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1 Introduction 

The discovery of high:Tc superconductivity by ~ednorz and Mi,iller [1]in cop~ 

per oxides has renewed interest to the Hubbard model since many unconven­

tional properties of tliese materials are believed to be due to strong electron 

correlations [2). ·Among them linear te~perature dependence of resisti~ity and 

anomalous frequency dependence of optical conductivity (see, e.g.,[3)). Theo~. 

retical studies of the optical conductivity for the Hubbard model [4, 5, 6) in 

the framework of Kubo linear response,theory [7) started long time ~go: it was 

investigated by the moment method [8), by the equation of motion method 

for the Green functions [9) in the Hubbard 1 [4) approximation [10) and in the 

Hubbard III [5)·approximation [11, 12). 

Later on mo~t exten~ively the optical conductivity ha~ been studied for the. 

one-dimensional (1D) Hubbard model [13, 14, 1~, 16, ·17, 18, 19, 20, 21,_ 22) 

where results of numerical calculations for small clusters C'an be compared ' 
. . . -

with a rigoroustreatmen~ on the basis ofthe Bethe a!lsatz exactsoluti_on [23). 

For higher dimensions and in particular for the tw~-dimensional (2D) Hub­

bard model the strong coupling limit, U -:P t, has been considered mostly by. 

numerical methods based on exact diag~nilization for small clusters [24, 25, 

26, 27, 28; 29, 30, 31, 32, 33, 34). A detailed discussion of optical and photoe­

mission sum rules for 1D and 2D Hubbard :rn'odel has been giv~n recently b~ 
Eskes et al. [35) by com pairing a strong coupling perturbation theory in pow­

ers of t/U with numerical calculations. However; numerical investigations for 

small clusters ha~e a poor frequency resolution to be quantit'at.ively compared. 

with. experimental results. Ari analytical analysis of the frequency dependent 

co~dtictivity has been ·given only by perturbation method [36, 37) in the limit 
' , 

of weak coupling, t ~ U. Therefore, an analytical investigation of one-particle· 

and optical spectral functions in the strong coupling limit, t < U, is required. 

o:.rualir.<e~:~n1~r:rr 1 
nn~~~Jl~~~~~~~un ~ · 

~~ .. ,-~·-



To discuss physical properties of copper oxide ··~om pounds one usually - . ' ' . ~ ,., . ' 

starts from the multiband p ..:_ d model [38]. However, as has been recently 

shown [39] the two-band p- d modeffor copper_ oxide plain can be reduced to 

the two-band singlet-hole model which is essentially the asymmetric-Hubbard 

model with nonequal hopping integrals tcx/3 for the lower Hubbard ba11d (LHB: 

a = {3 = 1 )and the upper Hubbard band (UHB:. a = {3 = 2).· The LHB is 
. . . - . . ~ . 

occupied by one holed-like states and the UHB is occupied by two-hole singlet 

states. Within the framework of this model single particle excitation spectra 

for the LHB and the UHB and their doping dependence have been calculated 

[39] .. 

In the present paper a frequency dependent conductivity a(w) is investi­

gated for the asymmetric Hubbard model by applying the memory function 

technique [40] in ter:r~s of the Hubbard operators. A generalized Drude law 

with frequency and temperature dependent relaxation rate~ due to electron 

scattering on charge and spin fluctuations is obtained in the self-consistent ·. 

Born approximation. It is shown that interband~transitions ( cx:t12 ) are essen­

tial for the Drude current relaxation which is proportional to [(tcx~)2 - (t12 ) 2J2-
and cancels out for the symmetrical Hubbard model, (tcxcx = t).· The present 

paper is a generalization of the optical conductivity calculations [41] for the 

p- d model where, however,;a singlet band formation has not been taken into 

account and the conductivity has been considered only for the p-band. 

The employment of the-Hubbard operator technique has a twofold advan­

tage. First of all by using equations of motion for the Hubbard operators 

. we automatically take into ·account scattering of electrons on spin and charge 

fluctuations due.to strong correlations as it has first been pointed out by Hub­

bard [5, 6]. In the Fermi liquid models (see; e.g. [42;43, 44, 45])-one has to 
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introduce a phenomenological spin fluctuation scattering mechanism to obtain 

nonzero relaxation. To study the transport properties in the auxiliary field 
. . . 

representation (see, e.g., [46] and the references th'erein) pr in the gauge field 

technique [47, 48] one has to adopt a spin-charge separa~ion condition \Vhich 

has been rigorously proved only fqr 1D Hubbard model. By employing the 
I .. ,- . 

