


1 Introduction -
The discovery of high-T¢ suberconduct1v1ty by Bednorz and Muller [1] in cop-
per oxides has renewed interest to the Hubbard model since many unconven—

tional propertles of these materials are belleved to.be due to strong electron, :

correlatlons [2]. Among them linear temperature dependence of resrstlvrty and o

anomalous’ frequency dependence of optlcal conduct1v1ty (see, e.g. ,[3]) Theo- -
retical studles .of the' optlcal conduct1v1ty for the Hubbard model (4, 5, 6] 1n»
the framework of Kubo linear response, theory [7] started long trme ago it was:
investigated by the moment method (8], by the equatlon of motion method;
for the Green functions [9] in the Hubbard I.[4] approxrmatlon [10] and in the ‘
Hubbard III [5] approximation 11, 12]: ' -
- Later on most extenswely the opt1ca1 conduct1V1ty has been studled for the.
. one- d1menslonal (1D) Hubbard model [13, 14, 15, 16, 17 18 19, 20,21, 22]'«'
where results of numerlcal calculatlons for small clusters ¢an be compared[
with a rlgorous treatment on the bas1s of: the Bethe ansatz exact’ solutlon [23] s
For. higher’ d1menslons and‘in partlcular for the two- d1mensronal (2D) Hub-
bard model the strong coupling 11m1t U>t, has been consldered mostly by,
numerical ‘methods based on exact dlagona.hzatlon for: sma]l clusters [24 25
26, 27, 28; 29, 30, 31 32, 33 34] A detalled d1scusslon of optlcal and photoe-}
mission sum rules for 1D~and 2D Hubbard model has been given: recently by -

_ Eskes et al. [35] by compairing a strong coupling perturbatlon theory in pow-’

ers of t/U with numerlcal calculatlons However, numerlcal investigations for R

small clusters have a poor frequency resolutlon to be quantltatlvely compared'
with expenmental results An analytlcal analysis of the: frequency dependent
conductivity has been' given only by perturbatlon method [36 37) in the limit
of weak couphng, t>U. Therefore, an analytrcal investigation of one-partlcle'
and optlcal spectral functlons 1n the strong coupling limit, ¢ < U,is requi‘r‘ed.
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To discuss physical properties of copper oxide"co‘r'npounds’" :one'usually_n
starts from the multiband p— d model [38]. However, as has been recently ‘
shown [39] ‘the two- band p-d model for copper. ox1de plain-can be reduced to:"

the two-band singlet-hole model which is essentially the asymmetrlc ‘Hubbard .

model with nonequal hopping integrals ¢, for the lower Hubbard band (LHB:
alzﬂ = 1")"and the upper Hubbard band (UHB: a =4 =.2)."The LHB is
occup‘i’ed by one hole d-like states and the UHB is occupied by two-hole singlet

‘ states ’V\fithin the framework of this model single particle excitation spectra"

for the LHB and the UHB and their doping dependence ha.ve been ca.lculated
[39]

In the present paper a frequency dependent conduct1v1ty a(w) is investi-

: gated for the asymmetric Hubbard -model by applying. the ‘memory function.

“technique [40] in terms of the Hubbard operators. A generalized Drude law

| ‘w1th frequency and temperature ‘dependent relaxation rates due to electron o
scattering on charge and spin fluctuations-is obtained in the self-con51stent .

 Born approxrmation It is shown that interband:transitions: (oc tlg) are essen- ;v’ g

- tial for the Drude current -relaxation which'is proportlonal to [(tm,,)2 (t12)%]2
: and cancels out for the symmetrical Hubbard model, (tyo = t) The present
" ‘paper is a generalization of the optical conduct1v1ty calculations [41] for the
~ p—d-model where, however,.a singlet band formation has not been taken into
. account and the conductivity has been considered only for the p-band.
,:L:The‘ employment of the Hubbard operator technique has a twofold advan-
tage. First of all by using equations of motion for the Hubbard operators
,We automatically take into account scattering of electrons on spin and charge

fluctuations due.to strong correlations as it has first been pointed out by Hub-

bard [5, 6]. In the Fermi liquid models (see; e.g. [42;43, 44, 45])-one has to’
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introduce a phe’ncomenological spin fluctuation scattering mechanism to obtain

nonzero relaxation. To study the transport properties in the auxiliary field

representation (see e.g., [46] and the references therem) or in the gauge field

technique [47, 48] one has to adopt a spm charge separation condition wh1ch
has been. rigorously proved only for 1D Hubbard model By employmg the ‘
Hubbard operator representation we can also preserve rigorously restriction

for no double occupancy for the LHB (or no smgle occupancy for the UHB) ’

