


1 INTRODUCTION

The unusual magnetic properties of high-T. superconductors in the nor-
mal state [1] have attracted increasing attention. As revealed by neutron
scattering [2] and nuclear magnetic resonance (NMR) [3] experiments, in
the metallic state there exist pronounced antiferromagnetic (AFM) spin
correlations reflected in an enhanced dynamic spin susceptibility at the
AFM wave vector. It is widely believed that the essential characteristics
of magnetic correlations in the CuQ, plane may be described by effec-
tive one-band correlation models on the square lattice [4]; besides the
Hubbard model, the t-J model is frequently used.

The hitherto existing theories of the dynamic spin susceptibility in
the ¢t-J model either in the paramagnetic or the ordered state make use ‘
of diagrammatic [5] and projection techniques [6], of slave-boson [7]-[9]
and slave-fermion [10] methods, and of the extended Maleyev-Dyson rep-
resentation [11]. In the slave-field approaches to the ¢-J model [7]-[11]
the local constraints are treated in mean-field-type approximations which
may restrict the validity of the theory. Therefore, it is tempting to inves-
tigate the spin susceptibility within a constraint-free theory. As a natural
starting point, such a theory may be based on the representation of the
¢-J model in terms of Hubbard operators guaranteeing the exclusion of
double occupancy, and on approximation schemes directly dealing with
Hubbard operators.

Based on the Hubbard-operator representation of the ¢-J model, the
aim of this paper is to calculate and to analyze the dynamic spin suscep-
tibility x*~(g,w) in the paramagnetic phase within a Green’s function
decoupling procedure. The method can be understood as a generaliza-
tion of the random phase approximation (RPA) to the case of Hubbard
operators. The resulting expression for x*~(§,w) describes the kinematic
enhancement (due to the transfer term in the ¢-J model) as well as the
exchange enhancement (due to the exchange interaction). It generalizes
some previous approaches treating the limits J = 0 (corresponding to the
Hubbard model for U — oo [12]-[14]) and t = 0, n = 1 (corresponding to
the Heisenberg model [15]). In this paper we mostly restrict our analysis

to small doping values § = 1 — n near to the localized limit (n X 1)
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including this limit (n = 1). Within our decoupling scheme special care
has to be taken of the calculation of the static susceptibility in the lo-
calized limit. To obtain reasonable results at n = 1, it turns out that
an external magnetic field h in z-direction has to be included which is
put equal to zero at the end of calculation. Then our decoupling coin-
cides with that by Tyablikov [15] who has obtained a Curie-WeiB law for
the uniform static susceptibility. Recently, Curie-type contributions to
the static susceptibility were found by Izyumov et.al. [5] also for n < 1.
Therefore, we will investigate the limits h =0,n - landn=1,2 —0
in more detail.

The paper is organized as follows. In Sec. 2 analytical expressions
for the transverse dynamic spin susceptibility in the paramagnetic phase
with and without an external longitudinal magnetic field are derived by
a decoupling procedure for two-time retarded Green’s functions. Those
.expressions are evaluated and analyzed in the cases h = 0 (Sec. 3-5) and
h # 0 (Sec. 6 and 7). In Sec. 3 the low-frequency susceptibility at large
wave vectors is calculated at T = 0, and the hole contribution to the
spin-fluctuation energy is derived. Sec. 4 is devoted to the calculation
of the dynamic suceptibility at the AFM wave vector and at T = 0,
where the resulting two-peak structure in the spin-fluctuation spectrum
is investigated. The temperature dependence of the uniform static sus-
ceptibility is studied in Sec. 5. In the localized limit, considered in Sec. 6,
the static spin susceptibility is calculated including an external magnetic
field, where the problems with the limits h=0,n - landn=1,h > 0
are pointed out. In Sec. 7 the static susceptibility forn < 1 and h — 0 is
examined, and the results of our approach are compared with those ob-
tained by the diagrammatic technique [5]. The summary and conclusions
of our investigation can be found in Sec. 8.
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2 GREEN’S FUNCTIONS AND
DECOUPLING PROCEDURE

Let us start with the ¢-J model in an external homogeneous magnetic
field parallel to the z-axis,

H= Zt,JX"OXO" 4= ZJ,J(S‘SJ - —n n)—hy S, (1)

.0 4 J
where the summation is taken over the sites of the two dimensional square
lattice with the transfer amplitude ¢;; = —t < 0 and the exchange con-
stant J;; = J > 0 for nearest neighbours ¢ and j. The spin and density
operators are expressed by Hubbard operators as

S,‘ZZI%ZUX?U’ =;X:ma (2)

where @ = —o. As will be seen later on, within our approach the exter-
nal magnetic field A is essential to obtain reasonable results in the local-
ized limit » = 1. The transverse dynamic spin susceptibility x*~(q,w)
describes the response to an additional space- and time-varying field
h cos(qR — wt) which is perpendicular to the external field h. It is
given by the two-time retarded Green’s function

X (@w) =~ (SH1SZ ). 3)

57 =Xf&7

with
87 =D exp(iR)S7
i
where we use magnetic units (gup = 1). Using the Fourier transform of
Hubbard operators the transverse susceptibility can be written as