Hubbard operator representation we can also preserve ri_gorou~ly restriction 

for no double occupancy forthe LHB (or no single occupancy for the UH13) 

which is in the auxiliary field and the gauge field techniques has to be imposed 

by the local conseryation law of the total number of fermioris and bosons. ·The 
. ' . ' " ~ 

latter can be allowed for only approximately as, e.g., in the 1/N expansion 

technique with N be~ng the spin-orbital degeneracy (see, ~.g., [46]). However, 

it is difficult to give an unambiguous physical interpretation .of the obtained 

results for a realistic value of N = 2: 

The paper is organized as follow. s. In the. Section- 2 the _asymmetric Hub-
•• "· ' •• ' _)'! 

bard model is. presented. In Section 3 a:general expression for the frequ~ncy 

dependent conductivity in tenns of the memory function is obtained. The cal-
• - • '. ' • ' ".-, c ·• • • 

,culation of the relaxation rate .for the ?Ptical conductivity.isgiven in, Se~tion 

·4. In the last Section 5 the obtained results are discussed and summarized. 
' . . \- ,· ., ·.'" .... 

. 2 Asymmetric Hubbard Model 

Th~ original one-band Hubbard mod,el [4j 

. H =- L t;i c't,ciu + ~U L !'iunia . (1) . . 2 ... 
lfju iu . ., 

has only two parameters: the hopping integrals t;i between i-th and j-th lattice 

sites and the on-site Co~lomli repulsion U for doubly:'occupied lattice sites, _ 

·a-= -a. We introduce the Hubbard operators [6]: 

X pq l. '><. I . ·xpqxrs " xps i = t,p t,q ' i i = Vqr· i (2) 

,3 



for 4 possible st~tes at a lattice site i: 

li,p} = li, 0} , li, a} , li, i !} (3)" 

for an empty site, a singly occupied site by electron with' spin a = (i, !) and for 

a doubly-occupied site, respectively. For these states a completeness relation 

for the Hubbard operators (2) holds 
.~' 

x?0 + :E xru + x;2 = 1 . (4) 
a 

In terms ~f the Hubbard operators (2) the Hamiltonian (1) reads 

H = E1 :Lxra + E2 :E x[2 
iu ,_ 

"'t··{X!'0 X9a + X~a X'!2 + 2a(X~u X9a .+· X!'0 X~2 )} (5) 
~ IJ I J • . 1 J 1 J 1 J • 

i#ja 

Here 2a '= ± 1 . and we intr~du~e energy levels · E1 = · Eo'- p. and E2 = 

2£0 .:;. 2JL + U for singly and doubly ~ccl1pied sites, respectively, where Eo 

is a reference energy and J.l is the chemical·potential. The Hamiltonian (5) 

in the Hubbard operator representation<is much easier totreat in the limit 
. . 

of strorig correlations, U ~ lt;il, when the doubly occupied UHB is splitted 
. . . 

from the singly occupied LHB .. The algebra (2) for the ,Hubbard operators 

automatically preserves restriction of no double occupancy for the LHB (or no 

single occupancy for the UHB) which in the auxiliary field representation has 

. to be imposed by local conservation law. 

However, starting from the original one-band Hubbard model (1) we get a 

symmetrical representation (5) with equal hopping integrals t;i .for the,LHB. 

and UHB and their hybridization~ To compare calculations. with results for 

copper oxides in the present paper we consider a more realistic two-band p ...,- d 

model reduced to a singlet-hole asymmetric Hubbard model with the LHB 
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occupied.by one-hole Cu-d like states and the UHB occupied by two-hole p...,-d 
: . - ' ' . . ' . ' . . '~ ~ 

singlet states [39]. The asymmetric Hubbar.d model reads:. 

H Ho +Ht = Et:Lxru + E2 :Ex?~ 
iu ' i ~ 

"'{t~~ X!'0 X9a + t~~ X~a X'! 2 + 2at~~.(X~u X9a + X!7° X~2)} (6) 
~· IJ I J · IJ '· J IJ . I J · I . J .• .'.; 
i#ja 

where the hopping integrals have different. values for the LHB (t}]), th~ UHB 

(t[J) and the interband transitions (ttj). In the singlet-hole.model t~e single­

site. repulsion ~nergy u in ( 6) is given by the charge transfer energy ~ = fp-.:. fd 

between p- and d-levels in Cu02 plane and hopping integrals for holes can be 

written as [39] 

t~f3 = -Ka{3 2t Vij IJ (7) 

where t is the hybridization parameter in the·p- d model and the v;j are 

the overlapping parameters .for the Wannier oxyge~ states which an~ equa!'to: 

for the nearest neighbors v1 = ·~i i±a.,;u• ~ -:-0.14 .and for the next nearest 

neighbors v2· = Vjj±a.,.±ay ~ -0.02 where axfy are the lattice constants.· The 

· coefficients •]( a~ depe~d· ~11\he di~ensionless ~~ra~ete;r tf fl.;_:nd for a ~e.alistic 
value of ~ = 2t they are equal to [39]: 

Kn ~ -0.887; K22 ~ ....:o.477, K12-~ 0.834. 
' • ;, • •• j' ' • • ··, • 

(8) 

These values will be used later for an estimation of'rela.Xation rates. 

