (45], one has to choose 
eigenstates such that they all correspond to definite momentum. For the single-band 
Hubbard model (11) the exact transformation reads 

1/2~ ➔➔ a;;,, = N- . ~ exp(-ikR;)a;,, 
i 

Note, that for degenerate bands model the more general transformation is necessary. Then 
the Hubbard Hamiltonian'(ll) in the Bloch vector state space are given by 

H = L f(k)at,,ak,, + U/2N L a;+r-q"°1x,at_,,a,_,, (16) 
k<1 pqra 

If the interaction is weak, the algebra of the relevant operators is very simple: it is an 
algebra of the non-interacting fermion system ( ak,,, at,,, nk,, = at,,ak,, ). For the calculation 
of the electronic quasiparticle spectrum of the Hubbard model in this limit let us consider 
the single-electron GF, which are defined as 

Gk,,(t - t') =<< ak,,,at,, >>~ -iB(t- t') < (ak,,(t),at,,(t')J+ >= 

1
+00 

1/2,r -oo dwexp(-iwt)Gk,,(w) = 

1+00 1+00 
dw' 

1/2,r _
00 

dwexp(-iwt)l/2,r -oo w-w'(exp(/Jw')+l)Ak,,(w') (17) 
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where /J = (kT)-1 and Ak11 (w) is the spectral intensity. The equation of motion for the 
Fourier transform of the GF Gk11 (w) has the form 

(w - Ek)Gk11 (w) = 1 + U/N L << ak+P<Ta~q-11 aq-11lat11 >>w 
pq 

Let us introduce, by definition, an "irreducible" GF in the following way 

ir << Ok+p110p+q-110-p+q-110q-11lat" >>w= 

(18) 

<< ak+P<Tat+q-aaq-11lat11 >>w -lip,o < nq-11 > Gka (19) 

The irreducible {ir) GF in {19) is defined in such a way that it cannot be reduced to GF 
of lower order with respect to the number of_ fermion operators by an arbitrary pairing of 
operators or, in another words, by ·any kind of decoupling. Substituting (19) in (18) we 
obtain 

Gk11 (w) = G~F(w) + Gf/(w)U/N L ir << ak+puat+q-uaq-ulat >>w (20) 
pq 

Here we have introduced the notations 

G~F(w) = (w - E(ko-W1; E(ko-) = E(k) + U/N L < nq~u > (21) 
q 

In this paper; for brevity, we confine ourself by considering the paramagnetic solutions 
only, i.e. < nu >=< n_u >- In order to calculate the higher-order GF on the r.h.s. of 
(20) we have to write the equation of motion obtained by means of differentiation with 
respect to the second variable t'. 'Constraint (4) allows us to remove the inhomogeneous 
term in this equation for d~/' << A(t),at(t') >>. 
For the Fourier components, this is written in the form 

(w - E(k)t << Alatu >>w=<ir [A,atul+ > + 
U/NLir << AJa;_uar+•-11ak+•u >>w • 

r• 
(22) 

The anticommutator in (22) is calculated on the basis of the definition of the irreducible 
part 

< t(ak+puat+q-uaq-u),atJ+ >= 
< [ak+P<Tat+q-uaq-u- < at+q-uaq-<1 > ak+pu, atul+ >= 0 (23) 

If one introduces irreducible part for the r.h.s. operators by analogy with expression (19), 
the equation of motion (20) can be exactly rewritten in the form (7) 

Gku(w) = G~F(w) + G~F(w)Pku(w)G~F(w) 

where we have introduced the following notation for the operator P (8) 

. u2 .. 
_ Pku(w) = N2 LDi:-u(p,qjr,s,;w) = 

pqra 

u2 ~ i, + I + + > i, = N2 L << ak+puap+q-uaq-u a,-uar+.-uak+•u >w 
pqra 
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(24) 

(25) 

To define the self-energy operator according to the (9) one must separate the "proper" 
part by the following way 

D/:u(p,qjr,s;w) = L/:u(p,qjr,s;w) 

+ U
2 

~ Lir ( I 1 '· )GMF( )Dir ( I 'I . ·) N 2 L ku p,qrs,w Ku w ku p,q r,s,u; 
r'a'p'q' 

(26) 

Here Ltu(p,qjr,s;w) is the "proper" part of the GF Di:(p,qjr,s;w), which in accor­
dance with the definition (19) cannot be reduced to the lower-order one by any type of 
decoupling. Using (9) we find • 

Gku = G~F(w) + G~F(w)Mu(k,w)Gk,u(w) (27) 

Equation (27) is the Dyson equation for the single-particle two-time thermal GF. Accord­
ing to (10) it has the formal solution 

Gku(w) = [w - E(ko-) - M,.(k, o-)t 1 

where the self-energy operator .M is given by 

u2 . 
M"(k,w) = N

2 
L Li;,.(p.qlr.s;,,1) = 
pqr:1 

u2 ~ ir + I + + ;r 
N2 L < < ak+puap+q-uaq-u ak+•"ar_qar+•-« > > 

pqra 

(28) 

(29) 