= 1 :
X(Gw) = —5 > Gr(w), (4)
k
where the Green’s function Gi,(w) is defined by
Gro(w) = ((X+°X2Iq|5— N
— § DXy, (9
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Now, we solve approximately the equation of motion for qu(w): De-
composing the Hamiltonian (1) into H = H, + H; + Hy we obtain the
commutators (for the susceptibility (4) we have to set o = +),

[XP°XP, H) = D tim [X7OX27 (1= X77) + X7 X o7 X57)
= tim [(1 = X7 XX+ XPTXIX], (6)
5 1 (44 4 g yoo
(XX HA] = 53 i [XPXI X7~ XX X
- -;- 3 Jim [XFXPOXP ~ XTTXOXY),(7)

[X7°XY, Hy) = ohX°XY . (8)

According to (6) and (7), there occur new Green’s functions in the equa-
tion of motion for Gi,. We decouple these Green’s functions in the fol-
lowing manner

[XPOXP H] =~ Yt [(1— (XP7)XPOXY 4+ (X70X%)X27)
— ) tim [(1—(XT7) X2 XY + (X2°XP)X2%) (9)

‘ _ 1 o 44 oo 4 4
[XPOXP Hi] = 537 Jjm [(XPOXP7)X5? — (X7 X7OX]

)X7°X%]. (10)

— 5 3 T [(XPXE) X (2
m

Within this procedure we never split a density operator X7 (= X70X97)
or a spin operator X{? (= X7°X?’) into two separate parts. Note that
for coinciding indices 7 = j, the r.h.s. of Eq. (6) reduces to a more
simpler form (due to X?°X?° = 0) which does not require the subsequent
approximation (9). Dealing with the case = j in a special manner we
have carried out all the following analysis, and we have found only small
quantitative corrections to the main results presented below. So, in the
further discussion we will neglect these complications, i.e. we use (9)
also for : = j. Some additional justification for this approximation will
be presented also at the end of Sec. 2.

The inhomogeneous term in the r.h.s. of the equation of motion for
Gg(w) is expressed by the momentum distribution function nj as

([XE-OXI?;q’S:q]) = nt — Mg ng = (XZOXI?U) . (11)

Then, the equation of motion for Gi.(w) reads

(w+ 0t + Ef - E,:Jrq)qu(w) =nt - Mirg — (exnf — sk+qn;+q) X
xxt7(qw) = Jy (nf ~ni,,) xT(Gw)  (12)

with
s 550 Oh
Bf = (1~ (X7 e — 20 (X0%) - 2 (13)
and
1
Jg = 2J7,, €k = —4ty, Y& = = (cosk; + cos k) . (14)
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In the paramagnetic phase the average (X??) does not depend on the
site index and is given by

(X7%) = 2 +0(S7) (15)

where n is the electron concentration, n < 1, and (5%) is the homoge-
neous magnetization due to the presence of the external magnetic field
h. Finally, we obtain the transverse susceptibility

_ Xo(q,w) '
t(Gw) = = -, 16
(@) 1 - x1(q,w) + Joxo(q,w) (16)

— 1 n:- - n;-{»-q
Xo(G;w) = —— . —, (17)
N . w+zO++Ek——Ek+q .
o _ 1 eknf ~ Ek+qM 1
xa@gw) = 3 zk:w+i0++Ek+—E,:+q . (18)

That is one of the main results of the present work. It generalizes several
known expressions such as that by Hubbard and Jain (12] and others [13]-
[14] (J = 0) or by Tyablikov [15] (n = 1, = 0). The enhancement factor,



i.e. the denominator in (16), includes two contributions. The enhance-
ment term x,(q,w), proportional to the hopping amplitude ¢, arises from
the kinetic energy in the Hamiltonian (1) and will be called kinematic
enhancement hereafter. This enhancement occurs even for J = 0 due to
the nontrivial commutation relations for Hubbard operators. The other
contribution, proportional to J, can be understood as an enhancement
which is caused by the exchange interaction. The character of the con-
tributions xo and x; is quite different. Due to the numerator n} — Mhtg
in Eq. (17), the term xo(g,w) is determined for ¢ — 0 by energies in the
neighbourhood of the Fermi level, as is known from the itinerant theory
of magnetism. In contrast, all the states below the Fermi level may con-
tribute to x;(¢,w). Therefore, this term dominates the behaviour near

to the localized limit n < 1.

The momentum distribution function n§ (Eq. (11)) is determined by
the one-particle Green’s function

o o o 1 —ik(Ri— o o
Gi (@) = (XIXPN = 57 D e R BUUXT X)), (19)
t,7 -
which we calculate in the Hubbard-I approximation, i.e. by an analogous

decoupling procedure as for the spin susceptibility (9-10). This yields

- (x7°)

i) = B v (20)

with the renormalized band dispersion E{ (13-14). From (20) we get

ni = (1= (X7%)) f(E{ — n) , (21)

where f(z) = (e’ + 1)~ is the Fermi function, and 8 = 1/T. The
chemical potential p and the magnetization (5?) are determined self-
consistently by the equations

1 -4 Z 1 4
n:TV—ank, (S):ﬁZank. (22)
4 ko

The Hubbard-I approximation takes into account the effects of strong
electron correlations by a reduction of the characteristic bandwidth (Eq.