· .. I~ the st~o~~ ~duplinglimit, U ~ ltffl, ~ne ~~n ~pply pertu~bati~n•tlieory 
arid:f~rther· reduce the•Hubbard ~odel (5) or (6) to th~ one-band t :.._ flike . . ~ ~ 

model for the LHB (see, e.g., [35]). However, in this approach the dynamical 

eff~cts of interband transitioiis are'nbt properly taken irit~ account which re­

stricts the application of the t- J model only to studies of low-energy physics: 

Anumber of veryim.portant propertiesof the .two-band model (6) as, e.g., 
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weight· transfer from the UHB to. the LHB ·and changes ·of the spectral func­

tions with doping {see [39]) are also lost in the t .:_ j model.' Therefore to 

consider optical conductivity where charge transfer between the UHB and the 

LHB are e_ssential we have to consider the two band model {6). To compare 

our calculati~ns with results for the conventional Hubbard model {1) (e.g., 

[8, 10, 11, 12]) we put all the hopping integrals to be equal: t~f = tij. 
. .':.J 

3 Optical Conductivity. Gene~al Formulation 

In the linear response theory of Kubo [7] the frequency dependent conductivity 

is defined by the current-current correlation function 

Uxa;(w) = ~.1
00 

dte•wt(Jx(t), Jx) 

where Vis the vol~~e of the system, SSw> 0, and 

(A(t),B) = 1f3d>.(A(t- z>.)B) 

(9) 

{10) 

is the.Kubo - Mori scalar ?roduct for the operators in .the Heis.enberg repre­

sentation, 

A(t) = exp(zHt)Aexp( -zHt), 

(11) 

~ 

GAB(w) ~ ({AlB))~= -z hoo dte'~t([A(t);B]) :(12) -~ 

6 

where SSw >- 0 and the operators have zero average values: ·{A) = (B) = 0. 

The conventil::maldynamical susc-eptibility i~ given by 

XAB(w) = -({AjB))w· 

The GF (11), (12) are coupled by the equation 

w((AIB))w = ((AIB))w- ((AIB))w=o· 

We have also the following useful relations: 

((zAIB))w =((AI- ziJ))~ = ((AIB))w 

. (~A, IJ) ,;, (A, -ziJ) = ([A, B]) . 

{13) 

(14) 

. (15) 

(16) 

where vi = zdAjdt = [A, H]. The static isolated, or Kubo, ~usceptibility 

{13) XAB(w = 0) an~ isothermal susceptibility x~8 = (A, B) , obtained by 
' ' ' ' ~ . -' . ' . . . 

differentiating the free energy with respect to an external field, in general case 
• ' : " • • ' " ~ •, : . . I ' " '·, ' . ' . • 

are nonequal: 

XAB(O) = X~B _:_ f3(A0 B?):' {17) . 

Only for ergodic· systems where correlations decay with time the invariant part 

of correlation functions with respect to the evolution with the Hamiltonian H 

is absent 

(A0 no) '= lim (A(t)B) = 0 
t--+oo · 

and both the susceptibilities are equal. 

By using the above given definitions and writing the current operator as, 

the time derivative of the polarization operator of the· system, Jx = Px, we 

obta~n the following equivcile~t repr~sentatioil for th~ optical conductlyity {9)_ 

a(w)_= ~((JIJ))w= ~((PjJ))w= ;w{XjJ(O)~XJJ(w)] {18) 

7 



where we have omitted the indexes for the operators lx, Px. By employing 
' . ., 

the standard dispersion relation [9] for the GF {12) or_ susceptibility {13) we. 

readily get ~he sum rule for the real, or absorptive part of the conductivity 

{18): 

roo -. 1 roo <JxJJ( w) 7r t7r 

Jo dwRaxx(w) = V Jo dw w =. 2VRXJJ(0~ = 2V {[Jx, Px]). {19) 

-~· 
The sum rules {19) has been extensively used by many authors to discuss the 

metal-insulator transitions in the Hubbard model (see, e.g., [13, 14, 15, 16, 17, 

18, 19, 26, 28, 30, 33, 35]) since the right hand side of {19) can be calculated 

from the static correlation functions. 

