


1) Introductlon It is well known that the Landau quasi- partlcle descrlp-
. ‘tion of the Fermi liquids breaks down in one dimension (1D) [1]. An alternative
~ theory, based onan exactly soluble model (2], leads to the’concept of the Lut-
tinger liquid [3], with distinct properties [4]. Nevertheless; a clear explanation
for the failure of the usual Fermi liquid behavior and a phys1cal picture of the
salientfeatures. of the system are, in our opinion, still missing. It is the aim
of this paper to put forward such:a picture, using a well-known method 1ntro- :
duced ‘in’ nuclear phys1cs many years ago in order to-overcome the difficulties-
assoc1ated with the hard-core interactions: .the Brueckner theory (BT)' [5] We -
" shall apply here the Brueckner 'and Gammel (BG) method. [6] to déetermine
self—cons1stently the single-particle energies (SPE) and. the ground-state en-
ergy (GSE) for:the 1D repulsive delta model (RDM); i.e. ‘a system of fermions
“’interacting via a repuls1ve é-function potentlal its Bethe Ansatz (BA) solutlon :
[7] providing a good test'to check our considerations: - , :

+2) The'model. The Hamiltonian for: the 1D RDM in- the second quantl-' B
zatlon (momentum representatlon) reads Sl s '

" K H‘:" Zeﬂ(k)ck acka + C Z Ckl-]-ka gczz—ka'g’ckz a’ kl,a ~ (1) :
% N k’g H i ° § : . s
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where in: the chosen un1ts,

eo<k)—k2 ke(—oo +oo) | (2)

B 1s the SPE of the non1nteract1ng fermlons, c > 0 is the (dlmens10nless) cou—

phng constant and cT(c)k, denotes the usual Ferml creatlon (annlhllatlon) B

. .operator; of ‘a.one- partlcle state. W1th a.given momentum k (1n units of the
:Fermi-momentum; kr): and spin'g = +1/2.. It was. assumed in (1) that the
“system is enclosed in a large box.of finite length. but we shall con51der in fact.
zonly the thermodynamic limit. .In the BA approach ‘the GSE of. the 1D RDM
-can be found by solving an .integral equation;. the numerlcal results [8] have
_been compared w1th other approximate schemes, the T matrix approx1matlon
(TMA) [9] g1v1ng the best agreement with the- BA solutlon EPo
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: 3) The method The idea of the. BT can be easrly understood by com-
paring it with the Hartree—Fock method [10, 11]: if the last one considers-the .

motion of a particlée in'the average field produced by the others (mdependent-

.partlcle approxrmatron) in the Brueckner’s. approach the 1nteract10n of any- I B
two particles is treated exactly and the effect of the rest of the particleson " - k
the interacting pair. is replaced by an average (1ndependent -pair-approxima- -~ -

tion). According to-the BT, the effective interaction between two particles is

described by the reaction. matriz K, solution of an 1ntegral equation depending

on the bare potential and on the stlll undetermined SPE [12]; these energies are -
assumed to have the Hartree-Fock form, with the one-particle potential given
by the diagonal elements of the K-matrix. Formally, the: problem reduces to
find a solution for the SPE from these two coupled equatlons however,; while *
there is a unique prescription to calculate the energy € of a particle in: the -

“ground state the energy € of ‘a particle in an excited state cannot be: un1quely

* defined "and thrs is a major difficulty in the BT. Let us consider a pair of = - |

particles having the ground state momenta I and I/, ; respectively (|I], |/l < 1);

such a state can be understood as a result of all the possible virtual scat-
terings of the two partrcles in the excited states: {l I} =Ah; B} = {1}
(4], 8"} > 1). Let us denote by W _the starting energy [13]; i.e. the sum of
the hole energies minus the sum of the particle energies, except the pair un- =
"~ der consrderatlon, in a given configuration; when W: coincides. with’ the: total,;'-vf :

- energy 0 =¢(l) 4 (') of the initial (final) two-particle state, we say that the

~ K-matrix is calculated on-energy-shell (OnES), otherwise K is said to be cal- =~
culated off-energy- shell (OfiES). In the process considered above, the energy"
e(l) is expressed 1n,terms of K[W] computed OnES,;’ ie with W = Q; in the

