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1) IntroduCtion. It is well known that the Landau quasi-particle de~crii)­
tion of the Fermi liquids breaks down in one dimension {lD) [1]. An alternative 
theory, based owan exactly soluble model [2], leads to the' concept of the Lut­
tinger liquid [3], with distinCt properties [4]. Nevertheless, a ~lear explanation 
for i~e failure ofthe usual Fermi liquid behavior and a physical pic~U:re of the. 
salient features ofthe system are, i~ our opinion, still missing. It is the aim 
of this paper to put forward such a piCture, using a well-known method intro-

. duced ·in' nuclear physics many years ago in order to over~ome the' difficulties 
·,associated with the hard-core interactions:. the Brueckner theory (BT) · [5]. ·We 
shall apply here the Brueckner and Gammel (BG) method. [6] to determine 
self-consistently the single-particle energies {SPE) and the groundcstate en­

. ergy (GSE) for the lD repulsive delta model (RDM), i.e. a system offermions 
·interacting via a: repulsive <5-function potential, its Bethe-Ansatz (BA) solution 
[7] providing a good test' to check our considerations: ' 
• ., 2) The'model; The Hamiltonian for'the lD RDM in the second quanti-

. zatio~ {m<'n_nenbim representation) reads · 

' ·,.. t ' ' V' t t ... /}-{. -~ L 10o(k)ck/k,; + C LJ . ckt+ka,uck2_;ka.~'ck2,u'ckt,u. : {1) 
k,u' k1-3,u;u1 

where,· in .th.e choseri units, 
·. . '2'. ' .. • ' 

e0 (k) = k :', k E ( -::-oo,+oo) . . (2)' 
"'.. , r ' ; • .,, , ·;. ; 

1
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is, the SPE of the noninteracting fermions, C > 0 is the (dimensionless) cou-

. piing cons_tant , a~d: 'c t ( ch,u <fenotes the , usualf~rmi 'Cr~~tion ( a~ni~i~~tion) 
. _operator of a one-particle state ';Vith.a given momentum __ k. (i~ units of the 
fFermi momentum kF):andspin a_= ±A/2. It was.:assumed.in (1) that the 
system is enclosed in a large bpx of finite length but we shall consider in fact 

;only the thermodynamic limit .. In the BA approach, the GSE of the H) RDM 
··can be found by solving an integral equationj. the ri\lmerical resu~ts [8] hav'e 
been compared with other approximate schemes, the T-matrix approximation 

, (TMA) [9] givi~g the best agreem~nt with the BAsolution .. 
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3) The method. The idea of the BT can be e~sily understood by com­
paring it with the Hartree-Fock method [10, 11]: if the last one ~onsiders the , 
motion of a particle in the average field produced by the others (independent­
particle approximation), in the Brueckner's approach the interaction of any 
two particles is treated exactly and the effect of the rest of the particles on 
the interacting pair. is replaced by an average (independent-pair approxima­
tion}. According to the BT, the effective interaction between two particles is 
described by the reaction. matrix K, solution of an ·integral 'equation. d~pending · 
on the bare potential and on the still undetermined SPE [12]; these energies are 
assumed to have the Hartree-Fock form, with the one.:particle potential given 
by the diagonal eleme"uts of the K-matrix. Formally, the problem redu-ces to 
find a solution for the SPE from these two coupled equations; however, while 
there is a unique prescription to· calculate the energy c: of a particle in the 