(13)) and of the spectral weight for each k-state (Eq. (20)). For very small
electron concentrations n < 1, the momentum distribution function nf
and the dispersion E{ go over to their free electron values.

In the following we will analyze formula (16) first without magnetic
field (h = 0) (Sec. 3-5) and after that for h # 0 (Sec. 6 and 7). For h =0
the spin dependences in Egs. (17) and (18) disappear, and we get

1 Nk — Nkyq
) _ 1 23
XO(q’w) Nzk:w—f-i()'*' + €k — Ekyyq ’ ( )
B 1 ExNEk — Ek4qNk4q
_ 1 - (24
x1(¢,w) N;w+i0++ék_ék+q ’ &

where
€ = (1—--;1)61;,
o= (1=n/2fE—f)y  G=p+nd. (25)

The dynamic spin susceptibility xt~(¢,w) for A~ = 0 is then given by
(16) with (23) and (24). Putting J = 0 in (16), only the kinematic
enhancement x;(q,w) remains. This result was also obtained by Hubbard
and Jain [12] (see also [13, 14]), starting from the Hubbard model (with
k = 0) and taking the limit U — oo. Note that the t-J model may be
derived from the Hubbard model in the strong correlation limit U > ¢,
where J = 4t2/U. These previous works [12]-[14] did not indicate an
antiferromagnetic (AFM) instability near the half-filled limit n < 1. In
our derivation based on the ¢-J model an additional contribution to the
enhancement factor appears due to the exchange interaction. Below we
present an analysis of the expression (16) and show that the ¢-J model

has such an AFM instability near the half-filled limit n < 1.

- The method of Hubbard and Jain does not deal with the two-particle
Green’s function, instead the linear response of the magnetization to a
weak longitudinal, space- and time-varying field is examined. For com-
pleteness and for a better comparison, in Appendix A we calculate the
longitudinal dynamic spin susceptibility x**(¢,w) of the t-J model for h =
0 within the Hubbard-Jain technique. We obtain x**(¢,w) = ;x77(q,w)
with x*~(¢,w) given by (16,23,24) which is in complete coincidence with



our previous calculation. Let us emphasize that in the Hubbard-Jain
procedure the problem of coinciding indices z = § in our decoupling (9)
does not occur. That gives further support for our approximation.

3 LOW-FREQUENCY SPIN
DYNAMICS

Now, we consider the low-frequency dynamics for w < ¢ and for large
momenta ¢ at zero temperature and without magnetic field (A = 0). We
choose a particular direction ¢, = ¢, = ¢q. For small doping, § < 1, the
Fermi surface covers nearly the whole Brillouin zone (BZ) except for small
spherical hole pockets located at the corners of the BZ at C} = (&, £7).
The characteristic radius kg of the hole pockets can be estimated from
(22) written as

1 _ _ n f~ - ,
5=Nzk:"k’ nk=(1_§)(1—f(ek—u)), (26)
where the hole distribution function #4 is introduced, and we obtain

ke ~ V876 . (27)

The function xo(q,w), Eq. (23), can be easily rewritten in terms of M.
For further use we introduce the functions ’

F(§w) = Y : ‘ (28)

o = =
k w+20 +€k €k+q

- ExTk — Egpqlipy
F. =y aTk+q
H(3e) — W+ 0% + & — Erpg (2)

Then we may write

1-x1(¢w) =wh(§w) + R(Gw) . (30)

Now, we expand the functions xo, F; and F, for small frequencies w (up
to first order in w) and large enough momenta q > 2kr. We take into

account all contributions up to second order in the doping §. The result
is given in Appendix B, and it is valid for all frequencies which obey

Wl <wn(@),  wnlq)=2Wsin £, (31)

where W = (4 —2n)t is the half width of the correlated conduction band.
Note that w,(q) is of the order of'¢t. Under all these conditions, i.e.
q > 2kp,w € wn(g) and § < 1, we obtain the dynamic spin susceptibility

6(1 4+ 76)

)™ (4 70) F 2 snla 2 o] (W@ 2

The logarithmic contribution results from the singularity in the density of
states at the centre of the band. In the static limit, w = 0, the expression
(32) simplifies to

_ 1+76
At + Jy(1 + 76)

I

x*(4,0) x(9) (33)
which indicates an instability of the paramagnetic state against AFM
ordering at ¢ = ). The static susceptibility (33) diverges at the critical .
value J; of the exchange interaction given by

2t '
=153 ~ 2t(1 — 7é) . (34)

c

Above J;, one finds AFM order within our approximation. Of course,
this value of J. which is of the order of ¢ is much too large to be realistic
for the ¢-J model, since we also expect AFM order in the parameter
region J < t. The reason that J. is too large consists in our mean-field
like decoupling in the equation of motion (9,10). On the other hand, it
is an important improvement of the Hubbard and Jain approach that
we find AFM near n = 1 at all. It allows us to study the dynamic spin
susceptibility in the vicinity of the phase boundary, i.e. for values of J
slightly below J. (Eq. (34)). Irrespective of the actual value of J. which
is suggested to be strongly renormalized from its mean-field value (34)
by better approximations we expect that the qualitative picture near to
the phase boundary is correctly given by our procedure.



