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1 . Introduction. 

The remarkable discovery of high-Tc superconductivity [1] in Cu-O com­

pounds has raised the interest in the physics of correlated electrons in low 

dimensions. For better understanding of the high-Tc superconductivity ~ech-
' ,. 

anism it is interesting to investigate one-dimensional analogues of Cu-O planes. 

Emery proposed a one dimensio~al version [2] of two-band copper-oxide 
;; 

model (3). In Emery's model two essential features distinguishing the Cu and 

0 site's in real systems are incorporated: L the chemical aspect ~: the hole 

has different on-site energies ~n copper and ~xygen sites and' 2. the dynamical 

aspect - there are different ~n-site interactions between two holes on copper 

sites (Ua) and on oxjgen (Ub). To inv~stfgate the influence of the dynamical · 

nonequivalence of copper and oxygen sites Japaridze et ai. [4) considered a 

rather formal ID version of the 'cu-O chain, namely the one-band Hubbard 

model with different on-site interaction ·on even and ~dd sites. This model 
'. 

was investigated in the framework of standard weak coupling approach using 

a boson representation theory. 

The another method by which insight can be gained in:to the problem of 

interacting fermions is to use the renormalization group (RG) (5], (6), [7). It 

isn't without interest to consider the same model as in [4) by ,RG technique. 

· · As twill be shown in 2, the continuu~ Hamiltonian of th~ ~odel has a gen­

eral form, describing the one-dimensional system of iµteracting fermions. The 
. ' . . 

Hamiltonian of the same form has been considered 'by Kimura [5) using the 

conventional- field-theoretical renormalization group. Solyom · .[6) performed 

the second order scaling procedure, using the bandwidth cutoff, to more gen­

eral case, when the forward scattering process. between particles from the same 

branch was presented. According to Solyom, taking into account this process 

substantially changes results. Unlike (6), Rezayi et al. [7) have shown, that if 



one modifies the term corresponding backward scattering and Umklapp pro-. 

cess, replacing them by effective spin and charge carrying interactions, one 
,' ·, 

gets the theory with momentum transfer cutoff. In this case, the effect of 

the forward scattering process between particles from the same branch is ab­

sorbed to a Fermi velocity re.normalization and couplings, which couple the 

spin-density degrees of freedom scale independently of the couplings, which 
' ~ f 

couple the charge-density degrees of freedom. 

In our calculation, we shall neglect the forward scattering process between 

particles from the same branch and assuming that the forces are short range, 

use the bandwidth cutoff. In this case, the Lie equations for the coupling 

constants decouple into two sets and are analogous to those obtained by using 
r, . , ,, 

the momentum transfer cutoff [7]. As will b~ _shown in 4. the scattering 

processes responsible to a Fermi velocity ranormalization can only lead to the 
. . . 

difference between the degrees of the divergency of CDW and SDW response 

functions. 

2 The model 

The Hamiltonian describing the model has the following form: 

. 1 . . 
H = -t L c!,a(cn+l,a + Cn-1,a) + 2 L[U + (-ltV]Pn,aPn,-:-~+ (1) 

n,a n,o 

+ L [ViPn,aPn+i,,6 + VzPn,aPn+z,,e] 
n,o. ,/3 

where c;ta( Cn,a) is a creation (annihilation) operator for a particle of spin 

a in the Wannier state localized at the nth lattice site, Pn,a = c;t',acn,a and 

1 . 
U = 2(Ua + Ub) 

1 
V = -(Ua - Ub) 

2 

2 

where Ua(Ub) describes on-site interaction on even (odd) lattice sites and V1 

and Vi describe the interactions between particles on nearest and next-nearest 

neighbor sites, respectively. 

The continuum limit of the Hamiltonian (1) can be taken by approxi­

mating the spectrum -2t cos k by linear. spectra around ±kF and using the 

correspondence: 

Cn,a-> exp(ikFn)t/11,a(x) + exp(-ikFn)t/12,a(x) (2) 

where the fermion field 1Pl(Z),a( x) describes the particles around Fermi point 

+(-)kF, 

In the case of quarter-filled band, the dynamical nonequivalence of sites 

becomes important and leads to the appearance of Umklapp processes [4]. 

