


1. Introduction,

The remarkable dlscovery of hlgh Tc superconduct1v1ty [1] in Cu 0 com-
pounds has ralsed the 1nterest in the physics of correlated electrons in low
d1mens1ons For better understandlng of the high- Tc superconductrvrty mech-
an1sm it is 1nterest1ng to 1nvest1gate one-dimensional analogues of Cu-0 planes.
Emery proposed a one dimensional version (2] of two-band copper -oxide
model [3]. In Emery’s model two essentlal features dlstlngulshmg the Cu and
b sites in real systems are 1ncorporated 1. the chemlcal aspect - the hole
has- dlﬁ'erent on-site energ1es on copper and oxygen sites and 2. the dynamrcal
aspect - there are dlﬂ'erent on-site 1nteract10ns between two holes on copper
sites (U ) and on oxygen (Ub) To 1nvest1gate the 1nﬂuence of the dynamlcal )
nonequivalence of copper and oxygen 51tes Japarldze et al [4] con51dered a
rather formal 1D verslon of the Cu O chaln, namely the one—band Hubbard
model with different on- s1te 1nteract10n on even and odd sites. This model
was investigated in the framework of standard weak coupling approach usxng
a boson representation theory. _ A '
The another method by which insight can be gained into Athe‘kproblem of
interacting fermions is to use the renormalization group (RG) [5],[6], [7]. Tt
isn’t without interest to consider the same model as in [4] by RG technioue.
" As 'will be shown in 2, the continuurn Hamiltonian of the model has a gen-
eral form, describing the one-dimensional system of interacting fermions. The
Hamiltonian of the same form has been considered ‘by vKimura_ [5] using the
conventional field-theoretical renormalization -group. ‘Solyom * [6] performed
the second order scaling procedure, using. the bandwidth cutoff, to more gen-
eral case,.when the forward scattering process between particles from the same
branch was presented. According to Solyorn, taking into account this process

substantially changes results. Unlike [6],1 Rezayi et al. [7] have shown, that if
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one modifies the term corresponding backward scattering and Umklapp pro-

cess, replacing them by effective spin and charge carrying 1nteractlons, one
gets the theory w1th momentum transfer cutoff In this case, the effect of
the forward scatterlng process between part1c1es from the same branch is ab-
sorbed to a Fermi veloc1ty renormahzatlon and couphngs, which couple the
spin-density degrees of frEedom scale 1ndependently of the couphngs wh1ch
couple the charge—densrty degrees of freedom

 Inour calculatlon, we shall neglect the forward scatterlng process between
partrcles from the same branch and assumlng that the forces are short range,
use the bandwrdth cutoff. In this case, the Lie equatlons for the coupling
constants decouple into two sets and are analogous to those obtained by us1ng
the momentum transfer cutoff [7] As will be shown in 4 the scatterlng
processes responslble toa Ferm1 velocrty ranormahzatlon can only lead to the
difference between the degrees of the d1vergency of CDW and SDW response
functlons

2 The model

The Hamiltonian describing the model-ha.s the following form:

=t Z “n, a(cn+l,a + a1 a) t3 Z[U + ( l)nV]Pn apn»’_'a+ (1)

n,o

+ Z [Van aPnt1,6 + Van apn+2,ﬂ]

n,a,0

where ¢} (cn o) is a creation (annihilation) operator for a particle of spin

a in the Wannier state localized at the nth lattice site, py o = cj_acn,a and .

t

1 .
U= E(Ua + Ub)

V = -;—(Ua - Ub)

where U,(Up) describes on-site interaction on even (odd) lattice sites and V
and V, describe the interactions between particles on nearest and next-nearest
neighbor sites, respectively.

The continuum limit of the Hamiltonian (1) can be taken by approxi-
mating the spectrum —2tcosk by linear spectra around +kr and using the

correspondence:
 Cna — ezp(ikpn)Yy o(z) + ezp(—ikpn)pro(z) - (2)

where the fermion field 1;(3),a(z) describes the particles around Fermi point
+(=)kr. o |

In the case of quarter-filled band, the dynamical nonequivalence of sites
becomes important and leads to the appearance of Umklapp p’rocesses‘ [4].

The continuum limit Hamiltonian has the form:
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The Hamiltonian (3) has a general form describing the interacting fermion
sy'stem'in 1D. The terms with coupling constants gy, g1 and g}, g21 corre-
spond to the backward and forward scattering processes,respectively and the
terms with g - to the Umklapp process. In the (3) the processes with coupling
constants gy and gy are indistinguishable and we can choose gy = g2, , with-
out loss of generality. This leads to the following values of the spin independent

bear coupling constants:

U -2V, U +2V; + 2V,
L gy =gy =gar = k2 L Yy

=g =601L=
=9=9 TUR TUF _ 7rvp



In obtaining (3), the terms corresponding to forward scattering processes, in

which both incoming particles are from the same branch, were omitted.