‘which is in the aux1liary field and the gauge field techmques has to be imposed

. by the local conservation law of the total number of fermions and bosons The

latter can be allowed for only approx1mately as, e. g in the 1/N expa.ns1on

technique with N being the spin-orbital degeneracy (see e g.; [46]). However, -

it is difﬁcult to give an unambiguous phy51cal mterpretation of the obtained

" results for a realistic value of N =2, - R L

The paper is organized as follows. _Inqthe; Section.2"t’helasyrnrnetric Hub ,

,bard model is. presented. - In Section 3 a general expression for the frequency
-dependent conductivity'in)terrnvs of the -memory‘functionwislobtained.{The cal-
.culation vof the relaxation rate for the optical c‘onductivityzgis‘given:inf Section

‘4. In the last Section.5 the obtained results are discussed and summarized.

The origmal one band Hubbard model [4]

Z t’J CmCJG + Uz:nw'nu?;’ RV (1) |

{;EJU

: has only two parameters the hoppmg mtegrals ti; between i-th and 3- th lattice
'SlteS ‘and the on-site Coulomb repuls1on U for doubly occupled lattice sites,

g : -0 We mtroduce the Hubbard operators [6]

.‘7 = Ii,p)(i,ql quer _ 6q.,- Xps T (2) .



for 4 possible'states at a lattice site :

LA =lh0), e, 1) @)

for an empty site, a singly occupied site by electron with'spin o = (1, |) and for
a doubly-occupied site, respectively. For these states a completeness relation

for the Hubbard operators (2) holds

o

XP+> X0+ XxP=1. (4)
‘In terms of the Hubbard operators (2) the Hamiltonian (1) r‘ve"a:ds

= EIZX"" +E, ZX”
Z t'J{XUOXOU + X2¢7Xa2 + 20,(X20X00 + XaoXaz)} ‘ (5)
i#jo - »
' Here 20’ +1 and we 1ntroduce energy levels E1 =" Eo - B and E2 =
,_A2E0 - 2;1 + U for singly and doubly occup1ed sites, respectlvely, vvhere ‘Ey
is'a reference energy and jtis the chemlcal potentlal’ The Hamiltonian (5)
in the _Hubbard operator representatlon is much easier to treat in the hmlt
of stfbng‘éonelations U >> lt,Jl, when the doubly occupled UHB is splltted
from the singly occupied LHB. The algebra (2) for the Hubbard operators
‘ automatrcally preserves restriction’ of no double ‘occupancy\for‘t_he LHB.(orn no
single occupancy for the UHB) which in the auxiliary field representation has
_to be imposed by local conservation law. o - |

" However, starting from the or1g1nal one-band Hubbard model (1) we get a

symmetrical representation (5) with equal hopping integrals t;; for the LHB.

and UHB and their hybridization. To compare calculations with results for

copper oxides in the present paper we consider a more realistic two-band p —-d

model reduced to a singlet-hole asymmetric Hubbard model -vvith the LHB .

Lt e it e, 4 -
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,occupred by one- hole ‘Cu-d like states and the UHB occupled by two- hole P d,f' -
) srnglet states: [39] The asymmetric Hubbard model reads '

H = H0+Ht EIZX""+E ZX”

= Z {t“X"OXO" + t22X2"X"2 + 2at12(X,-25XJ(-)‘.’;+ X,‘-’,‘?X;T’f')}_, (e)f
1;6_10

'~ where the hopping 1ntegrals have dlfferent values for the LHB (t“) the UHB‘

(t2?) and the 1nterband trans1tlons (t ) In the s1nglet -hole. model the s1ngle-,,

site repulsion energy U in (6) is g1ven by the charge transfer energy A = ep—-ed |
between p- and d-levels in Cqu plane and hopping integrals for holes can be '
written as [39] | . ‘ | : g
18 = —Kap 2w “ M
where t is the hybridization‘.parsameter in the*px—ld model and the vij are
the overlapping parameters for the Wannier oXygen's-tates which 5ré"eq‘u'a1ft_b:‘_ :
for the nearest neighbors v, = u_,; jia:‘}y:’ ~ —0 14 and‘ for the ne)tt ‘nearest

nelghbors 1/2 = t/_, Jia,ia,, = —0. 02 where az/y are the lattlce constants Ther .