The continuum limit Hamiltonian has the form: 

H = -iVF L J dx[t/JtaBxt/11,a - 1Pi,08xt/12,a]+ 
a 

(3) 

+1rvF L J dx{ [911180,,6 + 91~0a,-,e]t/Jl0t/Ji,,e1P1,,et/J2,a+ 
a~ . 

+[92IIOa,,6 + 92J.Oa,-,6]1Pt0 1Pi_,e1P2,,61Pl,a + ~ Oa,-,6( t/Jt0 t/Jl,et/J2,,et/J2,a + h.c.)} 

The Hamiltonian {3) has a general form describing the interacting fermion 

system in lD. The terms with coupling constants 9111, 911. and 9211, 9u corre­

spond to the backward and forward scattering processes,respectively and the 

terms with 93 - to the Umklapp process. In the (3) the processes with coupling 

constants 9111 and 9211 are indistinguishable and we can choose 9211 = 9u, with­

out loss of generality. This leads to the following values of the spin independent 

bear coupling constants: 

U - 2Vz U + 2Vi + 2Vz V 
91 = 9111 = 911. = ---; 92 = 9211 = 921. = -----; 93 = - (4) . 

71'~ 71'~ 71'~ 
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In obtaining (3), the terms corresponding to forward scattering processes, in 

which both incoming particles are from the same branch, were omitted. 

3 Renormalization group technique 

The multiplicative renormalization group has been used in the field theory for a 

long time to eliminate divergences (8). This method has two main aspects. The 

first one is that starting from a perturbational calculation a partial summation 

is obtained by solving the group equations and second one - a set of equivalent . 

problems can be found which are described by Hamiltonian of ~imilar form. If 

there is a model among the equivalent ones which can be solved, the solution 

of the original problem can also be obtained. 

The renormalization group treatment of the problem of interacting fermions 

m 1D was given by Menyhard and Solyom (9). Here we will briefly present 

the ideas applied to the 1D Fermi gas. 

For an unambiguous definition of the model it is necessary to specify the 

cutoff procedure which determines the domains of admissible values of the 

electron momenta. If the interactions are short range we have effe~tively only 

one limit on momenta and got a theory with bandwidth :cutoff. In the general 

case, when the long-range forces are also presented, theory needs two cutoffs, 

one as bandwidth and one on momentum transfer: (10). Assuming· that the 

forces are short range in our case, we shall use the bandwidth cutoff. 

At first let us write the auxiliary Green's function d and four-pointed vertex 

function I'; in the following way: 

w 
G(kF,w) = d( Eo ,g;)Go(kF,w) 

r otho(w) = g1T.'1(w)o"'Y8fJo - g2T.'2(w)8aoOfJ'Y 

for process with momentum conversation and 
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(5) 

(6) 

f3 = g3T.'3(8a"fOfJS - OasOfJ'Y) . - (7) 

for Umklapp process, where E 0 is a bandwidth cutoff. For the following.dis­

cussion the parameter 94 = 91 -' 292 is also useful. 

If the cutoff Eo is changed to Eb and simultaneously the coupling constants 

g; are transformed to certain new values 

g: = z:g; 

then the functions d and T.'; are multiplicatively transformed to 

d(;,,gD = zd(;,,g;) 
0 0 . 

(8) 

- W I -1 - W 
r;(Eb'g;) = Z; r;(Eo'g;) (9) 

Moreover, requiring the invariance of quantity g;T.' ;d2
, which is an appro­

priately renormalized vertex (11), only four of renormalization constants z;, 

zi and z are independent and we have zi = zd z2 

The scaling equations for d, T.'; and Yi can be written in a common form as: 

w w 
C(Eb'gD = zC(Eo'g;) (10). 

For any quantity obeying the condition (10) a Lie differential equation of the 

form: 

X :x lnC(x,g;) = :tlnC(t,gnle=1 

can be derived, where x = w / Eo. 