· gr~und state, the energy E of a particle in an excited state cannot be uniquely 
defined and this is a inajor difficulty in the BT. Let us .consider· a pair of • 
particles having the ground state momenta land z~, respectively (Ill, ll'l < 1); 
such a state can be understood as a result of all the possible virtual scat­
terings of the two particles in the excited states: {l,l'} .-t:{h,h'} -t {1,1'} 
(lhl, lh'l > 1). :Let us denote by vv the starting energy [13]> i.e. the sum of 
the hole energies minus the sum of the particle energies; except the pair un­
der consideration, 'in a given configuration; when W coincides with· the total 
energy n = c:(l) + c:(l') of the initial (final) two-particle state, _we say that the 
K-matrix is calculated on-energy-shell (OnES), otherwise K is said to be cal­
culated off"energy-shell (OffES). In the process considered above, the energy 
c:(l) is expressed ip."terms of K[W] computed OnES, i.e. with W ~ n; in the 
integral equation foiresponding to this K~matrix oc.cur also the undefined en­
ergies E(h; h' if!) and E(h'; h, f!); depending on the actu~l.configuration ofthe 
particies: E cari be in principle determined from another K-matrix computed 
OffES; this new K-matrix obeys an integral equation similar to the first one 
but demanding the knowleage of an E with a more complicated history, and . 
so on endless. BG [6] rieglected'the dependence of Eon the history and they 
replaced it by E(h; n - A), where A is a parameter denoting ari average ex-' 
citation energy for a particle (it will be discussed below). Consequently, the 
propagation in the virtual e~cited states will depend parametrically only on 
the total. energy n of the initial two-particle state (also on A, but it enters 
as a parameter in the whole calculation of both E and c:, a dependence which 
will be .not explicitly specified). The OffES propagation can be determined by 
solving at first the corresponding K-matrix equation in. terms of E and then by 
finding E froq1 the resulting integral equation given by its Hartee-Fock form. 
The spectrum of the virtual excitations is used after that to determine the 
OnES propagation, i.e. the energy c: of an unexcited state. 
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. 4) The equations·for the single-particle energies. In the particular 
. case ~f ·a constant inte~action ·i~ the k-space, the K-mafrix .equation solves 
immediately·ii1d~pendent on the SP:Efor~. Th~ re~ulti~g i~t~gr~l equations 
for c: and E corresponding to-thelD RDM in the BG method are: . . ' ' . :; ,, . .. ' . ·,,' . . 

{ 

c:(l) = c:0 (l)+V(l) 

.. {(h;n),= c:
0
(h)+ V('h;-n) 

,Ill< 1 ·.· 

,lhl > 1 

where the one-particle potentials V and V are given by 

. . 1 0 •• 

. '· 

·. 

[ 
. l-1 c ·. . c, . d 

· V(l) = ...:...j 1, + -!· ·· q .·. ·dl' 
· 1r .· 1r e ( q; l, l') 

'!{ = l + 1'. 
-1· 1) 

.. . . K • • . 

' "''. 

1 . [ ' . . . .· . ]' -
1 

. . . c. dq . · . 1 '! +;, j e(q;K,f!) , dl 

IKI<2 K 

,K=l+h . V(h;O) = C 
7r 

with the notations 

.{ 

.. e(q;.l,l') . . = E[l~/~+ q,_· n'~z .. hJ + f [K/.·2 :_.·q;; n. (,!-)] -,H(I,.l'). 

.• .. e (q; K,H) = E{K/2 + q; 0) +E{K/2 ~ q;.O)- n +A ... 
'· . . . ' ' . " ' . ,,. - .·. ~ . 

_In_ the fir.st (semnd) line of Eq. (5)1< ~ l + l' (I< =A+l)arid ' 
' .. . . . '," ' , ... '' 

.... 
·{· n {l, t'). = c:(l) +_ c:(l') . 

n E [2c:{O), 2c:{1 )] 
' · ... · ' .. , . . :,· . . . . 

Tlie range 'DK i~ the second int~grals from ~qs,· {4), defined oy 

(3) 

{4}. 

J5). 

: .{6) 

'DK = (-'oo,-II<I/2 ,:...1)u (II<Ifi+1,+~) , {7) 

and 'consistent with the form of the den?minators {5)', ;estriets all the iritei-, 
mediate scatterings to the states above the Fermi level. .The definition (7)is a 
consequence of two requirements: (i) only the principal part ofthe q-integrals 
{in general, over all possible values of q) has to be taken [5]; (ii) the exclusion. 
principle is satisfied in the intermediate unexcited states [10]. r However, let 
us note. that the definition (7) follows from (i) and (ii) only if all the energies 

I 

'of the excited'states are higher·than:those of the unexcited ones, an implicit ..... 
·.assumption' for a norrnal Fermi liquid. , · . 
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. 5) . The average excitation , energy. The' paramet~r A. has. been intro­
duced as an 'average excitation energy of.a particle. In the nudear matter 
calculations it was cmisidered an arbitrary' quantity taking values from 0 to 
£(1)- c(O) corresponding to the energy difference of particles lying r_espectively 
at the top and the bottom of the Fermi sea; the results depend·onlyweakly on 
the values of A [6] justifying, in the BG opinio~, the introduced approxima­
tions. Let us note that the above range of A implicitly assumes that there is 
no gap at the Fermi level between the OnES and OffES propagations (in fact 
it occurs for the nuclear matter [14])i by allowing such a 'possibility, we should 
define .the range as: . - •· . 