" coefficients K of depend on the d1men51onless parameter t/ A and for a rea.hstlc k

value of A = 2t they are equal to [39]: - .
| Kum 0887, Kp~-0477, Kipa0834. , (8

These values wi]l be used later for an e‘stiimation\ of :rela)fcation rates. e

In ‘the strong couphng hmlt U >> |t l one can apply perturbatlon theory :
and further reduce the' Hubbard model (5) or (6) to the one-band t— J hke
model for the LHB (see, eg. [35]) However, in thls approach the dynamlcal
effects of 1nterband trans1tlons are ‘not properly taken 1nto account wh1ch re- .
stricts the apphcatlon of thet—J model only to studles of low—energy phys1cs
A number of very. nnportant propertres;rohf the itvv{o»—_bandx model (6) as, e.g., .



weight transfer from the UHB to the LHB and changes of the spectral func-

tions with doping (see [39]) are also lost in the t — J model. Therefore to

consider optical conductivity where charge transfer between the UHB and the -

~ LHB are essentla.l we have to consider the two band model (6) To compare

our ca.lculatlons ‘with results for the conventional Hubbard model (1) (e.g.,

( [8, 10, 11, 12]) we put all the hopping integrals to be equal: tij = t,-J'. .
: PR o LR L .

3~ Optical Conductivity. General Formulation
In.the linear response theory of Kubo [7] the frequency dependent conductivity

is deﬁned‘by the current-current correlation function

f¢4m=el/”&aMUAan\;,,r L@

: where Vi is the volume of the system, Sw > 0, and .

(A, B) = /d,\ (t—z/\)B) : 10y

is the Kubo - Mor1 scalar product for the operators in the Helsenberg repre-‘ )

sentatlon

A(t) = exp(th)A exp( th) ,

. \and (AB) denotes equlhbrlum statistical averaglng for a system wrth the -

Hamlltonlan H B= l/T (here A =kp =1).. .
’, To ca.lculate the conduct1v1ty (9) we will use the equatlon of motlon method

_ for the retarded two-time Green functlons (GF) 9, 49] for the scalar product

(m

o mAB@n-(uuB»wff—g/ eha“(Au» 5 'l,,.(in

and for the .commutator. GF

“GABT(z.;) Z ((A1BY).

/‘ dte“!([A(1), B]) ey

where Sw >0 and thefioperators'ha\‘/e zero average values: «(A)Y = (B) =0.

The conventional dynamical susceptibility is given by

S xm@=—aB. )
The GF (11), ‘(‘12') are(e_oup:led by the'equ'a't’i&on ‘ o T ‘X.T
A(AIBD = (Ao — (AIBYumo . (1)

We have also the !following useful relations:' - U
((A1B). = (Al - By = (AB) . :’(‘1<5)
R

T ',:tr'»‘ R LR

where zA = sz/dt [A H] The statlc 1solated _or Kubo,. susceptlblllty :

(13) XAB(U = 0) and 1sothermal susceptibility . XAB = (A B) , obtalned by:

dlﬂ'erentxatmg the free energy w1th respect to an external ﬁeld in general case' ‘

are nonequal

-Only for ergodic systems where correlations decay ‘with time the'invariant part

of correlation functions with respect to the evolution with the Hémiltonian: H
is absent ' ‘
(A°B°) = hm (A(t)B) = 0 :

and both the susceptlbxhtles are equa.l 7
"By using the above glven deﬁnltlons and wr1t1ng the current operator as,
the t1me derlvatlve of the polarlzatlon operator of the system, Jr = PI, we

obtaln the followmg equlva.lent representatlon for the optlca.l conduct1v1ty (9)

w»—wmw-«wm=mmm%mm»<uo;



" where we have omitted the indexes for the operators J, PI.':,: By employing

the standard dispersion relation [9] for the GF (12) or susceptibility (13) we

rea.dlly get the sum rule for the rea.l or absorptrve part of the conductivity

(18):

/ dwRo,.(w) =
0

0 ’ i

W

= 5yl D (19)

The sum-rules (19) has been extensively used by many authors to discuss the

metal-insulator transitions in the Hubbard model (see, e.g., (13,14, 15, 16, 17,

.18, 19, 26, 28, 30, 33, 35]) since the right ha.nd side of (19) can be calculated
‘ from the sta.tlc correlation functions.