(11) 

The right-hand side of Lie equation can be calculated by perturbation 

theory. If the invariant couplings g;( x) = Yi are small for an arbitrary change 

of the scaling energy the quantity- determined from the solution of the Lie 

·5 



equation using a few terms of t~e perturbation series will present a good 

approximation in the whole energy range. If, however, the invariant couplings 

become of the order of unity while scaling energy goes towards lower energies, 

the right-side of the Lie equation breaks down and only qualitative results can 

be obtained. 

3.1 First-order renormalization 

Calculating the right-hand side of the Lie equations in the second-order of 

the perturbation theory the following equation"s for invariant couplings can be 

obtained 
a 2 

x ox91(x) = 91(x) 

a 
x ox94(x) = 95(x) 

a 
x Bx93(x) = 94(x)93(x) 

(12) 

(13) 

The first order scaling is equivalent to summing up the leading terms and 

these .equations are exactly analogous to those obtained in [12] by parquet 

approximation. Let us first analyze the model (1) in the case Vi = Vi = 0 In 

this case the solutions of Eq.(12) and (13) with boundary conditions 91(0) = 
U /1rvp, 94(0) = -U /1rvp and 93(0) = V/1rvp have the form: 

where t = In x; 
/ 

u 
91(x) = 1- Ut 

-U V 
94(x) = 1 + Ut' 93(x) = l + Ut 

for U2 = V 2
; 

DsgnV 
94(x) = -DcothD(to - t), 93(x) = jsinhD(t

0 
- t)I 
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(14) 

(15) 

(16) 

for U2 > V 2 , where t0 = 1/Darccoth(U/D); 

. DsgnV 
94(x) = -D cot D(to - t), 93(x) = I . D( )I sm t0 - t 

(17) 

for U2 < V 2 , where t0 = 1/ Darccot( U / D) . 

These equations show that, at certain values of bare couplings, the poles 

appear in· the expressions of the invariant coupling constants. _This singular 

behavior of invariant couplings doesn't indicate the phase transition at finite 

temperature, which is impossible in one dimensional system [13]. The exis­

tence of the poles in expressi_ons (14)-(17) indicates that at low temperatures 

the interactions become strong and this approximation is no longer valid. In 

[12] Dzyaloshinsky and Larkin, comparing their result to exact solution ob­

tained by Gauden [14], emphasized, that the poles in the expressions of the 

invariant couplings can indicate the appearance of the gap in the one particle 

excitation spectrum.· It is known, that 91 and (93, 94) describe the spin and 

charge part of the system respec~ively [15], [7], thus we can expect that the 

spin (charge) gap exists when there is a pole in the expression for 91 ((93 , 94 )). 

Thus the charge gap exists in all sectors except A, while the spin gap exists 

in the sectors A, B, E (see Fig.1). 

3.2 Second-order renormalization 

· The second-order renormalization corresponds to considering next to leading 

logarithmic corrections and thereby to taking into account fluctuation effects. 

In the limit of third order of perturbation theory for d and I';, the following 

Lie equations for invariant couplings can be obtained: 

8 l 
x Bx91(x) = 9l(x)[l + 291(x)] (18) 
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Fig.1 The ground-state phase diagram of the model (1) (Vi = V2 = 0). 

The response functions corresponding to the phases shown in the parentheses 

have a lower degree of divergence than the others. 

x :x94(x) =·95(x)[l + ~94(x)] (19) 

a 1 1 3 x &x93(x) = 94(x)93(x)[l + 494(x)] + 494(x) 

The solutions of these equations can be obtained only in an implicit form. 

They are the smooth functions of energy and tend to the saturation values, 

fixed points, at w = 0. The values of the fixed points can: be obtained from 
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'1 
:\ 
I 

f} 

zeros of the right-hand sides of the Lie equations by using the following argu­

ments: 

& 
a). From eq.(19): x &x91(x)::; 0 for 91(x) ~ -2; b). From eq.(20): 

& ~-~ x?l94(x)::; 0 for 94(x) ~ -2 and 4 
2
3 = c, where c is a constant. 

ux ~+ -
The values of the fixed points depend on the relation between bare coupling 

constants and they are presented in Table 1. 

