


In neutron -and x-ray diffractometry the Bragg reflexes, for which form-factor. F(g) =0,
where q = 2kg is the momentum transfer, and kp is the Bragg wave vector, are called forbidden,
because reflection for these ¢ are absent. We want to show here that these reflexes, strictly
speaking, are not forbidden. They are the same as nonforbidden ones with the only difference
that the Darwin table width (DTW) for them is very narrow. We shall show it with the help
of multiple wave Darwin (MWD) approach [1],[2] to the Dynamical Diffraction Theory (DDT)
applied to a simple model of a crystal having two atoms in the elementary cell. ‘As a result of
such approach it will be shown that the reflection amplitude depends on two different form-
factors: “ F(q) and G(q) and both of them give nearly.the same contribution to DTW. If we
denote the DTW of nonforbidden reflex by w, the DTW for forbidden one has a value of order
wy o< wufky, where u is optical potential of the crystal: u = 41rNob N is the atomic density
and b is coherent amphtude ’

Our model is a semi-infinite crysta.l con51stmg ‘of crysta.llme planes parallel to the entra.nce
surface. The elementary cell of a. pla.ne is ‘a square with the lattice parameter being con-
siderably smaller than the period s in the direction of the normal to the surface. The period
consists of two identical planes sepa.ra.ted by dlsta.nce a a.long the normal._ All the atoms of
the crystal are motionless, nonabsorbing and have the same scattering a.mplltude b,, which for
a single atom, separated from the crysta.l and surrounded by vacuum is representable in the
form

b —bo/(1+zkbo), ‘ o ()

where by is a real magnitude, called “scattering length”, and k is the wave-number of the 1nc1dent )
neutron. Such a representa.tlon of the a.mphtude a.utoma.tlca.lly satisfies ‘the requirements of
optical theorem."

We consider the reflection of neutrons from this crysta.l when neutrons have wave number
k <« 2rx[a. For such neutrons we can neglect diffraction on a single crysta.llme plane and
describe the scattering on a plane with the help of only two parameters: - reflection r and
transmission t =1+ r amphtudes '

Reflection amplitude r from a plane is equa.l to

r=—ip/(ky +ip), - p=2rNpb, o

where N; is two-dimensional density of atoms N; = 1/a?, and'b is a somewhat renormalized
amplitude 8y (see (1)), which was calculated in [1]. The expression (2) can be obtained with
the help of multiple wave scattering theory 1] or with one-dimensional Schrodinger equation,
in which the crystalline plane is represented by a potential of the forrn 2p6(z) like in Kronnig-
Penney potential. In the following we shall omit the subscript L.

Now we consider reflection ry; and transmission ¢y, amphtudes for.the system of two planes
separated by a distance a. From multlple wave scattering in MWD a.pproa.ch it follows tha.t

1 + (£ — r*) exp(2ika)
1-12 exp(21ka) '

T2 = T + t'le2:’lmr/(1 - r2e2|ku) -

and - .
t12 = t*exp(ika)/[1 — r* exp(2ika)}.

Substituting ¢t = 1 + r and r from (2) in these relations, we get-

k cos(ka) + pysi‘n(ka) o '
2= 2zpe IL’ + 2ipk + 2ip?sin(ka) cos(ka) — 2p2sin’(ka) . . (3)
. k? ‘
— pika 4
ha =€ + 2ipk + 2ip* sin(ka) cos(kq) —;2p2 sin’(ka) )
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Frgure 1: The smgle period of the model 1t contams two planes at dlstance a and two vacuum gaps on both
sxda of them. The total width s is the length of the period. .

Now we must define reﬂectron from a period. To do that it is necessary to choose the form
of the period. We choose it to be symmetrical as is shown in fig. 1.

The reflection’ amphtude from the period, p, is p = exp[ik(s'— a)]rlz, where the first factor
appca.rs because before and after reflection from two planes the wave is to propagate through
he vacuum ga.p of the w1dth (s - a)/2 Substltutlon of (3) in thls formula leads to '

: ok cos(ka) + psrn(ka)
Iﬁ:2 + 2zkp + 2ip?sin(ka) cos(ka) — 2p srnz(ka)

. d (5)

In the same way we get the transmlsmon amplrtude T of the perlod
R
Iﬁ:2 + 2zpk + 2zp2 sm(ka) cos(ka) 2p sin?(ka)

S e"‘(”“)t]z =¢*

'(6)
Reﬂectlon a.mphtude R from the sem1-1nﬁn1te crysta.l is deﬁned by the express1on [1]

R‘/“ e e
V-t gt

After dividing numerator and denomlna.tor by .

T eEni-pen)

“we getk.‘ : . : . :
: U =r+p)/A+r=p)—l=T—p)/(1+7+)p)
=T+ p) (T =)+ =T =P/l +7+))

From %), and (6) it follows that T+ p can be represented in the form

M

ike ¥ T 2iplk cos(ka) + psin(ka)]
¢ k? + 2ikp + 2p? sin’(ka) + 2ip? sin(ka) cos(ka)
with 61 = F¢1 — ¢g,and .