To compare with phenomenological approaches it is appropriate to
fit the logarithmic dependence in Eq. (32) by a linear one. It turns out
that a good fit may be obtained by

r 4+ J,(1 + 76
) =y D wt T @)
That is shown in Fig. 1, where the w-dependence of Imy*~(¢,w) from
Eq. (32) is compared with the fit (35). Both curves have a maximum
at around the spin-fluctuation energy I';. On the other hand, similar
expressions as (35) are already known to explain the NMR-data from a
phenomenologically given spin-susceptibility [16]. The important point
is a strong maximum of the g-dependence of Imy*~(¢q,w) around the
AFM wave vector Q = (m,m). For illustration, in Fig. 2 we show the
g-dependence of Imx*~ and of I, which arise from Eq. (35).

We can interpret our result (35) as the magnetic response of a collec-
tion of nearly localized spins which are coupled to the itinerant degrees
of freedom with a characteristic energy €(é) = tk%/2 ~ 47té (hole Fermi
energy). There is also a contribution from the exchange interaction which

. is mediated, however, only via these itinerant degrees of freedom. Ac-
cording to that, the spin fluctuation energy I'; contains two parts. The
first one is governed by the energy scale ¢(§) and the second term, pro-
portional to Jye(6)/t, strongly suppresses the value of T, at § ~ Q.
Nevertheless, due to the static part x(g), we obtain the strong maximum
of Imx*~(q,w). The peak in Fig. 1 with a position proportional to §
collapses at the ordinate axis for n — 1. That is a drawback of our
theory because in that limit one expects the existence of low-frequency
spin fluctuations due to paramagnons with a characteristic energy of the
order of J. This contribution is not captured, however, in our procedure.
The reason is clear since we decoupled in Egs. (9,10) the spin operators
of neighbouring sites, i.e. we neglected spin-correlations.
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4 DYNAMIC SPIN SUSCEPTIBILITY
AT THE ANTIFERROMAGNETIC
WAVE VECTOR

Here we consider the particular case § = 0 and calculate x*~ (Q,w) near
half-filling at T = 0 not restricting ourselves to low frequencies w. The

function XO(Q,w) now takes the form

- 1—n/2 1 1
xo(@w) = —— ) {w_%k—w”ék} . (36)

k|<kp

Integrating in (36) over |k| < kp = /876 and noting that & ~ —W +
1ch2 we obtain for the real and the imaginary parts of xo(Q,w) the |
followmg results, respectively,

3 1-n/2, w? — (2W)?
’ 1 T ) 37
Xo(Q,w) 27rW In (oW — % k%‘)Z ( )
xo(Q,w) = le (w —2W + %Wk%) ORW —w); w>0,

where xg (Q, —w) = —Xo( w) and O(z) is the Heaviside step function.
Analogously, for FZ(Q, w) we obtain
} (38)

FY(G ) = 50 (=2 + 3742 ) 02 -); >0,

w+2W - %Wk%
n = =
w—2W + WL

4 W w+2W

VR kZ w w—2W
FQ,w) = ﬁ- + —= {ln ’

It can be easily checked that the Kramers-Kronig relatlon is fulfilled for
each pair in (37) and (38).

Further, to calculate wFl(Q, w) we notice that the real part is given
by (B8) with sin(g/2) = 1, and the density of states (DOS) is defined by

= 71725(5—51:) . (39)
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The function which is integrated in (B8) with the DOS is a rather flat
one. It tends to unity, if the van Hove singularity in the DOS is reached
at € = 0. So we may estimate (B8) with the square DOS, p(e) — p(e) =
(2W)'O(W — |e|), that leads to the result

= ! w w+2W
= —= = . 40
[+P(@ )] = J7 | 2Wl (40)
The imaginary part resulting from (B10) is given by
= " w (w
=—r=p(=) . 41
[wR@w)] =730 (3) )

Collecting the results (37)-(41) and using Eqgs. (16) and (30) we obtain
a rather complicated analytical expression for X*"(@,w). The results
of the numerical analysis are presented in Fig. 3for / = 0 and J =
1.2¢. For comparison, we also show Imyo(@,w). There occur two peaks
in the w-dependence of Imx*~. The first one, at low frequencies, is
due to a relaxation process of nearly localized spins originating from the
presence of holes as described in the previous section. The structure at
higher frequencies of the order of 4¢ is mainly given by x# which describes
a continuum of electron-hole pairs. Because xfi = 0 beyond the high
frequency region, one may infer that the low-frequency part of Imy*=
is mainly caused by x, i.e. by the kinematic enhancement. Indeed,
this peak is already present at J = 0. If we approach the magnetic
phase boundary, the maximum of the low-energy peak will be greatly
enhanced. For decreasing doping the high-energy peak vanishes, whereas
the low-energy one collapses on the ordinate axis, as already discussed
in the previous section.