The latter expression (29) is an exact representation (no decoupling has been made till 
now) for the self-energy in terms of higher-order GFs up to second order in [/ (for the 
consideration of the higher order equations of motion see Ref. [1,5]). Thus. in contrast 
to the standard equation-of-motion approach the determination of the full GF has been 
reduced to the calculation of the mean-field GF GAfF and the self-energy operator M. 
The main reason for this method of calculation is that the decoupling is only introduced 
into self-energy operator, as it will shown in a detail below. The formal solution of the 
Dyson equation (28) define the right reference frame for t.lw format.ion of the quasipar­
ticle spectrum due to the its own (formal solution) correct. functional structure. In the 
standard equation-of-motion approach such a structure could be lost. by using decoupling 
approximations before arriving to the correct functional structure of the formal solution 
of the Dyson equation. This is a crucial point of the IGF met.hod. The energies of the 
electronic states in the mean-field approximation are given by the poles of GMF (21 ). Now 
let us consider the damping effects and finite lifetimes. To find an explicit expression for 
self-energy M (29), we have to evaluate approximately the higher-order GF in (21 ). It 
will be shown below that the IGF method can be used to derive the damping in a self­
consistent way simply and more generally than other formulations.· First., it is convenient 
to write down the GF in (29) in terms of correlation functions by using the well-known 
spectral theorem [45]: 

< < ak+p11at+q-qllq-u lat+•ua;_<Tar+•-<T > >..,= 

1 1+00 
dw' j+oo - --,(exp(/Jw') + 1) exp(iw't) 

2,r -oo w - w -oo 

< at+•u(t)a;_u(t)ar+•-u(t)ak+puat+q-uaq-" > (30) 
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Further insight is gained if we select the suitable relevant "trial" approximation for the 
correlation function on the r.h.s. of (30). In this paper we show that the earlier for­
mulations, based on the decoupling or/and diagrammatic methods can be arrive at from 
our technique but in a self- consistent way. Clearly that the choice of the relevant trial 
approximation for correlation function in (30) can be done in many ways. For example, 
the reasonable and workable one may be the following "pair approximation", which is 
especially good for the low density of the quasiparticles: 

< a[+,,.(t)a;_,.(t)ar+•-,.(t)ak+p,.a;+q-,.a9_,. >ir:::::l 
< at+P"(t)ak+P" >< at_,.(t)a9_,. >< ap+9_,.(t)a~9_,. > 

lik+a,k+plir,qlir+a,p+q (31) 

Using (30) and (31) in (29) we obtain the approximate expression for the self-energy op­
erator in a self-consistent form (the self-consistency means that we express approximately 
the self-energy operator in terms of the initial GF and, in principle, one can obtain the 
required solution by suitable iteration procedure): 

M,.(k,w) = U
2 
~ 1 dw1dw2dw3 

N 2 L w+w1 -w2 -w3 pq 
[n(w2)n(w3) + n(wi)(l - n(w2) - n(w3))]gp+9-,.(wi)gk+P"(w2)g9_,.(w3) 

where we have used the notations 

gk,.(w) = _!_JmGk,.(w + it:); n(w) = [exp(/Jw) + lJ-1 

7r 

(32) 

The equations {28) and (32) form a closed self-consistent system of equations for the single­
electron GF for the Hubbard model, but for weakly correlated limit only. In principle, we 
may use, on the r.h.s. of (32) any workable first iteration-step form of the GF and find a 
solution by repeated iteration. It is most convenient to choose as the first iteration step 
the following simple one-pole approximation: 

Yku(w) :::::l /i(w - t:(ku)) 

Then, using {33) in (32), we get for the self-energy an explicit and simple expression 

Mu(k,w) = u2 ~ np+q-q(I - nk+pO' - nq-0') + nk+pqnq-q 
N 2 L w + t:(p+ qu)- t:(k + po-)- t:(qo-) pq 

(33) 

(34) 

The numerical calculations of the typical behaviour of real and imaginary parts of the 
self-energy (34) have been performed [47] for the model density of. states of the FCC 
lattice. These calculations and many other [48] - [50] prove that the conventional one­
electron approximation of the band theory is not always a sufficiently good approximation 
for transition metals like nickel. The simple formula (32) derived above for the self­
energy operator are typical in showing the role of correlation effects in the formation of 
quasiparticle spectrum of the Hubbard model. It is instructive to examine other types of 
the possible trial solutions for the six-operator correlation function in the eqn.(30). The 
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approximation which we propose now reflects the interference between the one-particle 
branch of the spectrum and the collective one: 

< at+,,.(t)a;_..(t)a,+•-~(t)ak+p..a~9-"a9_,. >i':::::l 

< at+ • ..(t)ak+P" >< a;_u(t)ar+•~u(t)a;+q-uaq-u > + 
< a,+a-u(t)at+q-u >< af+,u(t)a;_ .. (t)ak+puOq-u > + 
. < a;_u(t)aq-u >< at+.,.(t)ar+•-,.(t)ak+pua;+q-0' > {35) 

It is visible now that the three contributions in this trial solution describe the self-energy 
corrections that take into account the collective motions of electron density, the spin dens 
sity and the density of "doubles"; respectively. The essential feature of this approxima­
tion is connected with the fact that correct calculation of the single-electron quasiparticle 
spectra with damping require the suitable incorporating of the-influence· of the collective 
degrees of freedom on the single-particle ones. The most interesting contribution is re­
lated with the spin degrees of freedo~ because of correlated system are the magnetic or 
have very well developed magnetic fluctuations. We follows the above steps and calculate 
the self-energy operator (29} as · 

M,.(k,w) = u21+00 dw1dw2 1 + N(w1) - n(w2) 
N -oo W - Wt - W2 

~ -- - 1 :!: L exp[-ik(R; - R;)](-;Im << S; ISJ >>w,) 
i,j 

1 + . 
(--Im<< Oi-ula,._u >>w.) 