Ta_ble 1. The values of the fixed points for invariant coupling constants. 

The letters A ... C describe the same region as in Fig.land,= (c+✓c2 + 8c)/2 

A B C D E 

91(0) -2 -2 0 0 -2 

92(0) -1- ,/2 0 1 1 0 

93(0) 0 2 2 -2 -2 

94(0) 'Y -2 -2 -2 -2 
' - --

3.3 Response functions and ground-state phase diagram 

The symmetry of the ground-state can be found by investigation of various 

response functions which are expected to be singular. These quantities are 

the charge-density (CDW) and spin-density (SDW) waves with wave-vector 

k = 2kF, the singlet-superconductor (SS) and triplet-superconductor (TS) 

response functions with wave-vector k = 0 [16). 

In the case of 1/4-filled band the periodicity of the CDW and SDW is equal 

four lattice constant and it is possible to introduce two separate sets of order 

parameters describing the fluctuations of the charge and spin density on even 
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(a) and odd (b) sublatticies. In the real space and time representation general 

formula for these functions is 

<I>(x,t) = -iO(t) < [U(x,t)U+(o,t)] > (20) 

where U(x,t) = :E0 [tfat.c,(x,t)tfa2,a(x,t) + tfaf,0 (x,t)tfa1,a(x,t)] for the charge­

density response function N(x,t); tfai,t(x,t)tfa2,1(x,t) + tfai,r(x,t)tfa1,1(x,t) for 

t~e spin-density response function x(x, t) and tfalr(x, t)tJ,2,1rn(x, t) for singlet 

(triplet)-superconductor response function L\s(t)(x, t) 

The Fourier-transformed response functions don't satisfy the criterion of 

multiplicative renormalization, Solyom [16] introduced the auxiliary renor­

malizable functions defined by 

°¥·( ) :::: o<l>;(w) 
'w oln(w) 

where <l>;(w) is one of the above considered response functions. In the limit 

of second order of perturbation theory the following .Lie equations for these 

renormalizable response functions can be obtained: 

aNa(b)(x) 
i)ln(x) = 291(x)- 92(x) + (-)93(x) + F(x) (21) 

oXa(b)(x) 
aln(x) = -92(x)- (+)93(x) + F(x) (22) 

8L\s(x) 
aln(x) = 9i(x) + 92(x) + F(x) 

oKix) . 
1 

aln(x) = 92(x)- 91(x) + F(x) 

(23) 

(24) 

where 
. 1 1 
F(x) = 2(9;(x) + 9i(x)- 91(x)92(x) + 29i(x)) 

and Na(x) and Nb(x) (Xa(x) and Xb(x)) describe the CDW (SDW) located 

on a and b sublatticies , respectively and th
0

ey are different only in a sign of 

93 , the changing a-+ bis equivalent to change the sign of Umklapp processes. 
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In the limit w --+ 0 the asymptotic expressions of response functions are 

obtained as 
- w 

<I>;(w) ex: <l>;(w) ex: ( Eo)°• 

The critical exponents a; can be obtained by putting the fixed points of in­

variant couplings in the right-hand side of Eq.(21-24) and they are presented 

in Table 2 

Table 2 The critical exponents a; 

A B. C D E 

Na(b) -3/2+,/2 1 (-3) 5 (-3/2) -3/2 (5/2) -3 (1) 

Xa(b) 5/2+,/2 1 (5) -3/2 (5/2) 5/2 (-3/2) 5 (1) 

L\s -3/2-, /2 . 1 5/2 5/2 1 

L\t 5/2-, /2 1 5/2 5/2 1 

According to. singularities in the response functions let us summarize the 

ground-state phase diagram. In the sector A the CDW and SS response func­

tions are divergent. The dominant singularity is in the singlet-superconductor 

response. 

In the sectors B and E only CDW response, located on the sublattice with 

lower o~-site interaction, is divergent. 

There is coexistence of CDW and SDW in the sectors C and D. The CDW 

is still located on the sublattice with lower on-site interaction while the SDW 

is located on the other one. 

In the case of nonalternating chain, 93 = 0, 94 doesn't renormalize and sys­

tem has the properties of normal metal for U > 0 and singlet-superconductor 

for U < 0. 