1ntegral equation correspondlng to this K-matrix occur also the undeﬁned en- -

e €(h; ), —so(h)+V(h Q) |h| >1

“ergies e(h h';Q) and" e(h' k,Q); depending on the actual configuration of” the =~ -

* particles! ¢ can be'in principle determined from another K-matrix computed " X
- OffES; this new K-matrix obeys an integral equation similar to thefirst one
but ‘demanding the knowledge of an € with a more complicated history, and . i
so on endless. BG [6] neglected" the dependence of ¢ on the: hlstory and they =
‘replaced it by €(h; 2 — A), where A is a parameter denoting an average ex-’

citation energy for a partrcle (it will be discussed below). Consequently, the
propagatlon in the virtual excited states will depend parametrically only on

the total energy Q of the initial two-particle state (also on A, but it enters

as a parameter in the whole calculation of both ¢ and ¢, a dependence which -
will be not explicitly specified). The OffES propagation can be determined by -
solving at first the corresponding K-matrix equation in.terms of € and then by
finding € from the resulting integral equation given by its Hartee-Fock form. =
The spectrum of the virtual excitations is used after that to determine the

OnES propagatron, i.e. the energy € of an unexclted state.
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Y w1th the notatlons

, The range ’DK m the second mtegrals from Eqs (4), defined by

‘ 4) The equatlons for the smgle-partlcle energles In the partrcular' :
Acase of a constant lnteractlon in the k-space, the K-matrix equatlon solves
‘ 1mmed1ately 1ndependent on. the SPE. form. “The resultlng 1ntegra1 equatlons;,
~for. ¢-and € correspondmg to the lD RDM in the BG method are: .. &

() = Eo(l) + V(l)

i alll <1 S

where the one- partlcle potentlals v and V.are glven by

( " - N B - T 1
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(q,ll')—e[1</2+q, (1, t')1+c[K/2—q, @ 1'1—_ (z z)

e(q,K Q),— e(I{/2+q,Q)+e(I{/2——q,Q) Q+A

(z z') - s(l)+6(l’)

Qe [25(0),25(1)]

DK = (—oo,—i1<|/2 = 1) u (]K|/2 + 1, +oo) b (7) _

‘and ‘Consistent w1th the form of the denommators (5), restrrcts all the mter-
mediate scatterings to the states above the Fermi level. The definition (7)-is a -

consequence of two requirements:’ (1) only the prmclpal part of- the q- mtegrals =
(in general, over all pos51b1e values of q) has to be taken'[5]; (i) the exclusion’
~pr1nc1ple is satisfied in-the 1ntermed1ate unexcited states [10].- However, let”
us note.that the definition. (7) follows from (i) and (ii) only if all the energies:

', of the excited ‘states are higher than’ those of the unexc1ted ones, an 1mpllClt’w~ -
ua.ssumptlon for a normal Ferml hquld e SR :
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Voo

- T



crlealn

5) The average excrtatlon energy The parameter A has been intro-

duced as an average exc1tat1on energy of a part1cle ‘In the nuclear matter
’,calculatlons it was’ cons1dered an arb1trary quantlty taking’ values from 0 to

€(1)—¢€(0) correspondmg to the energy difference of particles lying respectively. .

- at the top and the bottom of the Fermi sea; the results depend only weakly on

the values of A [6] Just1fy1ng, in the BG opinion, the 1ntroduced approxima-

" tions. Let us note that.the above range of A implicitly assumes that there is
no gap at'the Fermi level between the OnES and OffES propagations” (in fact
it occurs for the nuclear matter [14]), by allow1ng sucha possrblllty, we should

 define. the range as: -

Ae{e(l Qo) = 1), 1 10, o ®

. here Qmu denotes the maximum value of Q (we shall use also Qm,‘,, wrth a
similar meaning). However, the definition of A is still ambiguous: the limits

of the range (8) depend themselves on the initial value of A used in the deter-
mination of € and e. In a full self-consistent treatment” A-should be uniquely
determined from its ‘definition; this can be done by averaging the momentum

’dependence of . We defined A as the arithmetical mean of the two limits of:

Jits range (8) o

—vﬁ(l Qmu) [5(0) + 5(1)l

The condition 9) determines self-cons1stently the parameter A

.6) Numerical results. The integral coupled equations (3) can be solved
numer1cally by iteration, startingwith the free expression (2) for the SPE and