7r . 

where the following notations have been used: ' 

st = a~a;!; s; = ata;r 

N(w) = [exp(,Bw)-W1
. 

It is possible to rewrite (37) in a more convenient way now 

, U2 1· w-w' w' 
M,.(k,w) = N. L dw'(cot ~+tan 2T) 
. q 

( ~.!..Imx'f±(k - q,w - w')g9,.(w')). 
7r 

(36) 

(37) 

The equations (28) and (37) form again- another self-consistent system of equations for the 
single-particle GF of the Hubbard model. Note, that both expressions for the self-energy 
depend on quasimomentum; in other words the approximate procedure do not broke the 
momentum conservation law. It i; important, becau;e of the poles w(k, u) .== t:(k, O' )-if(k) 
of the GF (28) are determined by the equation 

w - t:(ku) - Re[Mu(k,w)]- ilm[Mu(k,w)] = 0 (38) 

It may be shown quite generally that the Luttinger's definition of the true Fermi surface [7] 
is valid in the framework of our theory. It is worthy to note that for electrons in a crystal 
where there is a band index, as well as quasimomentum, the definition of the Fermi surface 
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are a little more complicated then the single-band one. Before the single particle energies 
and Fermi surface are known, one must carry out a diagonalization in the band index. In 
order to give a complete picture of the GMFs let us discuss briefly the interesting question 
of the. correct definition of the so-called unrestricted Hartree-Fock approximatiorr (UHFA ). 
Recently, this approximation has been applied for the single-band Hubbard model (ll) 
for the calculation of the density of states for Cu02 clusters [51). The following definition 
of UHFA has been used: 

n;_"a;" =< n;_" > a;"- < at_"a;" > a;_" (39) 

Thus, in addition to the standard HF term, the new, the so-called "spin-flip" terms, 
are retained. This example clearly show that the nature of the mean-fields follows from 
the essence of the problem and should be defined in a proper way. It is clear, however, 
that the definition (39) broke the rotational symmetry of the Hubbard Hamiltonian. For 
the single- band Hubbard Hamiltonian the averaging < at_"a;," >= 0 because of the . 
rotational symmetry of the Hub~ard model. So, in Ref. [51) the effective Hamiltonian 
Herr has been defined. We have analysed in detail the proper definition of the irreducible 
GFs which include the "spin-flip" terms. The definition (19) must be modified in the 
following way: 

ir < I + _ + < ak+p<1ap+q-<1ap+q-<1 ak<T >>w-<< ak+p<1ap+q-<1aq-u >>w -

{jp,O < nq-<1 >Gk"-< ak+p<1a:+q-<1 ><< aq-ulat" >>w (40) 

From this definition follows that such a type of introduction of the IGF broaden the initial 
algebra of the operator and initial set of the GFs. That means that "actual" algebra of 
the operators must include the spin-flip terms at the beginning, namely: (a;", at,, n;", 
a't,a;_" ). The corresponding initial GF will have the form 

<< a;" a;">> << a;" a;_">> 
( 

I + . I + ) 
<< a;_"laf" >> << a;_"laf_" >> 

In fact, this approximation has been investigated earlier by Kishore and Joshi [52). 
They clearly pointed out that they assumed that the system is magnetized in x direction 
instead of conventional z axis. 

5 Hubbard Model. Strong Correlation 

When studying the electronic quasiparticle spectrum of the strongly correlated systems, 
one must. take care of at least three facts of major importance: 
(i) The ground state is reconstructed radically as compared with the weakly correlated 
case. Namely this fact lead to the necessity of the redefinition of the single~particle states. 
Due to the strong correlation, the initial algebra of the operators · are transformed into 
new algebra of the complicated operators. In principle, in terms of the new operators the 
initial Hamiltonian may be rewritten as bilinear form and the generalized Wick theorem 
can be formulated [53), [54). It .is very important to underline, that the transformation to 
the new algebra of relevant operators reflect some important internal symmetries of the 
problem and nowadays this way of thinking are formulating in elegant and· very powerful 
technique of the classification of the integrable models (55), [56] and exactly soluble models 
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(see also[57)). 
(ii) The single-electron GF, which describe the dynam'ical properties, must have two-pole 
functional structure, giving in the atomic limit, when hopping integral tends to zero, the 
exact two-level atomic solution. 
(iii) The GMFs have, in general case, a very non-trivial structure. The GMFs functional 
cannot be expressed in terms of the functional of the mean particles density. 
In this section we consider large, but finite, Coulomb repulsion. The inspiring ideas of 
papers [39), (46), [54) where the problem of the relevant algebra of the operators has been· 
considered, are central to our consideration here. Following this approach we consider the 
new set of relevant operators: • 

diau = nf_"'aiu,(a = ±);nt,. = niO',n~ = (1 - niu·); 

L nfu = l; nfunfO' = <\ipnfO'; L dioO' = aiu 
a 

The new operators d;aCT and dj/JCT have complicated commutation rules, namely 

· [diau, dj/3<1]+ = {jij{ja/Jn;'_" 

( 41) 

The convenience of the new operators follows immediately if one write down the equation 
of motion for them " 

"[d;au, HJ_ = Eadiau ·+ L i;;(nf_uaiu + Ollfr,bij-") 

ij 

b;;" = (a'/;,a;" - af,.a;,.). (42) 

It is possible to interpret (23), [39] both contribution in this equation as alloy analogy 
and resonance broadening correction. Let us consider the single-particle GF (12) in the 
Wannier basis. Using the new operator algebra it is possible to rewrite identically GF 
(12) in the following way 