3 Renormalization group technique

The multiplicative renormalization group has been used in the field theory for a
long time to eliminate divergences [8]. This method has two main aspects. The

first one is that starting from a perturbational calculation a partial summation

is obtained by solving the group equations and second one - a set of equivalent .

problems can be found which are described by Hamiltonian of cimilar form. If

theré is a model among the equivalent ones which can be solved, the solution
of the original problem can alsov be obtained.

The renormalization group treatment of ’the problem of interacting fermions
in 1D was given by Menyhard and Solyom [9] Here we will briefly present
the ideas applied to the 1D Fermi gas.

For an unambiguous definition of the model it is necessary to specify the
cutoff procedure which determines the domains of admissible values of the
electron momenta. If the interactions are short range we have effectively only
one limit on momenta and gbt a theory with bandwidth ‘ciitoff. In the general
case, when the long-range forces are also presented, theory needs two cutoffs,
one as bandwidth and one on momentum transfer [10]. Assuming that the
forces are short range in our case, we shall use the bandwidth cutoff.

At first let us write the auxiliary Green’s function d and four-pointed vertex
function T; in the following way:

G(kp,w) = d(3-, 9i)Go(kF,w) (5)
Topys(w) = g111(w)bardps — g2T2(w)basbsy (6)

for process with momentum conversation and

I3 =,g3f3(6016ﬁ5— 6056[31) S (7)

for Umklapp process, where Eg is a bandwidth cutoff. For the following.dis-
cussion the parameter g4 = g1 — 292 is also useful. ‘
If the cutoff Ey is changed to Ej and simultaneously the coupling constants

g; are transformed to certain new values
gi = %
then the functions d and T; are multiplicatively transformed to

(EI 7gl) = zd( E[ ,gl) (8)

F(E,,g.)ﬂz lF(E i) 9

Moreover, requiring the invariance of quantity g‘I‘ ;d? whlch is an appro-
priately renormalized vertex [11], only four of renormalization constants z;,
!

2} and z are independent and we have 2; = = z;/2?

The scaling equations for d, T; and g can be written in a common form as:
Y 10
T C(EI ’gl) - C(E)'7gt) ( )

For any quantity obeying the condition (10) a Lie differential equation of the

form:

o InO(6, ) | (11)

7] —InC(z,9) = f -

Toz

can be derived, where z = w/Eq.

The rlght -hand side of Lie equatlon can be calculated by perturbatlon
theory If the invariant couplings g;(z) = g! are small for an arbitrary change

of the scaling energy the quantlty‘determmed from the solution of the Lie



equation using a few Iterms of the perturbation series will present a good
approximation in the whole energy range. If, however, the invariant couplings
become of the order of unity while scaling energy goes towards lower energies,
the right-side of the Lie equation breaks down and only qualitative results can

be obtained.

3.1 PFirst-order renormalization

Calculating the right-hand side of the Lie equations in the second-order of
the perturbation theory the following equations for invariant couplings can be

obtained

e gr(e) = 6}(z) | (12)
v-0u(z) = 63(2) (13)

> -03(z) = 94(z)g5()

The first order scaling is equi\}a.lent to summing up fhe rleading terms and
these .equations are exactly analogous to those obtained in {12] by parquet
approximation. Let us first analyze the model (1)in the case Vi =V, =01In
this case the solutions of Eq.(12) and (13) with boundary conditions ¢;(0) =
U/mvr, 94(0) = —=U/7wvp and 93(0) = V/nvr have the ‘form:

U ,
w@) =1 (14)
where t= Inz;
-U 1%
94(z) = T 0% ?3(1) =110t (15)
for U2 = V¥
DsgnV

g4(z) = —D coth D(tp — t), g3(z) = |sinh D(t — £)] (16)

for U2 > V2, where ty = 1/Darccoth(U/D);

DsgnV
|sin D(tp — t)]

for U? < V2, where t5 = 1/Darccot(U/D) .

34(z) = =D cot Dlto ~ 1), ga(c) = (a7

These equations show that, at certain values of bare couplings, the poles
appear in the expressions of ‘the invariant coupling constants. This singular
behavior of invariant couplings doesn’t indicate the phase transition at ﬁnité
temperature, which is impossible in one dimensional system [13]. The exis-
tence of the poles in expressions (14)—(17) indicates that at low temperatures
the interactions become strong and this approxixﬁation is no longer valid. In

[12] Dzyaloshinsky and Larkin, comparing their result to exact solution ob-

‘tained by Gauden [14], emphasized, that the poles in the expressions of the

invariant couplings can indicate the appearance of the gap in the one particle
excitation speci;rum.' It is known, that g; and (g;;,é.‘;) describe the spin and -
charge part.of the system respectively [15], [7], thus we can expect that the
spin (charge) gap exists when there is a pole in the expression for g, ((g3, 94)).
Thus the chafge gap exists in all sectors exceﬁt ‘A, while the spin gap éxists

in the sectors A, B, E (see Fig.1).