A E [E (1; nmax)- £(1), E (1; nmax)- £(0)] (8) 

'where nmax penotes the maximum value of n (we shall use also nmi~ with a 
similar ~eaning). However, the definition of A is still ambiguous: the limits 
of the range (8) depend themselves on the initial value of A used in the deter­
mination of.£ and E. In afull self-consistent treatment' A' should be uniquely 
determined from its definition; this can be done by averaging the momentum 
dependence of£. We defined A as the arithmetical mean of the two'limits of. 
its range (8): • ,, . ,, \ 1 . 

A= E (1; nmax) -.2 [c:(O) + c:(1)] 
. I 

(9) 

This choice coirespo~ds to a: minimum average exc~tation energy (assuming c: a 
·convex function ~fits variable, as it follows.fromthe numerical computations). 
The condition ( 9) determines self-consistently the parameter A. " 

· 6) Nurrierical.results: The integral coupl~d equ'ations (3) c~n be solved 
numeric~lly by iteration, starting·with the free expression(2)for the SPE and 
with A = 0; the first iteration results (TMA) in the C · = oo case are repre­
sented in· Fig. 1 by dashed lines;. For the OffES propagation only tw~ curves 
have been drawn: the lower (upper) one corresponds to !1 =!1max '(!1inin). For. 

, k ~· 3 tht: OffES curves join the free dispersion law c:0 (k), a/consequence of 
the assumption that in the intermediate states II<l < 2. The same property 

occurred in the BG results f~r lkl ~ 2.6kF [6] and reflects the fact that the 
excitations with the momentum far from th.e Fermi level obey the same disper­
sion law as in the free case. But a more importimt rema~kis the discon~inuity 
at the Fermi momentum (1 in our units) between c:(1) and E(1;hmax) corre­
sponding. to a' negative gap (NG) and not to a positive one as .in the nuclear 
matter calculations [14]. We could try to avoid the occurrenc~ of such a NG 

· at each iteration step by increasing the value of A; the convergency is reached 
after a few itirations, but the value of A required to vanish theNG will be 
fl?Uch greater (at least for-strong couplings) than the value· indicate~ by the 
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right side of Eq~ (9). It follows that the NG is unavoidable. As a res~it, the' 
denominators e given by Eqs: ' ( 5) wiil vanish for some values of the 'q-variable, 
contnidiCting thus· the condition (i) mentioned above.· Consequently, only -~he· 
principal part of the q-integrals from Eqs; (4) must be taken; in our case, the · 
definition (7) of the range 1)K does not. guarantee thi~ fact.' The self-consistent 
solution of the system (3) and (9), i.e; in the K-matrix approximation (KMA), 
c~rresponds for C = oo. to A = 0; the results for the SPE are represented in . 

··Fig. 1 by ~ontinuous lines. The final value D. of the NG is approximately 
:--:0.6. F~r smaller values ofthe interaction co~stant c, both c and E get closer 
to 'the free dispersion Ia~ c:0 , concomitantly with a reduction of the NG and 
an increase' of. A; in the C ~ 0~ limit, D. 2-.t 0 and A ~ 0.5> From the results 
presented in Fig. 1 it follows ~ls6 that the mai·n effect of•the interaction on 
the. OnES propagation is' to shift the values of c:0 by a constant quantity, i.e. 
the ave~age potential V 'experienced by a fermionin theground~state depends 

. very 'weak'· on its momentum .(see Fig. 2); this is ~f course a consequence of 
the k-inde'pendence of the b~re potential in the momentum representatio~ .. 

-. 7) ·The effective potential picture .. The occurrenc~of aNG at the Fermi·· 
surface, acon~~quence 'of the kinetic restrictions imposed by the momentum i 
conservation 'on the two:body scatterings, signals' the breakdown of the usual 
quasi-particle picture in ;lD: it is. related, thr~ugh the' diagonal elements :of 

·.the reaction m~trix ente~ing in the calculation of the SPE,. with a singular 
'fo~wardscatter!ng of two· piutic.les [1]. The NGdet~rmit,Ies an instability :of 
. the Ferrrii surface, the particles close to it looking for morestable positions. 