G;;"(w) = L << d;a<1ld}/J<1 >>..,= L F;'}~( ... •) 
a/J a/1 

The equation of motion for the auxiliary matrix GF 

p":/J(w) = ( << d;+"ldf+" >>w 
tJCT << di-<Tld~\CT >>w 

have the following form 

<< d;+,.ldj_,. >>..,) 
<< d;_,.ldj_,, >>.., 

(EF;;"(w) - J{j;;)a/3 = L ta<< nf_:"a,., + oa;,.b;1-«ldt1,. >>w 
ljl,i 

Where the following matrix notations have been ust;d 

E=((w-E+) 0 );l=(n!,. ~ )· 
0 (w-E_) 0 11_,. 
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(-13) 

(·H) 

(45) 

(46) 



In accordance with the general method of Section 2 we introduce by definition the matrix 
IGF: 

Dir ( ) _ (<< ZnldJ+a >>.., << Z12ldf_,, >>w) 
1·W - + + -1 
., << Z21ldj+<1 >>.., << Z22ldj-<1 >>.., 

[ +o'] [ +o'] °"( A;r [F"-'+ F?.'-] - Eli [F<>.'+ F"''-J) 
~ A-o' ,,,, ,,,, B-o' IJ<1 /J<1 
a' ii Ii 

(47) 

Here the notations have been used: 

Zn == Z12 == nt_,,ar,, + a;,,b;r-ai Z21 == Z22 == n;:_,,ar,, - a;,,b;r-a 

It is worth to underline that the definition (47) are in heart of the whole our approach to 
description of the strong correlation in the Hubbard model. The coefficients A and B are 
determined from the constraint ( 4), nam~ly 

< [(D([)o/J, dJ11,,J+ >== 0 

After some algebra we obtain from ( 48) ( i =f. j) 

[A;r]o/J == a(< dfii_,,ar_,, > +( < di-/J-uat_,, >)(n~,,)-1 

[Bii]o.11 == [< nf_,,nf_,, > +a,8( < a;,,at_,,a,_,,at, > -
< a;,,a;_,,at-,,at,, >)](n~,,)-1 

(48) 

(49) 

As previously, we introduce now the GMF GF F?i.,. in analogy with (6), however, as it is 
clear from ( 47), the actual definition of the GMF GF is very non-trivial. After the Fourier 
transformation we get 

(
Fo++ ko­
Fo-+ ko-

Ff:-) _._I_ (n~.,.b n:.,.d) 
Ff;- - ab - cd n~.,.c n:.,.a 

The coefficients a, b, c, d are equal to 

: ~ (w - E± - N-1 L E(p)(A±±(-p) - B±±(p - q))) 
p 

; == N-1 L E(p)(A'f±(-p) - B'f±(p - q)) 
p 

Then, using the definition (43) we find the finalexpression for the GMF GF 

aMF(k w) == w - (n~.,.E_ + n:.,.E+) - A(k) 
"" ' (w - E+ - n:.,.A1 (k))(w - E_ - n~.,.A2(k)) - n:.,.n~.,.A3(k)A4(k) 

Here we have introduced the following notations: 

A1(k) == + L E(p)(A±±(-p) - B±±(p- k)) 
A2(k) n_.,. 

P. . 

A3(k) == _I_ L E(p)(A±=i=(-p) - B±'f(p- k)) 
A4(k) n:.,. P 

A(k) == (n:.,.)2(A1 + A3) + (n~.,.)2(A2 + A4) 
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(50) 

(51) 

(52) 

(53) 

(54) 
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From the equation (52) it is obvious that our two-pole solution is more general than "Hub­
bard III" (39] and Roth(41] solutions. Our solution has the correct non-local structure, 
taking into account the non-diagonal scattering matrix elements more accurately. Those 
matrix elements describe the virtual "recombination" processes and reflect the extremely 
complicated structure of the single-particle state, which virtually include a great number 
of intermediate scattering processes (c.f. interesting analysis in Ref. [58]). 
The spectrum of the mean-field quasiparticle excitations follows from the poles cif the GF 
(52) and consist of two branches 

I 
w 

2
(k) == 1/2((E+ - E_ + a1 + b1) ± J(E+ + E_ - a 1 - b1)2 - fol] (55) 

where a 1(b) == w - E± - a(b). Thus the Spectral Intensity Ak.,.(w) of th~ GF (52) consist 
of two peaks, which separated by the distance 

✓,-------- a1 - b1 
w1 - w2 ==(U - a1 - b1)2 - cd ~ U(l - --) + 0(1) . u (56) 

For the deeper insight into the functional structure of the solution (52) and to compare 
with the other solutions we rewrite the (50) in the following form 

( 

( 
a db- 1c)-l ::.:---:::.-

0 n_" n_" 
Fk.,.(w) == £( a _ db-'c)-l 

b ~ n!" 