A similar two-peak structure was also suggested phenomenologically
by Takahashi and Zhang [17]. Also the recently published exact diago-
nalization studies of the dynamic spin susceptibility [18] show a similar
distinction between structures, determined by the electron-hole contin-
uum, and the relaxation behaviour for small energies.
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5 TEMPERATURE DEPENDENCE OF
THE SPIN SUSCEPTIBILITY

Here we calculate the temperature dependence of the uniform static spin
susceptibility without an external magnetic field and for any filling n # 1.
We determine the chemical potential from Eq. (22) approximating the
density of states (39) by a square one. This approximation is especially
justified for small doping values § < 1, since then the chemical potential
is far from the van Hove singularity. But once we have chosen the square
density of states, the following derivations are valid for any filling n.
From (22) we get )

1 + eB(W+a)

é4tﬁn -

(42)

which determines fi. Then we calculate xo and x; from their formulas
for h = 0 (23,24). In the static limit (w = 0) and for § — 0 we obtain

| n 1 0f (e — )
x0(0,0) = (1- E)N >, (‘—aek—) ; (43)
x1(0,0) = n2 1 Ex (——m) : (44)

For the square density of states we get

1 3 - 5 N
x0(0,0) = & (F=W=-p)-f0V - ), (45)
1 o . 5 .
x1(0,0) = = (S(=W - )+ /(W - p)) . (46)
By (42) we finally obtain the uniform static spin‘susceptibility
1
+- - v.,
X (0,0) = 4t coth(2ntfB) + 2J ° (47)

At T — 0, the susceptibility tends to a constant value. Hence, in our
approach, there is no indication for a ferromagnetic instability for any
n. This was derived up to now from the analysis for h = 0. We will sec
in Sec. 7 that the inclusion of a magnetic field will modify (47), but will

13



not lead to ferromagnetism. For large T the susceptibility (47) decreases
like a Curie law only at rather high temperatures T' > 2nt,

1 n
2 T+4+nd’

*7(0,0) = (48)
The result (48) with J = 0 (U — oo) agrees with that obtained by
Hubbard and Jain [12]. They pointed out that the temperature range,
T > 2t (for n near to unity), for which (48) holds is in contrast with the
general expectation. Near to the localized limit n — 1 one expects that
the Curie law has to be reached already at T > J.

To clarify this contradiction we note that the previous analysis with-
out a magnetic field h becomes meaningless in the localized limit n = 1.
In the next section we will see that one can calculate the susceptibility in
the localized limit n = 1 within the present approach only if one includes
a weak magnetic field, i.e. if one starts from the general expressions (16-

18).

6 THE LOCALIZED LIMIT

Now, we consider the limit n = 1 at finite temperature in the presence of

a longitudinal magnetic field h which will tend to zero in the end of the
calculation. We have to start with the representation (16-18). Before we
restrict the analysis to the case n = 1, let us rewrite the general formula.
Note that, due to the presence of a static magnetic field, both the electron
dispersion F{ and the spectral weight of each E-state depend on the spin
o (see Eq. (20)). For convenience, we change the notation by rewriting

ng = (1 - g + 0(52)) — A, (49)

where 7f is the hole momentum distribution function. In this notation
the susceptibility (16) can be expressed by

X+~((Taw) —2(5* )Fl (fw) + Xo(qaw)

(50)
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[w+ 0+ — h —2(S=)(J, — 2J)] Fi(§,w) + Fa(d,w) + Joxo(§,w)

Here, xo(d,w) is given by (17) with n{ replaced by —n{. The functions
F1(§,w) and F3(g,w) are determined by Eqs. (28) and (29), respectively,
with the substitutions & — E,':, Ektq — E;+q and np — ﬁ:, Nkyq —
A pg-

In the limit n = 1, all E:states in the BZ are occupied which gives -ﬁ‘,: =
0. Therefore, xo(q,w) = F2(g,w) = 0, and only the terms « F}(¢,w) in
Eq. (50) survive. Accordingly, the susceptibility takes the form

e —2(5?)
Xt (w) = w + 10+ — h — 2(52)(J, — 2J)

(51)

and describes the response of localized spins to a weak transverse mag-
netic field in the presence of a finite longitudinal field A. The same
formula was also obtained by Tyablikov [15] (for J < 0) starting directly
from a Green’s functions decoupling in the Heisenberg model. Thus, in -
the localized limit n = 1, the general formulas (16-18) reduce to the
Tyablikov approach. Therefore, we may follow him to calculate the mag-
netization (S%). Using the operator identity S7 = 1 — S7S} (for spin
s = 1/2), the average (S*) can be calculated from

% dw Imy*~ (§,w)
_2 NZ/ 7rexp,3w)—1 (52)
With (51), (S%) can be transformed to give the self-consistency equation
1 1 h+2(5%)(J, —2J)
o N ) " coth [ﬂ o ] : (53)
q

Following the lines indicated by Tyablikov, for & < T we expand the
r.h.s. of Eq. (53) in terms of the small parameters & /(2T) and 2(55\J/T
to obtain a solution for (S5?). This expansion is well convergent for T > J.
Using the definition of the longitudinal susceptibility

X7 = (S 2h, (54)
for T > J we obtain the Curle law
2z __ 1 T -




where Ty is the Néel temperature. Substituting this result into (51)
({(S*) = x**h), the static transverse susceptibility is given by

1 1
({0 =z —— Tr>J. 56
For the AFM wave vector Q one has

= 1

xt(Q,0) = AT —Tn)’ (57)

which manifests an AFM instability at 7 = Ty. For § = 0 we have
xT7(0,0) = 2x**. In contrast to the expansion (48) of the previous

section, the Curie law (55) shows a decay like (T + Tx)~! already for

T > J which is more preferable.