The formula. for the conduct1v1ty (9) has been obtamed by Kubo [7] by
“’on51der1ng a hnea.r response to an external electrlc ﬁeld Starting from the
hnea.r response theory 1n respect to the vector potentla.l A(r t) a formula for
the frequency dependent conductivity for the Hubbard model (1) with nearest
neighbors’ hopplng can be written in the form (see, e. g.,' [33]).

o) = ol-CRU/DHE) — @) (20)

. whe_re;‘(Ht) is the average kinetic (hopping) energyin the model (1). It results

. in the formula for the absorptive part of conductivity: .

Ro(w) = Di(w) + 5 xas() e

" where the Drude spectral weight can he written as

hor T x5y — Rxas(w = O @)

1f one uses the formula for the sta.tlc susceptrblhty x5 I m terms of the kmetrc
energy for the Hubba.rd mode] with nearest nelghbors hopplng (see (58)) As
it wa.s mentioned a.bove, for the ergodlc system (at least, nonsuperconductmg)

the 1sotherma1 x 97, and the static isolated, xys(w =

-

0), susceptibilities are

8

5

i :

o

equal and-D = 0 in (22).“ However, in the~numerical ~calcu1ations‘for;ﬁnite
clusters one can observe nonzero Drude. weight (22). which-is caused by"’tra.n-'i

s1t10ns between :lowest energy, levels of the ﬁmte system and essentrally is.a -

“finite size effect-(see [18]) In the thermodynamrc hmlt N — oo, for a real'.

system 1t should tends to zero. - o S
To calculate the effective Drude spectral weight in the Hubbard model one

can use a partial sum rule: ‘ e
- Z(w).:[.) dzRo:0(2) o (23)
by defining the Drude weight as (1/2)D = Z(wo) with the cut-off frequency
wp below the interband transi_tion energy of order U. Then at the metal - -
insulator transition the Drude 'Weig‘ht tends to zero in the insulating phase at
half-ﬁlle'd band.:The latter approach has been used in a number of numerical‘
calculations (see, e.g. [18, 28}). \ ‘
To calculate the current- current correlatron functron for conductrvrty (18) '

it is convenient to employ ‘the’ memoryfunctron approach of Mori [50]i in the(
form slightly different then that one used by Gdtze et al:" [40]:' ‘We define the

memory function Myy(w) = M(w) by. the equation .~ *

Bs@) = (= —20 o
QJ.I(w)——((-]l-]))w‘— w+M(w) (24)
Where Xo =x9, and . B O TR
M(w :I: ) = M'(w) :f: iM”(w)

.

Here M'(w) §RM(w) a.nd M”(w) = “M(w) are real functlons B ‘r

We calcu]a.te the memory functlon by usmg equa.tron of motlon for the GF

%(t-t)=«J(t)J(t)))



»

: By idiﬁ‘erentiating it in Tespect to time ¢ and t' we readily get an-equation for

its Fourier transform (11):

B) = Bo(w) + Do Mo@)Bolw)  (29)

where

@)=L (26)

-and the ”scattering matrix”
Mofw) = ~(1/xo) (Bl Fx)ull/x0) Cen
_ i‘s\{' given by the correlation function for forces
A A R
We hayera.ls,o used tlle relation of orthogonality for current'and force: -

(FI,J,) = (zjr, 1) = ([JI, j,]) =0

From' egs. (24), (25) we obtam the follow1ng relatlon for the memory function

: | M(w) and Mo(w) (27)

Mo(w) = ~[M(w)/ x0] -

A formal solution of this equ‘ation by iteration shows that the memory function

Is just the irreducible part of the scattering matrix (27) which has no parts

‘ connected by single zero order GF ®p(w):
M(w) = (Fel E))§*(1/ x0)- (30)

In solving} eq. (29) by perturbation expan-vs“ion one should be cautious s\i‘ncethe
solution'is a non-analytical function in (w, coupling constant)k[5"1.]. The exact
‘meaning of the irreducibility is really given by Mori in his definition of the
memory function in terms of the operators with the projected time evolution.