4( +_ - da:::'c)-1) ' 
a n_a n_o-( + _ db:::'c)-1 

"-a- n_o-

from which we obtain for the G~F(k,w) 

where 

G
MF(k ) _ ~~.,.(l + cb-1

) n:.,.(I + da-1
) ~ 

.,. ,w ------+-~--~~ 
a - db-1c b - ca-1d 

- + n_.,. + n_.,. 
w - E_ - n~.,.W.:-.,.(k) w- E+ - n:.,.W!°.,.(k) 

n~.,.n:.,.W.:'.,.(k) ==N-1 2);iexp(-ik(R;-Rj)) 
ij 

(( < at_.,.n"t,aj-o- > + < a;_.,.n'f.,.aj_.,. > )+ 
( ± ± + . + . + . . + + )) < nj_.,.n;_.,. > < a,.,.a;_.,.a,_.,.aj.,. > - < a,.,.a,_.,.ai_.,.ai.,. > 

(57) 

(58) 

(59) 

are the shifts for the upper and lower splitted subbands due to the elastic scattering of 
the carriers in the Generalized Mean Field. Namely w± are the functionals of the GMF. 
The most important feature of the present solution of the strongly correlated Hubbard 
model is a very nontrivial structure of the mean-field renormalizations (59), which is 
crucial to understanding the physics of strongly correlated systems. It" is important to 
emphasize that namely this complicated form of the GMF are only relevant to the essence 
of the physics under consideration. The attempts to reduce the· functional of the GMF 
to the simpler functional of the average density of electrons are incorrect namely from 
the point of view of the real nature of the physics of HCS. This physics clearly show that 
the mean-field renormalizations cannot be expressed as a functional of the electron mean 
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density. To explain this statement let us derive the "Hubbard I" solution [23] from our 
GMF solution (52). If we approximate (59) as 

n!.,n:.,w±(k) ~N-1 }:t;;exp(-ik(R; - R;)) < nj=_.,nt_.. > (60) 
ij 

and makes the additional approximation, namely 

< n;_.,n;_., >~ n:., 

then solution (52) goes over into the "Hubbard I" solution 

r,0(k ) n_., 1 - n_.,. u_ w ~------+----...,:_ __ 
" ' w - U - f(k)n_., w - f{k)(l -n_.,) 

(61) 

This solution, as it is well known, is unrealistic from the many points of view. 

As regards to our· solution (52), the second important aspect is that the parameters 
A;(k) do not depend on frequency, i.e. depends essentially on the elastic scattering pro­
cesses: Such a dependence on frequency arises due to inelastic scattering processes which 
are contained in our self-energy operator and we proceed now with the 'derivation of the 

explicit expression for it. 
To calculate the high-order GF on the r.h.s. of (45) we should use the second time variable 
(t') differentiation of it again. If one introduces irreducible parts for the right-hand-side 
operators by arialogy with expression (47), the equation of motion (45) can be rewritten 

exactly in the following form 

Fk.,(w) = Ft(w) + F~.,(w)Pk.,(w)Ft(w) 

Here the scattering operator P (8) has the form 

Pq.,.(w) = i-1 [I>1fm; << Dli",;IDt,!; >>w)ql-l 
lm 

In accordance with the definition (9) we write down the Dyson equation 

F= F0 +F0MF 

(62) 

(63) 

(64) 

The self-energy operator M is defined by Eq. (9). Let us note again that the self-energy 
corrections, according to (10), contribute to the full GF as an additional terms. This is 
an essential advantage ip. comparison with the "Hubbard III" solution and other two-pole 
solutions. For the fuU GF we find, using the formal solution of Dyson equation 

G.,(k,w) = (nt (a - n!.,.M:+(k,w)) + n~., (b- n:.,M;-(k,w)) 

+ n~., (d + ~!.,M:-(k,w)) + n~., (c + n:.,M;+(k,w))) 

[det ((Ff..(wW1 - M.,(k,w))J-1 (65) 
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After some algebra we can rewrite this expression in the following form, which is essentially 
new and, in a certain sense, are the central result of the present theory 

G= w-(n+E_+n-E+)-L 
(w - E+ - n- L1)(w - E_ - n+ L2) - n-n+ L3L4 (66) 

where 

n+ 
L1(k,w) = A1(k) - :" M:+(k,w); 

n_., 
• n-

L2(k,w) = A2(k)- ~" M;-(k,w); 
n_.,. 

L3(k,w) = AJ(k) + n~., M:-(k,w); 
n_.,. 
n+ 

L4(k,w) = A4(k) + :" M;+(I,., ... :):. 
n_.,. 

L(k,w) = A(k) + n:!:.,.n:.,.(M++ + Ar- - tr+ - M+-) (67) 

Thus, now we have to find the explicit expressions for the elements of the self-energy 
matrix M. To proceed we should use the spectral theorem again, as in Eq. (30), to 
express the GF in terms.of correlation functions 

M 0 ·f3(k w) ~< Dir+ (t)Dir > 
u '. mJ,/3 1/,0 (68) 

For the approximate calculation of the self-energy we propose to use the following trial 
solution 

< Dir+(t)Dir >~< a+ (t)a1 >< 11'
1 

· (t)n" > 
mO" er J-<r t-c, 

+ < a!.,.(t)nf_ .. >< nJ_.,.(t)a1.,. > +/3 < b!;_,,(t)a1" >< a,t,.(1)11;'_,. > 

+/3 < b!;_.,.(t)nf_.,. >< at"(t)a," > +o < a!..(t)a;,. >< nf_,.(t)b,1_,, > 
+ ;l +o < am.,.(t)bil-!' >< 11j_,,(l)b,1_,, > 

+o/3 < b!;_,,(t)a;,. >< a,t,.(t)b,1_,, > 

+o/3 < b!;-a(t)b,1_,. >< a,t,,(t)a;,. > (69) 

It is quite natural to interpret the contributions in this expr<>ssion in t<>rn1s of scalt<>ring, 
resonance-broadening and interference corrections of different types. For exampl<>, l<>t us 
consider the simplest approximation. For this aim we retain the first. rnntrihution in (69) 