Let us emphasize that we do not obtain Eq. (56) for ¢ = 0, if we
let n go to unity in Eq. (47). With other words, for § = 0 the limits
h=0,n—1and n=1, h — 0 do not give the same result within our
method. In the present section we fixed n = 1 and let k tend to zero.
That seems to be the correct approach. In Sec. 3 to 5 we have performed
the calculations at finite doping for zero magnetic field. The question is,
if we obtain another result also for n < 1 dealing with a weak magnetic
field. That will be answered in the next section. Another question is, if
the necessity of a longitudinal magnetic field & in our approach results
only from the present approximations. We think that this is the case,
since the magnetic field k only breaks the symmetry. For h = 0 we would
obtain zero in the r.h.s. of the equation of motion (12) after decoupling
it at n = 1. But we suggest that an improved decoupling scheme does
not need a magnetic field to obtain a nontrivial result for n = 1.

7 CURIE-TYPE CONTRIBUTION FOR.
FINITE DOPING ?

In the last step of our analysis we consider the general expressions (16-
18) at finite magnetic field h and for n < 1. We have seen in the previous
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section that within our approach for n = 1 we need a magnetic field
to obtain reasonable results. The question is, if the magnetic field also
changes the results of our first analysis (Sec. 3-5) for n < 1 which we
carried out for h = 0. We will now show that this is not the case, except
for the uniform static susceptibility.

The formula (50) clearly indicates two contributions to the suscepti-
bility. Namely, the first term in the numerator of (50) proportional to
(S*) describes the response of a localized spin and was discussed in Sec.
6. The second term in the numerator is due to an itinerant component
at n < 1. The contribution of a localized spin disappears, if one takes
h = 0 in the very beginning. Then we come to the description on the
basis of Eqs. (23) and (24) which was analyzed above. Now we examine,
if the contribution of a localized spin survives in the itinerant regime,
n < 1, for h tending to zero.

One easily sees that at w # 0 and A — 0 the equations (23) and
(24) are restored. So all the results obtained above for the dynamical
susceptibility at A = 0 remain valid.

To analyze the static case, w =0, at A — 0 we note that

. . S*
E:_Ek_+q=(5k*5k+q)_h 1__(h)(5k + €k +4J)] . (58)

So, in the integrands of (17) and (18) at w = 0 and h — 0 we have

+ —
ng =N,

Ef - EgL,

Nk — Nkyq

(k¢ L) (59)

~ o )
€k = Ektq

for all £ except for £ € L at which €k = Egyq. For ke L, we have

Mk (1-2) Of (=) 257, f(&x— @)
Ef — E,, 2/ 9 b R0 M e v 20

60
Then we divide the summation over the BZ into a summation oveEr B
and the remaining part. If £ 0, L is a line in E—space with Ny, 1::~points
and, hence, the summation over L gives a correction of order NL/N <« 1
which vanishes in the thermodynamic limit. Therefore, for ¢ # 0, w =0
and h — 0 we restore the result (23)-(24) obtained at h = 0.

17




The situation is another one for ¢ = 0. In this case, all the k-points
belong to L (L is equal to the BZ), and at A — 0 we have

2(5*
x0(0,0, & = 0) = x0(0,0, = 0) + <h )

where x0(0,0, ~ = 0) is given by Eq. (43), and C(6,T) is defined as

|h—»0 ’ C(é’ T) ’ (61)

_ 1 f(éx — i)
“CD=75 Xk: 1= 2 o (e +20) (02)

The function C(8,T) also occurs in the enhancement factor, and we ob-
tain

X0(0,0,h =0)+ X520 |. . C(8,T)
1= x1(0,0,h =0) +2Jx0(0,0,h =0) + C(6,T)’
(63)
where xo and x; at A = 0 are given by (43,44) (see also (45,46)). The
previously derived result (47) at A = 0 can be obtained from (63) only by
putting C(6,T’) equal to zero. However, the local contribution C(6,T)
changes the result considerably. The formula (63) resembles the spin
susceptibility which was derived by Izyumov and Letfulov [5] by means
of a diagrammatic technique for Hubbard operators. They predicted, for
n<lath— 0and w=0,alocal contribution for any §. In contrast to
them, we obtain such a contribution in the limit A — 0 only for § = 0.

xt7(0,0,h — 0) =

To analyze formula (63) one has to determine (S?) in a self-consistent
way. Let us give here only a rough estimate for small doping 8t36 < 1.
Using the square density of states we obtain

] 4té
Xo(O,O,hZO)ZT, l—Xl(O,O,hZO)ZT. (64)

Since C (6, T') remains finite, the contribution of a localized spin becomes
dominant at § — 0,

(0,0, — 0) ~ 2(52) by - (65)

This result is in agreement with the definition of the longitudinal spin
susceptibility (54). A self-consistent calculation of (5*) similar as in Sec.
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6 gives then a uniform static susceptibility which goes continuously to
the result (55) if n tends to unity. But this works only for ¢ = 0. For
G # 0 a discontinuity remains.