‘with A = 0; the first iteration results'(TMA) in the C = oco'case are repre-

‘sented in Fig. 1 by dashed lines. For the OffES propagation only two curves(
). For

“have been drawn: the lower (upper) one corresponds to 3 = Q,m,Jc Qi
k >3 the OffES ‘curves join the free dispersion law" eo(k); a’ ‘consequence of

‘,',the assumption that in the intermediate states |K| < 2. The same property

occurred in the BG results for k| > 2. 6k [6] and reflects the fact that the

excitations with the momentum far from the Fermi level obey the same disper- -

sion law asin the free case. But a more important- remark is the discontinuity

at the Fermi momentum (1 in our units) between £(1) and- e(l Q,...) corre-

max

spondmg‘to a’ negative gap (NG) and not to a positive one as in the nuclear '
matter calculations {14]. We could try to avoid the occurrence of such a NG

. at’each iteration step by increasing the value of A; the convergency is reached
-after a few iterations; but the value of A required: to vanish the NG will be
,H\luch greater (at least for.strong couplings) than the value indicated by the

(9
Th1s cho1ce corresponds toa m1n1mum -average excltatlon energy (assummg €a-
 convex function of its variable, as it follows from. the numerical computatlons) 8

'

r1ght s1de of Eq (9) Tt follows that the NG is. unav01dab1e As a result the ,¢
'denomlnators e given by’ Egs:’ (5) will vanish for some values of the q- varlable, o

contradlctlng thus'the condition (i) mentloned above.’ Consequently, only the
principal part of the q- integrals from Eqs: (4) must be taken; in our case, the

" definition (7) of the range Dy does not guarantee ‘this fact. The self—consrstent

solution of the system (3) and (9), i.e: in the K-matrix approxrmatlon (KMA),

,corresponds for C = 0o to ‘A = 0; the results for the SPE are represented in "
:~Fig. 1 by continuous lines. The final value A of the NG is approxrmately
:—0.6.. For smaller values of the 1nteractron constant C both ¢ and € get closer

to the free d1spersron law’ 50, concomltantly with a reduction of the NG and

5 han increase of A; in the C — 0.limit, AS0 and A= 0.5." From the results
fpresented in Fig.- 1it follows also that the main effect of 'the interaction on:
~the OnES. propagatron is'to shift the values of g, by a constant quantrty, i.e
“the average potentlal 14 experlenced by a fermlon in the ground state depends

: r,very ‘weakon its momentum (see Fig. 2) this is of course a consequence of
it he k- 1ndependence of the bare potent1al in the momentum representatlon

7) The effective potentral plcture ‘The occurrence ‘of 2 NG at the Ferm1

surface, a consequence of the kinetic: restr1ct10ns 1mposed by .the momentum
conservation on the two- body scatterings, s1gnals the. breakdown of the’ usual

quasi- pa.rtlcle picture in: 1D it is related, through the dlagonal elements of :

- the reaction matrix entermg in the calculation of the SPE, with a smgular
‘sforward scattermg of two’ partrcles (1]."The NG, determmes an 1nstab111ty of
g the Fermi surface, the partlcles close to it looklng for _more, stable positions.:
v ~Th1s fact can be 1nterpreted as follows. Letus cons1der two partlcles from the
top of the. unstable Fermi surface, with the total energy an Accordmg to -

‘the KMA results ‘their lowest “exc1ted” states’ correspond to the bottom of the

'OffES region | 'from Fig. 1 and the'two part1c1es have the tendency to occupy -

.~ these positions because they ‘are less energetic than the initial ones the final’

- ‘energy of the pair would be 26(1_, Qpraz) < Qg 0 such a case. However, by *
. decreasing its energy,’ the pair -will be exc1ted along a curve above the lowest
" one, correspondlng toan Q <8,...; it can.be considered as stable when its B
", final energy ;. equals the total energy of the partners m thelr lowest exclted
- states (no NG) Le. when S :