1+00 dw' 
[IMI]0 /3 = _

00 

w _ w' ( <>xp(Jjw') + I ) 1:00 

:: exp(iw't)N-1 ~
1 

exp(-il.,(R; - R1 ))i,1f,,.1 
'1 m 

J dw1n(wi)exp(iw1t)gm1.,.~wi) (-~/m/(';11
(1.<.'t - ..,/)). (70) 

Equations (70) and (64) are the self-consistent system of equations for the single-particle 
Green's function. For a simple estimation, for the calculation of thr self-energy (70) it 
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is possible to use any initial relevant approximation of the two-pole structure. As an 
example we take the expression (61). We then ob_tain 

[IMl)o.O :=::: L lf(k - q_}l2H;'3 

[ n_u _ + l - n_u ] 
w-U-f(k-q)n-u· W-f(k-q)(l-n_u) 

(71.) 

On the basis of the self-energy operator (71) we can explicitly find the energy shift and 
damping due to inelastic scattering of the quasiparticles, which is a great advantage of 
the present approach. It is clear. from the present consideration that for the systematic 
construction of the approximate solutions we need to calculate the collective correlation 
functions of the electron density and spin density and the density of doubles, but this 
problem must be considered separately. 

6 Correlations in Random Hubbard Model 

In this chapter we shall apply IGF method for consideration of the electron-electron 
correlations in the presence of disorder· to demonstrate the advantage of our approach. 
The treatment of the electron motion in substitutionally disordered disordered· A,,B1-x 
transition metal alloys is based upon certain generalization of Hubbard model, including 
random diagonal and off-diagonal elements caused by substitutional disorder in the binary 
alloy. The electron-electron interaction play an important rolt, for various aspects of 
behaviour in alloys, e.g. in the weak localisation in Ti-Al alloys[59] (f~r recent review 
see [60]). There are certain aspects of the High-Tc superconductivity where disorder 
play a role and recently it have been discussed in papers[61), [62], where the distribution 
of magnetic molecular fields has been treated within the single-site Coherent Potrntial 
Approximation(CPl\) [63]. The CPA has been refined and developed in many papers (e.g. 
[64), [65]) and-till now[66] are the most popular approximation for theoretical studying of 
alloys. But the simultaneous effect of disorder and electron- electron inelastic scattering 
has been considered for some limited cases only[67],[68] and not within the self-consistent 
scheme. Let us consider the Hubbard model Hamiltonian on a given configuration of alloy 
(v) . 

n<v> = nt> + H~vl (72) 

where 

H (v) - ~ v . + ~ t':'!' T . 
1 - L..., Ci n,(1 ~ IJ a,oaJ<T 

i(1 iju 

H (v) _ ~ ~uv .. 
2 - L..., i n,un,-a 

2 . 
(73) 

IU 

Contrary to the periodic model ( 11), the atomic level _energy er, the hopping integrals tr; 
as well as the intraatomic Coulomb repulsion ur here are the random variables, which 
take the values ev, tvµ and uv, respectively; the superscript v(µ) refers to the atomic 
species ( v, µ = A, B) located on site i(j). The nearest,neighbour hopping integrals are 
included only. 
To unify the IGF method and CPA into completely self-consistent scheme let us consider 
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the single-electron GF (17) Gi;u in the Wannier representation for a given configuration 
(v). The corresponding equation of,motion has the form(for brevity we shall omit the 
superscript (v) where its presence is clear) · 

(w - Ci) << Oiulaj.,. >>~;,;h';; + L tin<< Ono-laj.,. >>w 
n 

+Ui << ni-o-a;.,.laJ;, >>w (74) 

In the present paper, for brevity, we will confine ourselves by the weak correlation case 
and the diagonal disorder only. The generalization for the case of strong correlation or 
off-diagonal disorder is straightforward, but its length considerations preclude us from 
discussing at this time. 

Using the definition (3), we define _the IGF for a given (fixed) configura:tion of atoms in 
an alloy as follows 

ir << ni-o-Oio-laj.,. >>=<< ni-o-Oio-laj.,. >> - < ni-o- ><< Oio-laj.,. >> (75) 

This time, contrary to (19), because of lack of translational invariance we must take into 
account the site dependence of·< ni-u >. Then _we rewrite the equation of motion (76)in 
the following form · 

L[(w - C:i - Ui < ni-o- > )6ij - tin] < < Ono-laJ;, > >w= 
n 

Dij + Ui' << ni-o-Oio-laJ;, >>w) (76) 

In accordance with the general method of Section 2, we find then the Dyson equation for 
a given configuration ( v) 

Gi;o-(w) = G?;,,(w) + L G?m.,.(w)Mmno-(w)Gn;o-(w) 
mn 

The GMF GF G?;u and the self-energy operator M are defined as 

LHimo-d.:,;,,(w) = Dij 
m 

Pmno- = Mmno- + L Mmit7G?juPjno­
ij 

Himo- = (w - C:i - Ui < ni-o- > )Dim - tim 

(77) 

Pmno-(w) = Um(ir << nm-o-Omo-lnn_,,at.,. >>:;)Un (78) 

In order to calculate the self-energy operator M self-consistently we have to express it 
approximately by the lower-order GFs. Employing the same pair approximation as (31) 
(now in Wannier representation) and the same procedure of calculations we arrive at the 
following expression for M for a given configuration (v) 

MJ.'t(w) = UmUn
2
!4 J R(w1,w2,w3) 