Finally we would like to stress that within our approach there appears
a contribution of a localized spin for any ¢ if we consider a magnetic field
such that A > ¢, J. In that case the second term in Eq. (58) proportional
to h would dominate the energy difference ; — £y, independently on the
wave vector ¢. But the condition & > t,J is an unrealistic limit, since A
should tend to zero in the end. In this respect it should be mentioned
that the diagrammatic technique [5] is based on a perturbation expansion
which treats H; and H; as perturbation and considers H} as zero-order
part. That might give an explanation for the difference between our
result and that given in Ref. [5].

8 CONCLUSION

The main results of our Green’s functions decoupling approach to the
dynamic spin susceptibility in the ¢-J model are the following. ‘
(i) Within a RPA-like decoupling in the Hubbard operator representation,
we have derived analytical expressions for the dynamic spin susceptibility
which reveal both a kinematic and an exchange enhancement and gen-
eralize some previous results obtained in the limits J = 0 (12]-[14] and
t=0,n=1[15]. .

(ii) The low-frequency susceptibility near to the localized limit (n S 1)
and at T' = 0 can be calculated analytically in the case of large enough
wave vectors in the (1,1)-direction. We have obtained an instability
against AFM ordering at a critical exchange interaction and a relaxation
of spins due to the presence of holes. Near to the phase boundary, the
¢-dependence shows a strong exchange enhancement around the AFM
wave vector. The absence of spin relaxation in the localized limit n = 1
is ascribed to the neglect of spin-correlations within our approach.

(iii) The spin-fluctuation spectrum at the AFM wave vector, which we
have calculated analytically for n & 1 and T = 0, exhibits two peaks,
where, besides the low-frequency relaxation peak, there appears a struc-
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ture at frequencies of the order of 4t due to the electron-hole continuum.
Those structures are in qualitative agreement with phenomenological sug-
gestions [17]. Note that the two-peak structure is not obtained by slave-
boson methods [7]-[9].

(iv) The temperature dependence of the statlc susceptlblhty atn =1

and of the uniform static susceptiblity at n <~ 1 have to be calculated,

within our approach, by means of an external magnetic field which is put -

equal to zero in the end. In the localized limit, a Curie law behaviour
with the Néel temperature Ty = J is found. At n < 1 there appears
a contribution to the uniform static susceptibility which describes the
response of a localized spin. The local contribution resembles the result
obtained within the diagrammatic technique by Izyumov et. al. [5] who
have found, however, such a contribution for any §.

Besides the physical insights, the analysis of our constraint-free RPA-
like approach and the discussion of its drawbacks may give a basis for the
development of improved constraint-free theories of the spin susceptibil-
ity in the ¢-J model. From our results we conclude that the main problem
to be solved is the appropriate treatment of spin-correlations so that the
qualitative features of the localized (Heisenberg) limit can be reproduced.
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FIG. 1: Imaginary part of the spin susceptibility Imy*~ in dependence on
frequency for t = 1, § = .05, J = 1.2 and at the antiferromagnetic
wave vector Q Compa.red is the correct expression (thick line) with
a fitted one (thin line).
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FIG. 2:

Imaginary part of the spin susceptibility Imx*~ in dependence on
the wave vector q along the diagonal ¢ = (q,q). The parameters
aret =1, 6 = .05, J = 1.6 and w = .01 (thick line). Also shown is
the damping factor [y (thin line).
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FIG. 3: Frequency dependence of Imx*“(é,w) at the antiferromagnetic
wave vector Q for t = 1, § = .05, J = 1.2 and J = 0 (thick
lines). For comparison we show xg(Q,w) (thin line).
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APPENDIX A

In the Hubbard and Jain approach [12] a linear response to a weak
longltudlnal magnetic field is calculated. So we have to replace the Hj

term in (1) by Hn(t) = —h ;57 cos qR — wt). After decoupling in the
Hubbard-I approximation the equation of motion for X?°(¢) reads
4 (01:4 Ea Ea Oc
i X = X Zt,,X ZJ,, )N X% (t)
h
——‘Tx"”( t)Re e@i-wt) (A1)

Analogously to [12] we make the ansatz
(X77(0) = 5 +(SF () = T+ oRe [m(Gu)e@=9] | (A2)

where m(q,w) measures the linear response of (X7°(t)) to the applied
field. The magnetization can be also written as (gug = 1)

m(q,w) = x*(q,w)h , (A3)
where x**(q,w) is the longitudinal spin susceptibility. After making a
Fourier transformation and solving Eq. (A1) we obtain the result

' i 7, h/2
XOa : — 1Bt g . m(q7 )(Ek-l-q + J) "i(w+Ek+q)t 00
k(1) e+ 2 ot Broe By 4107 X%,
o m(§w)(ek—q + Jy) — h/2