This faCt can be' interpreted as follows. Let" us consider two particles from the 
top of, the unst.able'Fermisurface; ..yith the t<?tal energy nma~· ;\ccording' to 
the KMA results, their lowest "excited" states correspond to the bottom of the 
OffES r~gion:fr~mFig. 1 and the twoparti~les have the tende~cy to occupy 
these positions because they are less en'ergetic than the initial ones; the final 
energy of ,the pair would be 2E (1.; nmax) < nmax in such a case. Howev~r, by' ' 
decreasing its energy, the pair .will be excited. along a curveabove the lowest 

.·one, corresponding to an n < .nmaxi it ~an. be mnsidered as stable whe-~ its . .-' 
.. final ~n'ergy nlim-equals th~ total ene~gy of the partners.in their l~we~t excited' 
· states (no NG), i.e. when . 

nlim' = 2E(1; nlim) 
(10) .·· 

. a c~mdition that determines !11;m. C~nseque~tly, the highest OnES state 
1
will go 

· down from c:(1) level to !11;m/2 at the same yalue of the momentum. Something 
similar happens with the rest of the p'articles which will lose energy not only due 
to their unstable positions but also as an effect of'the partiCles already fallen 
dow~ (the effective repulsion between the particles decrease~). In other words, 
we introduce an effectfve one-pa,:ticl~ potential ~11 , instead ~f the original 
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one V:, d~scribing the rearrangement of the particles 'induced by the occu~rence 
of theNG.In the Ill=: 1 limit,. the OnES potential veff is,determined by the 
condition .(10) of continuity with~ the OffES one Vat the Fermi level;~ we can 
define it for Ill < .1 as the shifted values of V with the same q~antity as for 
Ill= 1, i.e. by 

' . .. 
. '< • 

V.,ff( l) == V(l) -:- ~ V , ~ v = cn,;.ax - n/im) /2 . (l1) 

an assumption justified by thewe~k dep~ndence of the' original one-particle 
·potential Von the'momenturr1. The one-particle potentials, both OriES and 
OffES ( orily the delirr1iting cur~es j, in thi~·effective potential'picture (EPP) are 
. \ .- . . . ' . . ' - . ' 

represented in.Fig. 2 by dashed lines, where.the same'quantities in the KMA • 
are draw~ ,by. c~ntinu"aus lines.~ The role of the effective one~pitrti~le potential 
intrdduced ~bo~e is to simulate a normal Fermi liquid behavior in the presence 
~f thei~stability det~rminedby the NG. at the Fermi level; v;,~;. should be 
considered merely as a convenient tool to compute some quantities, such as 
the GSE. In discussing the nature of thelowest~ene~;gy excitations, .the fact/ 
thaUheparticles close to the Fermi level are unstable to transitions in states 
with aJiigheLmomentum hasimportant consequences; a possibJe'picture in 
th}~ sense isgiven below. ·. ~ > ' • ~ ·~ ~ 

8) The fermio'n-boson picture. We give now another interpretation 
- of the instability induced by the occurrence. of the NG at the origin~! Fermi 

surface. We sha:ll assume th~t beginning from the t~p of the unst'able Fermi 
sea, the partiCles will fall down on their lowest energetic positions from the 
excitation spectrum (wrresponding to k = ±i). This process~ ends when the 
.level of the remaining Fermi sea is as high asth~ upper level of th~ filled vertical 
edges at the Fermi momenfum(see Fig. 3), Le. when the':iame condition (10), 
but with ~ . . . ' ~· · • 

nlim·= 2c:(k;/1) (12) . . 
'is fulfilled; we have defined' in. this way an effective Fermi momentum k;/ 1. 

The'particles at k = ±1 can be viewed either as fermiims; if ~ne employs an 
n-typelabel for their states, or as bosons, in the momentum representation; 

~ they.' can be considered as an 1D effect induced by the necessity of taking into 
~ccount diagrams in the linked cluster expansion cOntradicting the exclusion 
principle [11, 13]. ~The emerging ground-state configuration in this fermion­
boson picture (FBP) [15]consists thus of·a reduced sea of core fermions for 
lkl < k;/ J and a certain number of shell bosons atk = ±1 that are essential in 
describing the excitations of the system. 
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9) The ground-state energy. In the BT, the GSE is computed from 

~ ~ 1 !~ 
1 

[ . 1 ] 2 ~ 1 /~
1 

~ E =- c:0 (l) + -'V(l) dl= -
3 

~~+-'- · V(l)dl 
7r ' ·~~ 2 7r 7r ' 

{13) 
-1 ~ 0 

where E represents the density ofthe GSE in units of kFc:0 (kF)· The values 
• of E for C ~ 6 in TMA are along the dashed line from Fig. 4; they coincide 