ImG!."2-u(w1)ImG~!-o-(w2)ImG!:;!.,,(w3); 
R = dw1dw2dw3 (l - n(w1))n(w2)n(WJ) 

W + Wt - W2 - W3 n(w2 + W3 - w1) 
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As we have mentioned previously, all the calculations just presented have been done for 
a given configuration of atoms in alloy. All the quantities in our theory (G, C°, P, M) 
depends on the whole configuration of the alloy. To obtain a theory of a real macroscopic 
sample, we have to average over various configurations of atoms in the sample. The. 
configurational averaging cannot be exactly made for a macroscopic sample. Hence we 
must resort to an additional approximation. It is obvious that self-energy M is in turn 
the functional of G, namely M = M[G]. If the process of taking configurational averaging 
is denoted by G, than we have 

(J =(JO+ G0 MG 

Few words are now appropriate for the description of general possibilities. The calculations 
of G° can be performed with the help of any relevant available scheme. In the present 
work, for the sake of simplicity, we.choose the single-site CPA(63], namely we take 

(J?_ (w) = N_1 "exp(ik(Rm - Rn)) 
mnu ~ W - Eu(w) - f(k) 

(80) . 

Here f{k) = E~=l tn,oexp(ikR,,), z is the number of nearest neigbours of the site 0, and 
the Coherent potential E"(w) is the solution of the CPA self-consistency equations. For. 
the A,,B1_,, these read 

E"(w) = XeA + (1 - x)c8 - (cA - E")Fu(w, E")(c8 - E"); 
F"(w, E") = ~mu(w) (81) 

Now, let us return to the calculation of the configurationally averaged total GF G. To 
perform the remaining averaging in the Dyson equation we use the approximation 

G0 MG ~ G°MG 

The calculation of M requires further averaging of the product of matrices. We again use 
the prescription of the factorisability there, namely 

~ M ~ (UmUn) (ImG) (ImG) (ImG.) 

However, the quantities UmUn entering into Mare averaged here according to 

UmUn = U2 + (U1 - U2)8mn 

U1 = x2U} + 2x(l - x)UAUB+ (1 - x)2U1 
U2 = xU} + (1 - x)U1 

The averaged value for the self-energy is 

Mmn,,.(w) = 
2
~ 4 j R(w1,W2,w3)JmGnm-O'(wi)JmGmn-O'(w2)ImGmnO'(w3) + 

U1 - U2 J - - -~Dmn R~w1,w2,w3)JmGnm-u(w1)ImGmn-O'(w2)ImGmnO'(w3) 

(82) 

(83) 

The averaged quantities are periodic, so we can introduce the Fourier transform of them, 
I.e. 

MmnO'(w) = N-1 LMu(k,w)exp(ik(Rm- Rn)) 
k 
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and similar formulae for G and G°. Performing the configurational averaging of Dyson 
equation and Fourier transforming the resulting expressions according to the above rules, we obtain · 

where 
G1,,,.(w) = (w - f(k) - E"(w) - Mu(k,wW 1 

(84) 

M,,.(k,w),,,; ~ "f R(w1,w2,w3)N-2JmGP_
9
_,,.(w1)ImG

9
_,,.(w2) · 2ir ~ pq 

- • (U1· - U2)" -
[U2lmG1,+pu(w3) + N ~ lmGk+p-g(w3)] · (85) 

g 

The simplest way to obtain the explicit solution for the self-energy M is to start with 
suitable initial trial solution as it was done for the periodic case (33). For the disordered 
system, it is reasonable to use as the first iteration approximation the so-called Virtual 
Crystal Approximation(VCA): 

1· 
-=-1mar:A(w +if)~ 8(w - Ef) 

11" 

where for the binary alloy AxBi-x this approximation read 

V=xVA+(I-x)V8
; E';=e[+E(k); 

er = uA + c 1 - x kB 
Note, that the using of VCA here is by no means the solution of the correlation problem 
in VCA. It is only the using the VCA for the parametrisation of the problem, to start with 
VCA input parameters. After the integration of (83) the final result for the self-energy is 

_ U
2 
"n(E;;9 )[1 - n(E;;")- n(E':+p)] + n(E[+,,ln(E;;") M,,.(k,w) = - 2 ~ _,,. _,, " + 

N pq w + EP+q - E
9 

- EH,, 

(U1 - U2)" n(E;;9 )[1 - n(E;;")- n(E':+p-g)] + n(E':+v-_q)n(E;;") 
86 N

3 ~ + E-u E-" E" ( ) pqg W P+q - q - • k+1•-g 

It must be emphasized that the equations (84) - (85) give the general microscopic self­
consistent description of inelastic electron-electron scattering in alloy in the spirit of the 
CPA. We take into account the randomness not only through the parameters of the 
Hamiltonian but also in a self-consistent way through the configura.tional dependenc<' of 
the self-energy operator. 