10

[M(w)/xo)Bo(@)Mo(w). ©  (29) -

s

approxxmatlon

Recently a rigorous solution in the closed form to the Mori formula (24) -
has-been obtained in terms of the correlatitonhfunctiOn's”with‘Unprojected time -
evolution by applying perturbation'expansion for the 'projected operator [52]
In this way the equivalence between the Mori formula, eq (24), and the Kubo
formula eq. (18), has been establlshed [53] v

A more general then Mon frequency dependent pro_]ectlon technlque has
been proposed by Tserkovn1kov[49] By applyrng h1s method we obtarn an
exact representatlon for the memory functlon, or the self-energy operator for

the GF (24), in “the form

M) - (@~ =

- ((zJ | = i Do (QARA )W (EATS ))J((J EDA )% ‘72’31')

evolutlon with the full unpro_]ected LlOllVllle operator By usmg eq. (15) we :
readlly regaln from the Mor1 representatlon (24) the Kubo formula in terms of
current- current susceptrblhty, eq (18) However a practlcal calculatlon w1th1n

the exact representation (31) is.not stralghtforward So in the next Sectlon

"we will use the representatlon (30) and calculate the force force correlatlon

function in the leading order of ItO,pI/U for the Hubbard model (6). As we will
see the irreduCibility condition defined above will be preSeryed in the adopted
Now we can wr1te the frequency dependent conduct1v1ty (18) by usrng the .

representatlon for the GF (24) in the form of the generallzed Drude law

'mi R |
o(w — 32
o) = 7 ‘m(w) S @
where the eﬁectrve optlca.l mass and the relaxatlon rate are glven by
| W) T o
— =1 A w), F —_— 33) -
£A@), )= il ( )

11



“where the Bose-like operators-have been introduced: . -

B, = (X% 4 XS+ Xi60rs
B2, = (XX +X{ Vs~ X{80
B = (XXt + X] b0
BL, = (X22+X”)6” X6 . (45)
!,

There are only two independent Operators in eq.-(45) since the Hubbard opera-

- tors obey-the completeness relation, eq. (4). They describe electron scattering

" on'spin and charge fluctuations resulted from nonfermionic. commutation re-

lations (kinematica.l interactlon) for the ‘Fermi—likeHubbard operators in the

current operator (39). It can be demonstrated exphcltly by using the followmg

. representatlon

- 1 i i 2 1 oo yoo o
CXP X7+ X7 = 5 (X5 +2X ) + S (X7 - XT7) + X7 =
(-2 S

= EN] +2US; + S;r (46)

Where S? = 4£1/2 and §7 = S:~|: for 20 = +1. ,Frorn eq. (46) it follows that
‘the operators (45) can be written in terms of the number N; and spin S57
- operators : V k
‘In the following we neglect higher order ‘correctlons.to the interband force

(43) which -are given by the products of o‘p';erator's from the‘dlffere'nt bands
kﬁln eq. (44), as; e. g X CrOX o'2, We neglect also high- energy contributions in

o eq. (44) from creatlons of electron palrs glven by the products of the type

X?2X,2". However, we keep three site scatterlng terms in the force (44) w1th

- i#j # 1,i# | which give an’important COntribution to conductivity (see, e.g.,

[35] ). By omitting these high-energyl contributions, lrreleuant,for the Drude -

14

relaxation, we write the force: (44) in g- representat1on as o

’

P = Z > vz(k)‘r(k q)(t lxz°x B, t12X°°Xk-quaa' .
kg oo’
+ tszZ"Xk—quaa' +13 21X "chl2 Bu ) Hoc s (47) '

q qO'O'

. where the follOwing functions in q representation were introduced

1. .
“ﬂ B —iqR; -
Bqaa, = ﬁ Z B;a, q ,

t*(q)

‘;t,am(q),‘; )= -0r@f0s. (49)

-Now we can calculate the relaxation rates (36) both for the interband tran-
sitions given by the force (43) and for the 1ntraband scattering; the Drude part,

given by the force (47) :By applying-the self-cons1stent Born' approxxmatlon",

for- the electron hole t1me dependent correlatlon functlons
B <X2¢1X00Xcr'0(t)Xa’2(t)) ~ 6q q’6cr o <X20Xcr2(t))<X00XaO(t)) . (49)

we obta1n the follow1ng equation for the 1nterband rela.xatlon rate: Hio oo

271e2U%3, /°° <
—_—= . dz Uy 2
o Z( (@))!