T :l: p=e¢ = exp(iks — i64)

4, = arctan (2p[k cos(kakz-l- psm(ka)]) ’ ®)
$2 = arctan (2pk + 2p? sin(ka) cos(kd)) . ©)

- k? = 2p?sin®(ka)

After substitution into (7) we get T o
_yJtan(ks/2 + 61/2 = $2/2) — \ftan(ks/2 — 61/2 = $2/2)
\/tan(ks/2 + ¢ /2 — $2/2) + \/tan(ks/2 — $1/2 - $2/2)

(10)

e

: Substltutlon of th1s value into (8) gives

"I two tan have drfferent 51gn thrs e)rpresslon becomes of the form R = (a - zb)/(a + 1b) thh :

real a, and b In that case |R| =1, and we have total or Bragg reflection.’It happens when™
Kof2=hif2= 62 <nnf2<ks[2dif2=hf2, (1)

where n is integer. The magnltude 92 determmes pos1tron of the Bragg peak; and ¢; determines
the width of the Darwin tablc -
:Now, let us remmd how form factor of elementary cell is deﬁned Usually 1t is deﬁned as’ -

F(q Zb expzqr,), C LR ST

where b; is scattering amphtude of an atom at point r;; and’ qis momentum transfer \Ve use
a sllghtly modlﬁcd deﬁmtron :

o= 2B}éxb(iqr'}), = /zb:

In our model we have two atoms, 50 the form factor is’ equa.l to i

| F(q) = cos(ga/2), .

if the or1gm is chosen in'the middle bctween planes For specular reﬂectron we ha.ve a= 2k so
in our case F(q) = cos(ka) : :
In the expressions (8), and (9) besides 'F(g) enters another form- factor, which is represented
by sin(ka), and which we shall denote by G(q) Thus the expresslons "(8), and" (9) can be .
represented in the form T e RS

"251 = z’trctna.rl (2ka(2D +352F(0)G(‘)k)) ' B (12)!
R 2 F(RVG(2k
. - ércm‘l‘( p Fg)j;;zrcl;“((;z)G@ )) ',(13/)»

where F(U) =1 1sllntroduced to get a form- factor for every entry of P i
“Itis supposed that it is G(q whrch is lmportant for determmatlon of the 1y TW for forh]dden ’

" reflexes.

To get the width of the Darw1n table it is nccessary to ﬁnd 2[¢1(L )|, where k. is the solutmn'

" of the equation (ke = kp)s = ¢a(k.). Let us'suppose that-a = s/4. The forbidden reflex should

be at kp = 27 /s, but. because of smiall shift the center of the reﬂcx is at K, = ln + )p/ LH

_oZ (P ppz SN
2¢‘(“*2k3( 2kB+kB) TEo (“)-

If we take into account, that p = 21 Npb = us/4, where'u = 4x Nob is the optical potential of’ . ‘

the medium, (we can also represent it in the form u = uF(O), since [(0) = 1) and Ny is the '<
number of atoms in a unit volume; we obtain that the DTW in the con51dercd case is equal to.

ST L C
k=k|= or - = ey

l I 4k3’ or I kc!, 2k§, ) i (15) .
For nonforbidden reflex (for instance for k a7 [s) we have ‘

K — kfl = 2ul'(ky) = V2u.,

‘It follows from (14), that DTW is determined not only by the ‘.ddltlonal form fa.(tor but
also by the main form-factor which is zero only precisely at Bragg point, and is not zero at the' ’



-~ shifted position. For instance, let us suppose, that there are no additional form-factor, i.e.- we
calculate ¢y and ¢, by perturbation theory and get: ) EE

é = arctan(2pF(2k)/k),  ¢2 = arctan(2p/k).

Since for p > 0 the reflex takes place for & > kg, and the phase ¢; < 0 for these k, the inequality
(11) must be represented in the form: '

ks/24 612 = $af2 < )2 € k's/éf'/— &;/2 —aln (5

or - ‘ ' ) :
2pcos(ka) < kys — ks + 2pfk < —2pcos(ka), Y

and we g’e{:t, the the same DTW as before. Of course the coincidence here is an accidental one.
It is also important to stress that the result obtained here was not possible to obtain in the
framework of the Ewald theory, because there it is not the form-factor F(2k), which enters
the theory, but the pure number: F(2kg), and this number is identically. zero for forbidden
reflexes. To explain forbidden reflexes that are observed experimentally {3] in Ewald theory it
is necessary to consider four wave approximation '

Thus we proved that forbidden reflexes differ from unforbidden ones only by the width of
the Darwin table. This width is provided by an additional form-factor and by the shift of the
central point in the main form-factor that is zero at precisely the Bragg point. In practice
the forbidden reflexes are sometimes observed (see for example [5]- [9]) but they, are usually
ascribed to double unforbidden ones. .. T T o )

The presented here considerations are also aplicable to x-ray diffraction. It is interesting to
note, that because of very narrow width the forbidden reflexes can be used for measurements

- of small shifts of atoms under the action of external forces. '
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