7 Electron-Lattice Interaction and MTBA 

In order to understand quantitatively the electrical, thermal and superconducting proper­
ties of metals and their alloys one needs a proper description an electron-lattice interaction 
too [32], [69]. A systematic, self-consistent simultaneous treat.mrnt of t.hP electron-electron 
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and electron-phonon interaction plays an important role in recent studies of strongly corre­
lated systems. It was argued from the different points of view that in order to understand 
quantitatively the phenomenon of high-temperature superconductivity one needs a proper 
involving of electron-phonon interaction, too [70]- [87] ._ A lot of theoretical searches for the 
relevant mechanism of high temperature superconductivity de~l with the strong electron­
phonon models. This mechanism is certainly valuable for bismuthate ceramics [88] and for 
fullerens. Recently [89] a new family of quaternary intermetallic LuNi2B2C compounds 
has been shown to display superconductivity with Tc = 16.6 K for LuNi2B2C, which, 
besides that studies of their physical properties are still in the early stages, suggest that 
electron-phonon coupling is responsible for the superconductivity. 
The natural approach for the description of superconductivity in such type of compounds 
is MTBA [32], [69]. The papers [32], [33],[34] contain a self-consistent microscopic theory 
of the normal and superconducting properties of transition metals and strongly disor­
dered binary alloys in the framework of Hubbard Model (11) and random Hubbard model 
(73). It is worthy to emphasize that in paper [34] a very detailed microscopic theory of 
strong coupling superconductivity in highly disordered transition metals alloys has been 
developed on the basis of IGF method within MTBA reformulated approach [33]. The 
Eliashberg-type strong coupling equations for highly disordered alloys has been derived. 
It was shown that the electron-phonon Spectral Function in alloy is modified strongly. An 
interesting discussion [90), [91], [92) clarified many uncertaintiesin this important issue 

( c.f. [93)- [971). 

8 Other Applications of the IGFs Method 

Another important application of IGF method is related with the investigation of non-local 
correlations and quasiparticle interactions in Anderson inodel [29], [30]. A comparative 
study of real-many body dynamics of single:impurity, two-impurity and periodic Anderson 
model, especially for strong but finite Coulomb correlation, when perturbation expansion 
in U does not work (c.f. [98)) has permitted to characterize the true quasiparticle excita­
tions and the role of magnetic correl_ations. It was shown that the physics of two-impurity 
Anderson model can be understood in terms of competition between of itinerant motion of 
carriers and magnetic correlations of the RKKY nature. The correct functional two-pole 
structure of the propagator has been found for the strongly correlated case. This issue is 
still very controversial (99] and the additional efforts must be applied in this field. 
The application of the IGF method to the theory of magnetic semiconductors was very 
succsessfull [27], [28]. As a remarkable results of our approach let me mention the fi­
nite temperature generalization of the Shastry-Mattis theory for magnetic polaron [28], 
which clarified greatly the true nature of the carrier in magnetic semiconductors. There 
are some analogy of the Kondo-lattice type of model in [27] with the Kondo-Heisenberg 
model of copper oxides, however the physics are different. There is a dense system of 
spins interacting with s_maller concentration of holes in HTSC. The application of IGF 
method to spin-fermion model [100] has been done by using the theory of Heisenberg 
antiferromagnet (31] and allows one to consider carefully the true nafore of the carriers 

in Cu02 planes. 
And finally, the new interesting application of the IGF method for consideration of dy-
namics of quasiparticles and dynamical conductivity of single electron resonant tunneling 
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systems has been done recently in papers [101], [102] (c.f. [1031). This reformulation of 
IGF method has much in common with the approach of paper (104]. 

9 Conclusions 

In the present paper we have formulated the theory of the correlation effects using the 
ideas of the quantum field theory for the interacting electron system on a lattice. The main 
achievement of this formulation is the derivation of the Dyson equation for two-time ther­
modynamic retarded Green's Functions instead of causal ones. Such a formulation permit 
to use the convenient analytical properties of retarded and advanced GF and advantage 
of using the formal solution of the Dyson equation, which, in spite required approxima­
tions for the self-energy, provide the correct functional structure of the single-electron GF. 
This strong point of our approach do not give the possibility of direct application of it to 
the calculation of the two-particle GFs. In this paper we have considered in details the 
idealized single-band Hubbard model, which is one of the simplest (in the sense of formu­
lation, but not solution) and most popular model of correlated lattice fermions. We have 
presented here the novel method of calculation of the quasiparticle spectra for this model, 
as the most representative example. We hope that this explanation have been done with 
sufficient details to bring out their scope and power, since we believe that such techniques 
will have application to a variety of many-body systems with complicated spectrum and 
strong interaction, as it was shown in Section 7. 
In summary, with using IGF method we were able to obtain the closed self- consistent . 
set of equations determining the electron GF and self-energy. These equations define the 
renormalization coefficient of the one-electron GF(7], defined for a point (k, w = f(k)): 

1 
Z(k) = ~ (87) 

. (1 - dw )w=<(k) 

The renormalization coefficient (87) is an one of the most important notion for the char­
acterization of the single-particle behaviour of the quasiparticle excitations in correlated 
many-body systems. For the Hubbard model, these equations give the general microscopic 
description of correlation effects for both the weak and strong Coulomb correlation, de­
termining of the complete interpolation solution of the Hubbard mod~!. Moreover, this 
approach gives the _workable scheme for the definition of the relevant Generalized _Mean 
Fields written in terms of appropriate correlators. The most important conclusion to 
be drawn from of the present consideration ·is that the GMF for the case of strong 
Coulomb i~teraction have a quite non-trivial structure and cannot be reduced to the 
mean-density functional. This last statement resemble very much _the situation with the 
strongly nonequilibrium system, where the single-particle distribution function only not 
enough to describe the essence of the strongly nonequilibrium state and more compli­
cated correlation functions must be taken into account, in accordance with general ideas 
of Bogolubov and Mori-Zwanzig. The IGF method is intimately related to the projection 
method in this sense, which express the idea of a "reduced description" of the system in 
the most general form. This line of consideration are very promising for developing the 
complete and self-contained theory of the strongly interacting many-body systems. 
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