To@) = 2 [ gt (P20 =

{[n(z —w) - n(z)]Al(q,z w)Ag(q,z) [n(z+w) n(z)]Al(q,z+w)A2(q,z)}

AN (50)
Here the spectral functions ;
N S | 00 I
Ai(qw) = T «X l X »w+t6 o )
Axfg,w) = ;%«X” | X3 Vs, (51)

deﬁne the spectra of electronlc exc1tat1ons by the full one _electron GF for =
the LHB and the UHB, respectlvely, and n(w) (exp ﬂw +1)7 1 In: the

decoupling (49) we have neglected nondlagonal correlation functlons as,e.g.,

15.



with .7, -
. W)

- The real and imaginary parts of the memory function’ are coupled by the

o M'(w)=¥/°°dz" Mz - (35)

—o0 z—w

dispersion relation

It is élso cionvenientv by using the Spectral representation for the GF td
write the relaxation ra.te given by eq (34) in terms of the conventlonal time-

dependent force-force correla.tlon functlon

T(w) = 1'_2‘*;‘51’2()&’) | _: die™! (F. Fe(t)) (36)
 where :
’ X0 = (Jay I ) = z([Jr,Prn (37)

- is the statlc susceptrbllrty
" In the next Sectlon we ca.lculate the force—force correlatlon functlon and

o rela.xatlon rate (36) for the asymmetrlc Hubba.rd model (6)

4 f Rglax;tisn"Ratfeg N

: We start With a'deﬁnition of the polarization operator for the Hubbard model

e o

_eZRN_ezR (2X"+2X22) ' “"“”(3‘8)

" where R, are coordlna.tes of electrons wrth charge e on a 2D square lattlce
From th1s deﬁmtlon the followrng express1on for the current operator results
=1e E (Rr i Rz){tIIXaOXOa + t22X2aXa2 + 2o,t12(X2aX00 + XgOX;?2)}.
\ ‘?‘-‘JU :

- (39)

12

,\( == D) =M'w. o (34

P U

By introducing the q-representntidn for th'erHubbaer,opera.tbrs and'the hop-
ping integrals ' & .

aff
Xq"

1 R of —"iRi | s‘
TR LK i
(e = Yefema®e, T (40)
::,\‘:0 K AR AR .

the current operator (39) can be wrltten as
Jo=e z{vll(q)XUOXOU + 1122(q)X20X02 4 26”12(q)(X2aX00 + XaOXa2)}

‘IJa - .- | [ I (41) ,

‘where v,:ﬂ(q) —6t°’ﬂ (q)/(?q;c are electron velocrtres

Now we calcula.te the force (28) for the current (41) whrch can be wrrtten )

as a sum of two terms

LoFp=F2+ F"" [J,,Ho] + [J,, Ht] L (42)
The first terrn has a ccontribution.only from interba.nd tra.nsitions:

“F0 = —eUz2avl2(q)(X2”X°” XaoXﬂ) 43
- g0 oo ‘,

The second term, bemg proportronal to the square of the hopplng lntegrals,

ha.s contrrbutrons both from electron hoppmg in one ba.nd a.nd from mterba.nd

“transitions. In the coordlna.te space. 1t reads o

F;;nt = 5—18 z E(Rz : R:r: (tIIXUO + 2a,t12X2a) -
Lo ; l:,éj.',\‘-'l oo! . I e o
, .{(t- ;5 + 2at12X," 23}3, X°2(t =20t 7X70)}
. —te. Z E(R’ Rx)(t”X,?" 2at12X"°)
1:,6,1:,61 oo! o

. {(t”X 2B, — 2017 X0 BIL,.) é*X??(t,‘-x‘X +20t} X?*?)’}l :
- H. C." B _’ A e g :7":{',1;:1«. (44)

13



(X75X”°(t)) - since they give higher »»‘order corrections:in 'ilz/U which . have
been already om1tted in the force (47) Since the dlﬂ'erence between the UHB

and the LHB energy is of order U the 1nterband rela.xat1on rate is nonzero only -
for this region of high energy around |w| ~ U. To analyze its temperature and ’

doplng dependence we.need self-consistent solutions for the one-electron GF

ine eq. (51).
' The 1ntraband relaxatlon rate is g1ven by the followmg equat1on
. — - exp(ﬂw) / wit m.t int .
Lint(w) = 1= explfw) 2o “dtet(FIM Fin(t)) . (52)