. - . ) 

with the results obtained previously [9].'-· The maximum (relative) deviation 
from the BA values [8] is realized when C :;= oo: it decreases from 20 %in the 
TMA to 9% in the KMA (without taking into account the NG problem). The 
GSE in the EPP is determif!ed froii1 ~~_esame Eq._ {13) but with V.,it instead. 
of V. ,In calculating the GSE in the FBP, we divided the last integral from 
Eq. (13) in tw,o parts:, from 0 to k;/1, computed by using the KMA results 
for V, :and from k;/1 to L The contribution of the second term was assumed 
to depend on a parameter t E [0, 1] describing the contihuous transfo~mation 
from {l, V(l)} at t = 0 to {1, V[1;2c:(l)]} at t = 1; the range [k;/1, 1] is ~app~d 
for any t =f. 1 in another one [1\:t• 1], with 1\:0 = k;/1 and limt-+1 Kt ~ 1, while the' 
transformed values of v ( l) are finite at any t. It follows that the second term 
goes to zero, i.e. the contribution of the shell bosons to the. GSE is the same 
as that corresponding to.the free particles abovethe k;/1-level. The results in 
the C = ~ case are: E.=. 0.856.in the EPP and 'E = 0.489 in the FBI' (with ·. 
k;/1 = 0.876), while the BA v.;,l4e is E = 8f(37r), i.e. a relative deviationless ·. 
than 1 %in the EPP and practically a numerical coincidence in the FBP. For'· 

. C ~ 6, the values of E in the KMA, EPP and FBP are very cl~se to each 
other (in the weak coupling regime, th~ NG proble~ becomes irrelevant for 
the GSE); the results in the FBP are~ along. the co.ntiimous curve from Fig, 4 

, and they cannot be distl.nguished from the BA values at the figure scale. · 
10) Final remarks. Within the FBP, the lowest~energy excitations start~ 

ing from the interacting groundcstate correspond to those of the shell bosons: ~ 
a spin exchange between trem across the two edges gives rise to a 2krspin' 
density wave and a similar transfer ofa boson (with spin 0 and momentum: 
2kF) corresponds to a 4kF~C:harge density wave, indicating the charge-spin 
separation that occurs in 1D systems. A detailed discu~sion of the 'ex~itation 
spectrum will be give~ elsewhere. '. ' · '~ ' ' · 

In solving the integral equations for the SPE, it was assumed the existence 
of the same Fermi momentum kF in the interacting case as for the free system; 
the·results indicate the occurrence of a NG at this value of the.momehtum 
and thus an instability of the original Fermi level. · Both the EPP and FBP 
are a posteriori interpretations of this result which· clearly shows that one, 
cannot have a ground-state configuration of the interacting~ particles as in the 
free. case (twoparticles per k betw{!~n -kF and +kF). In the EPP such a 
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Figure 1: The SPE versus the momep.tum (in units of kF) for the lD RDM 
with an infinite coupling constant C in the TMA and KMA. 
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normal Fermi liquid configuration was simulated by an effeCtive single-partiCle 
spectrum. In the FBP we assumed a redistribution of the unstable particles in 
accordance with the KMA results 'and we obtained a picture close to the usu'al 
interpretation from the bosonization theory. However, there is in principle 
another possible way to tackle the problem : one can introduce a priori in the. 
BG equations for the SPE a: ~ertain ocbupancy p of 'a k~state, the conservation 
of the total numbP.r of particles defining thus a new Fermi momentum; p could 
be determined at any iteration step {starting with p = 2) from the condition 
of nogap between OnES and OffES propagations. A·self-consistent solution 
with p < 2 is expected; the analogy wfth the BA results suggests, in'_ the 
C = oo case, p = 1 and e = c:0. This approach will be discussed in detail in a 
forthcoming paper. · · · · · 

- ·. . The occurrence of a N G in the excitation spectrum of a Fermi· liquid with 
• pure repul~ive interactions is, in our opinion, strictly. related. to the di~en-. 

sionality of the system; it has been also found in the 1D Hubbard model [16]. · 
The existence of such a gap could be relevant in the dispute about a possible 

·breakdown of the usual Fermi liquid behavior in 2D.: 
·In conclusion, one might say that the BA results for the GSE of a 1D sys- -

tern of fermions interacting through a repulsive 8-p~tential can be reproduced 
within the approxiinate BG method with a certain, natural self-consistency 
condition ii?posed on the parameter A of this theory and interpreting, in an 

· appropriate manner, the instability induced by the occurrence of the NG at 
the Fermi level. One might have expected perhaps such a result, as the·system. 
under consideration is an extremely dilute Fermi liquid (short-range correla­
tions); it re~ains as interesting to apply the BT to an 'exa~tly solved model 
with a long~range interaction. In a~dition, this independent-pair approxima­
tion suggests.some possible connections with well known results from the BA 
'and bosonization theory. 
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