3.2 Second-order renormalization

" The second-order renormalization corresponds to considering next to leading

logarithmic corrections and thereby to taking into account ﬂuctuation effects.
In the limit of thlrd order of perturbation theory for d and I“, the following

L1e equatlons for invariant coupllngs can be obtained:

rogs(@) = G3(E)[1 + 01(2)] (18)
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Fig.1 The ground-state phase diagram of the model (1) (V; = V, = 0).
The response functions corresponding to the phases shown in the parentheses

have a lower degree of divergence than the others.

v gu(x) = (@)1 + 54(2)] (19)

ro-03(z) = g1 (s()L + 704(2)) + 393(2)

The solutions of these equations can be obtained only in an implicit form.
They are the smooth functions of energy and tend to the saturation values,

fixed points, at w = 0. The values of the fixed points can be obtained from

N =——E L

zeros of the right-hand sides of the Lie equations by using the following argu-

ments:

a). From eq.(19): x%gl(z) < 0 for g1(z) > —2; b). From eq.(20): '

!]3

x—a(—?—g4(a:) < 0 for g4(z) > —2 and gg44 T2

= ¢, where c is a constant.

The values of the fixed pomts depend on the relation between bare couphng

constants and they are presented in Table 1.

4 Table 1. The values of the fixed points for invariant coupling constants.

The letters A...C describe the same region as in Fig.1 and v = (¢++/¢? + 8¢)/2

A B|C|D|E
1(0) -2 2002
g0 | —1=y/2{0f1]1]0
43(0) 0 21222
94(0) v o |-2)-2)-2]-2

3.3 Response functions and ground-state phase diagram

The symmetry of the ground-state can be found by investigation of various
response functions which are expected to be singular. These quantities are

the charge-density (CDW) and spin-density (SDW) waves with wave-vector

'k = 2kF, the singlet-superconductor (SS) and triplet-superconductor (TS)

response functions with wave-vector k =0 [16]
In the case of 1/4 filled band the periodicity of the CDW and SDW is equal
four lattice constant a.nd it is poss1ble to introduce two separate sets of order

parameters descnbmg the fluctuations of the charge and spin density on even



(a) and odd () sublatticies. In the real space and time representation general

formula for these functions is
®(z,t) = —if(t) < [U(z,)Ut(0,2)] > (20)

where U(i,t) = Ea[¢fa(z,t)1/)2,a(z,t) + zp{a(z,t)d)l,a(z,t)] for the charge-
density response function N('z,t);’ 1/)Ir(z,t)¢2,1(:z:,t) + ¢IT(I,t)¢1,1(I,t) for
the spin-density response function x(z,1) Aand z/)f:T(:z:, t)ba,i(1)(z, t) for singlet
(triplet)-gupercohductor resp(;onsé function A,((z,1)

The Fourier-transformed responsé functions don’t satisfy the criterion of
multiplicative renormalization, Solyom [16] introduced the auxiliary renor-
malizable functions defined by

R - aQ;(w)
Tiw) = dln(w)

where ®;(w) is one of the above considered response functions. In the limit
of second order of perturbation theory the following Lie equations for these
renormalizable response functions can be obtained: .

awa(b)(z)

 al(ay - 291(@) -~ 9:(2) + ()es(@) + F(z) (21)
~ a§+ff’(’i)i) = -Qz(z) = (+)gs(=) + Flz) (22)
Z;A:f((:)) = gi1() + g?(z) + F(z) | @

\?91%:((;)) = 92(z) - 1(2) + Fl) - (24)

where

F(@) = 5(632) + 8(@) - 01(2)a(e) + 163(x))
and ﬁa(z) and No(z) (X,(=) and 7,,(1:)). describé'the CDW (SDW) located
on a ‘z\a.n’d' b sublatticies , respectively and th'ey are different only in a sign of

g3, the changing a — b is equivalent to change the sign of Umklapp processes.
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In the limit w .— 0 the asymptotic expressions of response functions are
obtained as
() o Bi(w) x ()
The critical exponents ¢; can be obtained by putting the fixed points of in-
variant couplings in the right-hand side of Eq.(21-24) and they are presented
in Table 2

Table 2 The critical exponents ¢;