V‘Tocalculate the;many-particle time—dependent correlation: functions-in the
-right-hand side of eq. (52) we .apply the mode-coupling -approximation in
‘terms-of an independent‘propagation of electron-hole and charge-spin fluc-
o tuations “This approximatiOn'is 'essentiallyequivalent to-the self-consistent
’ Born approx1matlon in wh1ch vertex correct1ons are, neglected The proposed
'approxrmatlon is deﬁned by the followmg decouplmg of the time- dependent

{

correlation function:-., -

(XEOXI? qaa'le’ (t)X (t)(B‘I !ss! (t))l) |

:1 6kr’;'60y9'63.063',af(XI‘:OXI?U(t))(X Xk—f)q(t))(Bqaa (Bqaa'(t))l) (53)

* There are 16 correlation functions of the type given by eq.(53) for the LHB and’ 7
for the UHB. However, by using the symmetry relations for th:e”correlations“

- functions in terms of the Bose—l1ke operators (45) we can write the final result -

for the intraband relaxation rate 1n a compact form:

:(w) ﬂ%/ dWL./ dwon(wy)[1 — n(w2)] N (w = wy +w2)
s 3= 0) (o —en o)
T kg .

16-

. 'X{(tz ,—t%z)zAl(k wl)Al(k—-q,wg)-{-(t%g—tn)zAg(k wl)Ag(’C q,wg)} (54) :

where the momentum dependent vertex is glven by

gx(kk q)-vz(k)v(k DGt 65

‘and the charge-spin susceptlblhty xc,(q,w) is deﬁned by the equatlon

' <pcs(q)|pc,(—q,t),>, <N |N_q(t) +Z S"IS (t))

/ dwe—ith(w)x (q,w) 4 “ H . (56)

Here N(w) = (expﬂw — 1)~ and x” (q,w) = \sxcs(q,w + 16) The formulae

'(54) generahze the result obtained for the rela.xatlon rate for p-band electrons;

in‘the p- d model in' Ref. [41]

Lo

To conclude this Section we calculate the statlc current current susceptl-
bility (37) in the denominators of egs.(50), (54) which is also’ define the sum
rule for the conductivity, eq.(lg);‘By?performing;the‘commuta.tion between

the polarization operator (38) and-the current (41) we readlly get:

XO = (Jz"J ) = z([Jz"Pz])

E (R:z: Rr) {tl1(X00X00)+t22(X20X02)+20_t12((XZUXOO'_*_XJOXUZ))}
:¢Ja N I R . } . - i
(57)

-

For the Hubbard model w1th only the nearest nelghbors hopplng, (R"' - RI)2

the sta.t1c susceptlblhty (57) is equal to the a.vera.ge klnetlc energy, the
hoppmg term Ht in eq (6), multlphed by a constant o ' ’

XQ,: —e%a (1/2)(H,) i (58)

The latter equatlon for the conventrona.l Hubbard model (5) has been used
by many authors to study the conduct1v1ty sum rule: (19) (see e.g. [13 14“

v
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;15 16, 18 19, 20,21, 26 28, 30 31 35]) In theqrepresentatlon the static
' suscept1b111ty (57) reads:

_ ZZ{azt (q)(XUO 00)+ a t (q)(X20X62)+

+20— 2( )((X'-' X%+ X7°X] 2))} - (59)
: By' introducing the band masses: 1/mr = —a2t€;"/aqz one can write the

susceptibility as xo/V = ne?/m¢ss in terms of the doping and temperature

dependent effective mass mess, n =N /V. The latter can be calculated by

using the solution for the onev-electron GF including the nondiagonal ones (see,’

'

eg. ‘[39])-;\ o -

5 Results and Discussion

In'the present paper we have derived a closed set of formulas for the frequency
“_dependentr. conductivity for the asymmetriczHubbard model (6) in the form
“of the generalized Drude law (32)‘ with the relaxation rates for. the interband
transitions (50) and the intraband scattering (54);. The former gives a contri-

bution for the optical conductivlty in the high frequency range around w~U.