The ground-state phase diagram obtained here is exactly analogous to that 

11 



obtained by boson representation theory in [4]. 

4 Scaling to the exactly soluble models 

The renormalization group and scaling arguments presented in 3 establish a 

relationship between the original problem and a set of problems in which the 

coupling constants have the somewhat different values. If an exactly soluble 

model appears among these equivalent systems, the physical behaviors of the 

original model can be predicted by using the scaling arguments. 

From Tab.I one can easily see that depending on relation between the bare 

couplings the model can be scaled to Tomonaga [17) or Lutter-Emery (LE) 

[18) model and the ground-state phase diagram can be obtained by using their 

results [10). 

(i). In the sector A (seeFig.1), 91(~) < 0, 91(1) - 292(1) 2: l93(l)I, the 

spin part of the Hamiltonian scales to the LE line and there is a gap in the 

spin part of the excitation spectrum. The charge part scales to a Tomonaga 

model and the Umklapp processes have no influence. Only the CDW and SS 

responses can be divergent. The dominant singularity is in the latter. 

(ii). For 91(1) > 0, 91(1)- 292(1) < l93{l)I, sectors C, D, the situation is 

reversed concerning the spin and charge parts of the Hamiltonian. The gap is 

in the charge part and CDW and SDW responses show a singular behavior. 

The latter is more singular. The difference between singularity in CDW and 

SDW responses is caused by Fermi velocity _renormalization [10) for which 

scattering processes omitted in {2) is responsible [7]. 

(iii). In the sectors Band E, 91(1) < 0, 91(1) - 292(1) < l93{l)I, the 

Hamiltonian scales to the LE line, there is a gap in both charge and spin parts 

and only charge-density response function is divergent: 

12 

4.1 The role of intersite interactions 

Taking into account tl,te effects of intersite interactions lea1s to the renormal-

ization of bare coupling constants Eq.( 4). Let us consider the phase diagram 
, ' 

for the arbitrary sign of the bare couplin~ constants, not restricting ourselves 

by realistic case, when Ua, Ub, Vi and ,· Vz > 0. 

In the case of extenged model the spin and charge gaps exist in the case 

when U - 2Vz < 0 and -(U + 4V1 + 6Vz) 2: !VI, respectively. 

(i). N9w,n1.e situation discussed in 4.(i) takes a place when , , 

· U - 2Vz < 0 and - (U + 4l-'i + 6Vz) 2: !VJ 

and the ground-state of the ~ystem is the same as in sector A. 

(ii). When the. bare couplings constants satisfy the condition: 

·· U - 2Vz 2: 0 and - (U + 4Vi + 6V2) < IVI. 

in the extended model,the same response functions as in sectors B and E are 

divergent. 

(iii). The system has the same ground-state as in sectors C and D when 

U - 2Vz < 0 and - (U + 4Vi + 6Vz) < IVI. 

(iiii). Unlike to the case Vi = Vz = 0, when intersite interactions are 

presented, the Hamiltonian scales to the Tomonaga model when: 

U - 2Vz 2: 0 and - (U + 4Vi + 6Vz) 2: !VI 

There is no gap in either .the charge or spin parts of the Hamiltonian and 

the singlet- and triplet-superconductor responses are divergent. 
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5 Summary 

The one-dimensional 1/4-filled Hubbard model with alternating on-site inter­

actions has been considered in the weak coupling approach using the Ranor­

malizatioil group technique. The ground-state phase diagram obtained in the 

limit of second order renormalization is exactly analogous to that obtained by 

a boson representation method. Depending on the sign and relative values 

of the bare coupling constants, there is a gap in the spin or charge excitation 

spectrum and-the model system tends to superconducting or antiferromagnetic 

order at T = 0, with doubled period. It is shown by scaling to exactly soluble 

models that the terms corresponding to scattering processes, in which both 

incoming particles are from the same branch lead to the difference between 

the degrees of the divergency of CDW and SDW response functions. The role 

of interaction between particles on nearest and next-nearest neighbor sites is 

also considered. 
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