A B. C D E
Nogy || -3/2+7/2 | 1(-3) | 5(-3/2) |-3/2(5/2)|-3(1)
Xay || 5/247/2 | 1(5) | -3/2(5/2) | 5/2(-3/2) | 5 (1)
A, | -3/24/2 | -1 5/2 5/2 1
A, 5/2v/2 | 1 - 5/2 5/2 1

According to singularities in the response functions let us summarize the
ground-state phase diagram. In the sector A the CDW and SS response func-
tions are divergent. The dominant singularity is in the singlet-superconductor
response. . _ :

In the sectors B and E only CDW response, located on the sublattice with
lower on-site interaction, is divergent. .

iThere is coexistence of CDW and SDW in the sectors C and D. The CDW
is still located on thé sublattice with lower on-site interaction while the SDW
is located on the other one. »

In the case of nonaltemating chain, g3 = 0, g4 doesn’t renormalize and sys-
tem has the properties of normal metal for U > 0 and singlet-superconductor
for U < 0. '

The ground-state phase diagram obtained here is exactly analogous to that

11



obtained by boson representation theory in [4].

4 Scaling to the exactly soluble models

The renormalization group and scaling‘ arguments presented in 3 establish a
relationship between the original problem énd a set of problems in which the
‘coupling constants have the soméwhat different values. If an exactly soluble
model appears among these equivalent systems, the physical behaviors of the
original model can be predicted by using the scalingl arguments.

From Tab.1 one can easily see that depending on relation befween the bare
couplings the model can be scaled to Tomonaga [17] or Lﬁtter-Emery (LE)
[18] model and the ground-state phase diagram can be obtained by using their
results [10]. - _v .

(i). In the sector A (seeFig.1), g1(1) < 0, gi1(1) — 2g2(1) > |ga(1)}, the
spin part of the quiltonian scales to the LE line and there is # gap in the
spin part of the excitation spectrum. The charge part scales to a Tomonaga
mpdel and the Umklapp proceéses have no influence. Only the CDW and SS

responses can be divergent. The dominant singularity is in the latter.

(ii). For ¢;1(1) > 0, g1(1) — 2g2(1) < |ga(1)|, sectors C, D, the situation is-

reversed concerning the spin and charge parts of the Hamiltonian. The gap is
in the charge part and CDW and SDW responses show a singular behavior.
The latter is more singular. The difference between singularity in CDW and
SDW responses is caused by Fermi velocity renormalization [10] for which
scattering processes omitted in (2) is responsible [7].

(iii). In the sectors B and E, g1(1) < 0, g1(1) — 292(1) < |gs(1)], the
Hamiltonian scales to the LE line, there is a gap in both charge and spin parts

and only charge-density response function is divergent.

12

4.1 The role of intersite interactions

Taking into account the effects of intersite interactions leads to the renormal-
ization of bare coupling constants Eq.(4). Lét us cortvlsideruthe phase diagfafn
for the arbitrary sign of the bare coupling c‘onstants,- not restﬁcting ourselves
by realistic case, when U,, Uy, V4 and ;V, > 0. .

In the case of extended mode] the spin and cha.tgé gaps exist in the case
when U — 2V, < 0.and —(U + 4V, + 6V3) > |V, respectively.

(). Now the situation discussed in 4.(i) takes a place when
U -2Va<0and — (U +4V4 6V3) > [V]

and the ground-state of the system is the same as in sector A.

(ii).-When the bare couplings constants satisfy the condition:
TU-2V; 3 0and — (U +4V; +6V3) < V1.

in the extended model,the same reéponse functions as in sectors B and E are
divergent. '

(iii). The system has the same ground-state as in sectors C and D when
U—2V,<0and — (U +4V; +6V2) < [V].

(iiii). Unlike to the case V; = V2 = 0, when intersite interactions are

presented, the Hamiltonian scales to the Tomonaga model when:
U—-2V22>0and — (U +4V; +6V2) > |V|

There is no gap in either the charge or spin parts of the Hamiltonian and

the singlet- and triplet-superconductor responses are divergent.

13



5 Summary

The one-dimensional 1 /4-filled Hubbard model with alternating on-site inter-
actions has been considered in the weak coupling approach using the Ranor-
malization group technique. The ground-state phase diagram obtained in the
limit of second order renormalization is exactly a.rialogous to that obtained by
a boson representation method. Depending on the sign and relative values
of the bare coupling constants, there is a gap in the spin or charge excitation
spectrum and the model system tends to superconducting or antiferromagnetic
order at T' = 0, with doubled period. It is shown by scaling to exactly soluble
models that the terms corresponding to scattering processes, in which both
incoming particles are from the same branch lead to the difference between
the degrees of the divergency of CDW and SDW response functions. The role
of interaction between particles on nearest and next-néarest neighbor sites is

also considered.
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