- The latter describes the Drude relaxation due to electron scattering. on spin

+.and charge fluctuations both in the LHB and UHB The static current- current

_;susceptlblhty (59) defines the sum rule (19) and enter as a normalization factor

B in the definition of the rela.xatlon rates (50) (54)

_For an estlmatlon of the rela.xatlon rates we can use a Hubbard 1 type\

. approxrmatlon for the one-electron GF (51) (see, e.g. [39])

Ar(q,w) = X16(w — 914) , Az(q,w)= X25(w - Q) - (60)

- where: SR : :
3 Cx1= (X?O+X.?U)', X2 = (X7 + X7

18

and x1 = 1 =2 =1 —'n/2. The functions Q;;,’ ‘and_ Qay are"‘the one-electron’ -
spectra for the LHB and the llHB, .resp/ectively.‘They have been'calculated for
the asymmetric Hubbard model (6) allo-wing'for"the‘/interband hybridlZatidn
by projection technique for the GF in Ref. [39].:By using eqs (60) we get the‘

followmg expressions for the relaxation rates .

.

| I‘o(w) = 2_7TEX_0UZ)_11_2 X1X2 2(?:(4)‘)5 : B
0(000) = Qe B~ = 0= g ] (o)

e o 9 Sotimie D erten .
Tine(w )—?—"3%”3— S dkk-q)
k. .

{(till""t12)2X1"(Qlk)[1 "(Qlk q)lN(w Qlk+91k q)Xcs(q1w Qlk+91k q)'

(-1 2)2X2"(92k)[1 "(sz-q)lN(w sz+92k q)Xcs(q,w Q2k+Q2k—q)}

| s e (62)
These are'conventionallformulas for the optical (61) and the Drude ‘(62) re- -
laxation rates calculated in- the Born 'approximatidn for-a two-band model:

However, the relaxatlon rates and the conduct1v1ty (32) have qulte a compll-:
cated temperature and doplng dependence due to very spec1ﬁc dependence of’i
the one-electron spectra qu and ng on that parameters (see [39]) It can be:
stud1ed only by numerlcal solutlon of a self c0n51stent system of equatlons fori
the GF wh1ch w1ll be consrdered elsewhere Here we only p01nt out that the‘
Drude relaxatlon rate (54) d1sappears for the symmetrlc Hubba.rd model (5)
w1th tap = 't 1ndependently. of the approxrmatlons for the one- electron GF due-‘
toa cancellation of the mtraband (x too) and lnterband e tu contrlbutlons !
If one neglects the latter a ﬁnal relaxatlon rate results (see, e.g. [11])

To estimate the Drude relaxatlon rates for copper oxxdes we can use the

hopping parameters given by eqs.(7), (8).: The calculatlons show th\at for

A
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k jelectromca.lly doped copper oxides (the chemlcal potentla.l -in the LHB) the

‘relaxa.txon rate (54) being proportional to (K% - 12)2 ~ (.01 should be

" much smaller then for hole doped ones (the chemical potentia.l in the UHB)

where. it is proportional to (K3, - 1(122)2 ~ 0.22. .The latter one has been
calculated in Ref.[41] for a simplified model of p-band by the formula close
to (62) but neglecting t12 term which has resulted in a higher value for the
' spin-ﬂuctuatlon resistivity a;nd: frequency’fdependent relaxation rate.

'_ For discussion of a very 1mportant in the Hubbard model (l) or (6) problem

of the Mott- Hubbard metal- 1nsula.tor ‘transition around half-filling (n = 1)

we have to calculate more accurately the one-electron GF given by eq.(60)
including the non- diagon:«il GF (X”OX‘_’Z) which define the static susceptibility
(59) An estlmatlon in the leading order of tm/U for a model with nearest

- nelghbors hopping results in the formula

-

xo = €2a? Z{'Y(q)[tlle n(qu) + t22X2"(Q2q)l+

9

(Oaa) = n(602) R
e, (63)

For a ha.lf ﬁlled ba.nd (n = 1), at low tempera.ture n(qu) =1, n(ng) = 0 a.nd

+ 2(t127(4))2X1X

there is only the mterband contrlbutlon of the order XO/N ~e az(t22/2U) »

ThlS sma.ll value of Xo greatly enha.nces the mterba.nd rela.xa.tlon ra.te Fo(w o~

U ) U However at a ﬁna.l concentra.tlon of cha.rge carriers 6 = 1 —7na

contrlbutlon from the LHB (or the UHB) in (63) of the order XO/N ~e aztm;ts »

: appea.rs a.nd at some concentra.tlon 6 ~ (t12 / taaU ) a crossover from mterba.nd

to mtra.ba.nd sca.ttermg ta.kes pla.ce
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