.,\

Qllm - 26(1 th) ,",v e .‘ ' ' (10)

i"

ea condrtron that determlnes Q,,m Consequently, the hlghest OnES state will g go .
;. down from £(1) level to Q,,m/2 at the same value of the momentum. Somethmg
. s1m11ar happens with'the rest of the partrcles which will lose energy not only due
" “to their unstable positions but also as an effect of the partlcles already fallen -
~.down (the effective repulsion between the particles decreases). In other words, :
- we 1ntroduce an eﬂectzve one-partzcle potcntzal V”, 1nstead of the orlglnal

B
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'one V descr1b1ng the rearrangement of the partlcles 1nduced by the occurrence

“of the NG. In the |ll =1 limit, the:OnES potentral V fris determ1ned by the ;
condition® (10). of cont1nu1ty w1th the OffES one. V. at the Fermi. level; we can.

“define it for [l| < 1as the sh1fted values of V. w1th the same quantlty as for
'|l|—11e by " - ;
eff(l) _',

V() - AV Av1¥<ﬂm , n,.m>/2

. :potentlal V.on the momentum The one: partlcle potent1als both- OnES and
- OftES (only the de11m1t1ng curves) in this effective potent1al p1cture (EPP) are
- represented in Fig. 2 by dashed lines, where the same quantities in the KMA
. are drawn by cont1nuous lines. The role of the effectwe one- part1cle potent1al
~introduced above is to s1mulate a normal Ferml llquld behav1or in the presence
"‘,',‘of the 1nstab111ty determrned by the NG, at the Ferm1 level Vitr, should be

’dnf

' an assumpt1on Justlﬁed by the weak dependence of ‘the or1g1nal one—part1cle e

e

cons1dered merely as a convenient tool to compute some. quant1t1es such as

‘the GSE In d1scuss1ng the nature of the lowest energy exc1tat1ons the fact”

,V”l,that the part1cles close to the Fermi level are unstable to trans1t1ons in’ states
w1th a. h1gher momentum has 1mportant consequences a poss1ble p1cture in
h th1s sense is glven below ‘

o 8) The fermion- boson plcture We give now another 1nterpretat1on

fynof the instability 1nduced by the occurrence of ‘the NG at’ the ‘original Fermi

. surface ‘We shall assume that beglnnlng from the top of the unstable Fermi
g 'sea, the part1cles w1ll fall down on their lowest energetlc pos1t1ons from the
excitation spectrum (correspondmg to k = ﬂ:l) ThlS process ends when the

Tevel of the. remaining Fermi sea is as hlgh as the upper level of the ﬁlled vert1cal :

" edges at the Fermi momentum (see F1g 3), 1. e. when the same cond1t10n (10)
but w1th I :
' ‘ ' lem - 2€(keff)

Vs fulﬁlled we have defined’in- th1s way an eﬁectwe Fermi momentum ke”
I‘he part1cles at k'= %1 can be viewed either as fermions; if one employs an
: Q- type label for'their states, or as bosons, in the momentum representation;
* they can be considered as an 1D effect 1nduced by the necessity of taking into
" account diagrams in: the linked cluster expansion contradicting the exclusion
’prlncrple (11, 13]. . The emerglng ground-state configuration in this fermion-
boson p1cture (FBP) [15]-consists thus.of a reduced sea of core fermwns for
k< kg
descrrblng the exc1tatlons of the system

‘~‘¢

4 and ‘a certain number of shell bosons at k = ﬂ:l that are essentral in

)

. 5 free case (two particles per k between —k; and +kg).

R LN
P ; : .

9) The ground state energy In the BT the GSE is computed from o l
1:1 : : AT
E= W/Fwn-wﬂﬂ~—+ /v a3)

B | . )

where E represents the density . of the GSE in un1ts of kpeo(kF) The values

vof E for C < 6 in TMA are along the dashed line from Fig. 4; they coincide -
~ with the results obtained previously [9].-- The maximum (relatlve) deviation

from the BA values [8) is realized when C = oo: it decreases from 20 % in the "
TMA to 9 % in the KMA (without taking lnto account the NG problem): The
'GSE in the EPP is determined from the same Eq. (13) but with- V,;; instead -
of V. .In calculating the GSE i in the FBP, we d1v1ded the last mtegral from
Eq. (13) in two parts: from 0 to k&,

to depend on a parameterit € [0 1] describing the contmuous transformatlon :
from {[,V()} at t =0 to {1,V[1;2¢(!)]} at t = 1; the range [k 1] is mapped
for any ¢ # 1 in another one [,, 1], with k5. = k§// and lim,_,; &, = 1, while the’
transformed values of V(1) are finite at any t. It follows that the second term
goes to zero,i.e. the contribution of the shell bosons to the. GSE:is the same:

- as'that correspondmg to.the free partlcles above the kef f -level. The results in -

the C' = oo case are: E = 0. 856 in the EPP and 'E = 0.489 in the FBP. (wrth
kel = 0.876), while the BA valye is E = 8/(37r) i.e. a relative deviation less
than 1 % in the EPP and practically a numerical comc1dence in the FBP. For

~.C £ 6, the values of E'in the KMA EPP and, FBP are very close to each :
" other (in"the weak coupling regime, the NG problem becomes 1rrelevant for i

the GSE); the results.in the FBP are: along the contlnuous curve from Flg 4
-and they cannot be distinguished from the BA' values at the figure scale. "~
10) Final remarks. Within the FBP the lowest: “energy excitations start-

" ing from the interacting ground state correspond to those of the shell bosons:

a spin exchange between them across the two edges gives rise to a 2kp-sp1n
density wave and a similar transfer of ‘a boson (with spin 0 and: momentum

2kg) corresponds to a 4kp-charge density wave, indicating the charge -spin ;.

’separatwn that occurs in 1D systems A detalled d1scuss1on of the exc1tatlon
“spectrum will be given elsewhere. ; : i ;
~*In solving the integral equations for the SPE it was assumed the exrstence :

of the same Fermi momentum k in the mteractmg case as for the free system; !'

the results indicate the occurrence of a NG at this value of the. momentum -
and thus an instability of the original Fermi level. ' Both the EPP and FBP
-are a posteriori interpretations of this result which' cclearly shows that one,
cannot have a ground-state conﬁguratron of the interacting particles as in the
In the EPP. such a~

T

computed by using the KMA results
Hfor:V; and:from ke” to1..The contrlbutlon of the second term was: assumed
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Figure 3 The ground sta.te conﬁguratlon for the lD RDM m the FBP

(schematlc representa.tlon)

: Flgure 1: The SPE versus the momentum (m umts of kF) for the 1D RDM
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: normal Ferml llquld conﬁguratlon was s1mulated by an effective s1ngle partlcle‘

spectrum. In the FBP we assumed a redistribution of the unstable particles in

- -accordance with the KMA results and:we obtained a picture close to the usual "
interpretation from the bosonization theory “However, there is in prmclpler c :
another possible way to tackle the problem one can introduce a prioriin the’

BG equations for the SPE a certain occupancy p of a k-state; the conservation -

~ of the total number of partlcles deﬁnlng thus a new Ferml momentum pcould R
" be determined at any iteration step (starting with- p= 2) from the condition =
of no .gap between OnES and OffES propagations. A- self-consrstent solutlon '
with p < 2is expected the analogy with the BA results suggests in the
C = oo case, p=1 and e = 50 This’ approach w1ll be dlscussed in. detail in a' o

forthcomlng paper

- The occurrence of a NG in the excitation Spectrum of a Fermi- llquld w1th i
. pure repulsrve 1nteractlons is,; in our:opinion, strlctly related. to the dimen- S
sionality of the system; it has been also found in the*1D Hubbard model [16]. -
" The existence of such a gap could be relevant in the dispute about a possible

. breakdown of the usual Fermi liquid behavior in 2D. -

“In conclusion, one might say that the BA results for the GSE of a 1D sys- - :

.-tem of fermions interacting through a repulsive é-potential can be reproduced

.iw1th1n the approx1mate BG method with a certain, natural self—consrstency :

condition imposed on the parameter A of this theory and interpreting, in an

“appropriate manner, the instability induced by the occurrence of the NG at 2
‘the Fermi level. One might have expected perhaps such a result, as the'system -

“ under consideration is an extremely dilute Fermi liquid (short-range ‘correla-

- tions); it remains as mterestlng to apply the BT to an: exactly solved model.

with a long range interaction. In addition, this independent-pair approxima-

‘tion suggests.some possible connections w1th well known results from the BA S

'and bosonization theory
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