- t(w—FEj.. o
2 w— Ery + Er — i0* HTEIXY,, (AY)

with Ey = & — nJ. Substltutlng this expression for XO"( ) into
oo 1 % 4 i(k'—
(X7 () = 5 D_AXP ()XY () F PR (AS5)
ko k!

and comparing with (A2) we determine m(§,w). Using Egs. (A3) and
(A2) one finally obtains

_1 nk—ngy
Y w) = 1 N 2k W Zx—Eppq+i0F
H 2 1—1 E EkNk —Ek4qNiktq J 1 E Nk=TNktq ? (AG)
k w+5k—5k+q+i0+ IN k wég —Ex 4 q+i01

where the identity Ex — Exyq = € — Egyq is used.
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APPENDIX B

Here we calculate the functions o, Fi and F; defined by (23),(28)
and (29) for small frequencies w without magnetic field (2 = 0) and for
zero temperature (T = 0). We consider wave vectors with |¢] > 2kr and
assume a small doping value § such that only small hole pockets with a
radius kr given by (27) are occupied. In this limit the hole distribution
function (26) is given by

~ n - -
iy = (1—5) O — &) . (B1)
The function xo({,w) may be represented in the form
. 1—n/2 - 1 1
Xo(q,w)—-‘ N Z {w—ék+ék+q+i0+ w+ék—ék_q+i0+} ’

1E|<kp
(B2)

For the particular direction ¢, = q, = q and k < k¢ we expand
. 1 -
€k — Eprq ~ —2W (1 - Zk2> sin’(q/2) £ W(k, + k,)sing, (B3)

where W = (4 — 2n) t is the half width of the conduction band é;. Then,
in the low-frequency limit |w| < w,.(g) = 2W sin®(¢/2) it can be easxly
seen that xg(¢,w) = Imxo(q,w) = 0. In this limit we obtain

1 ~ 1 __l wnl(q)
w+ &k~ Ertq w—wm(Q){1 4w—wm(q)k *
wm(q) .
Ay tg(3) (ke + )} (B4)

Integrating in (B2) over [k| < kg we get

_ 6(1 +7é) w 2
"~ 2tsin®(q/2) {1 +0 [<2tsin(q/2)) J} ' (BS)

In the same manner as above, for |w| < wy,(g) we obtain ImFy(q,w) =0
and

XO(qvw)

é w 2 3
Fy(q,w) : 4tm +0 [(m) ] +0(8) . (B6)
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To evaluate the function wFj(g,w) we have to integrate over the full BZ.
We note that for ¢ = q, = ¢ one has & — €xyq = 2p sin(q/2) with
k!, = ko —q/2+ %/2, (a=z,y). This yields

w

=N Ek: @+ 10% + 2, sin(g/2)

wFi(q,w) (B7)

The real part which is a symmetric function of w, is given by

- w] (2sin(a/2)
R = P [ deple)EEmm (B

and we estimate it as

[wFi(q,w)]' ~ O [(m) J : (B9)

The imaginary part is given by

[wh(g,w)]" = —WZSin(q/Z) P (2$in(q/2)) ) (B10)

For small frequencies w we have to take the density of states p(¢) near
to the centre of the band. At this energy it has a logarithmic singularity
which is well known from the two dimensional tight binding model with
nearest neighbour hopping (see e.g. [19]). We have to take into account
the renormalization of the bandwidth by a factor of two and obtain

8t

Using this expression in (B10) we result in
" w w
wkFi(q,w)]" = - 1
whilg,w)] 27t sin(q/2) n'th sin(q/2) (B12)

Now we can put all together to obtain the dynamic spin susceptibility
according to (16) and (30). The formula is given in the main text in Eq.
(32).
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Jlunamuqecxaﬂ CHIOBAs BOCﬂpMHM‘{HBOCTb B napamarnurnou cba3e BblllHCJlella
'Ha' OCHOBE~ pacuennenuﬂ ypasuenuii s pynkuun  Tpuuna B 0606u1ennou'
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| Dynamic Spm Susceptibility in the t—.] Model
~Near to the Localized Limit .
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" Based on the representatlon of the t-—.] model in 1 terms of Hubbard opemtors the,
.dynamic -spin susceptlblhty in the paramagnetic phase is calculated by an’ RPA-like’

- “Green’s functions ‘decoupling. The analytical expression reveals both a klnematlc and -

-an exchange enhancement Near to the locahzed limit. (n < 2D, an ‘lntlferrt)l]la;:netlc

mstablhty at a cntlcal exchange mteractlon is’ found The spm ﬂuctuatlon speumm
consists of a low-frequency part at @ << ; which, near to the phase boundary, is strongly.
exchange enhanced around the antlferromagnetlc wave vector, and a high- trequency

_part“at ® = 4t. In our.approach, both parts of. the spectrum strongly depend on. the

electron: concentration and disappear at n = 1. In the localized limit, the temperature -
dependence of the static susceptlblllty is mvestlgated where a Curie law behaviour with
the Neel temperature Ty =J is obtained. At n <L the uniform static susceptlhxhty

contains a contnbutlon which describes the response ofa locahzed spm similar to recent

results by Izyumov et al. (J. Phys. Condens.” Matter 2-(1990), 8905) However in
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