The formula for the conductivity {9) has been obtained by Kubo [7] by 

consid~ring a linear response to an external electric field. Starting from the 

linear' response theory in_ respect to the vector potential A{r, t) a formula for 

the frequency dependent conductivity forthe Hubbard model {1) with nearest 

neighbors hopping can be written in the form (see, e. g., [33]): 

a(w)= ;)-e2a;(1/2)(Ht}-: XJJ(w)]. (20) 

where,(Ht} is the average kinetic {hopping) energy in the model {1). It results 

in the formula for the absorptive part of conductivity: 

- 1 
Ra(w) = D8(w)+ Vw <JxJJ(w) {21) 

where the Drude spectral weight can be written as 
. .,, 

- 7r 0 
D = v [xJJ - RxJJ(w = O)]. {22) 

if one uses the formula for the -static susceptibility· X~J in terms ,of the kinetic 

~energy for the Hubbard model with neare~t neighbors hopping (see (58)). As -

it was mentioned above, for _the ergodic system (at least, nonsuperconducting) 

the isothermal,x~J• and the static isolated, XJJ(w = 0), susceptibilities _are 

8 
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equal and iJ = 0 in {22). However, in the numerical calculations for finite 

clusters one can observe nonzero Drude weight {22) which is caused by tran­

'sitions between .lowest energy levels of the finite s:y:stem and essentially is. a 

·finite size effect (see [18]). In the therm~dynamic limit, N -4 oo, for a. real 

system it should tends to zero. 

To calculate the effective Drude spectral weight in the Hubbard model one 

can use a partial sum nile: 

Z(w).= · rw dz!Raxx(z) la · (23) 

by defining the Drude weight as (1/2)D = Z(w0 ) with the cut-off frequency , 

w0 below the inter band transition energy of order U. Then at the metal - : 

insulator transition the Drude weig'ht tends to ~ero in the insulating phase at 

half-~lled band. 'The latte~ approach has been used in a number of numerical 

calculations (see, e.g.[18, 28]). , , 

To calculate the current-current correlation .function for conductivity (18) 

it is conven:ieiit to' employ the mem9ry function approach of Mo'ri' [50]'in the 

form slightly different then that one used by Gotze ebll'> [40].' We define the 

memory function MJJ-(w) = M(w) bythe equation 

0 . 
when~ xo = XJJ and 

' 

· Xo 
<PJJ(w) = ((JIJ)).;, = w +M(w' 

.. 

M(w ± t8) = M'(w) ± tM"(w):: 

Here M'(w) := RM(w) and M"(w) = <JM(w) are _real functions. 
' . ' ., ' . '. " : - ' ' 

. {24) 

We calculate the memory function by using: e,quation of mo~ion for the G F 

tPJJ(t;-t') = ((J(t);J(t'))). 

'9 



By differentiating it in respect to time t and t' we readily get an equation for . -

its Fourier transform (11): 

where 

<P(w) = <Po(w) + <Po(w)Mo(w)<Po(w) 

<Po(w) = Xo 
p 

_and the "scattering matrix" 

Mo(w) = -(1/xo)((FxiF.:))w(l/xo) 

is given by the correlation function for forces 

Fx = tix = [Jx, H]. 

We have also used t~e relation of orthogonality for current and force: 

(Fx, Jx) ~ ( tix, Jx) = ([Jx, Jx]) = 0. ·-

(25) 

(26) 

(27) 

(28) 

From eqs. (24), (~5) we obtain the follow~ng relation for the memory function 

M(w) and M 0 (w) (27): 

Mo(w) = -[M(w)/xo]- [M(w)/xo]<Po(w)Mo(w). (29) 

A formal solution of this equation by iteration shows that the memory function 

is Just the irreducible part of the scattering matrix (27) which has no parts 

connected by single zero order GF <P 0 (w): 

M(w) = ((FxiFx))trred)(l/xo). (30) 

In solving eq. (29)by perturbation expansion one shmild be cautious since the 

solution· i~ a non-analytical function in (w, coupling constant) [51]. The· exact 

mea~ng of the irreducibility is really given by Mori in his definition of the 

memory function in terms of the operators with the projected ti~~ evolution. 
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Recently a.rigorous solution in the_closed form t~ the Mori formula (24) 

has bee-!! obtained in terms of the correlation functions with" unprojected time 

evolution by applying pe~turbation"expansion for the projected operato~ [52]. 

In this way the equivalence between the Mori formula, eq. (24), andthe Kubo, 

formula, eq. (18), has been established [53]. _ 

A more general then Mori, frequency dependent projection technique has . . . . - . 
been proposed by Tserkovnikov[49]. By applying his method we obtain an 

I • ' '; •! I • • 

exact representation for the memory function, or the self-energy operator for 

the GF (24), in the form 

-xoM(w) = ((tixl- 1jx))trred) = 

= ((tixl-'- iix))w :- ((zix1Jx))w((Jx1Jx)): 1((Jxl- tix))w: (31) 

In this representation all t~e operators in correlation fun_ctions have the time 

evolution with the full, unprojected Liouville operator. By using eq.(15) we . - . . ~ . . 

readily regain from the Mori representation (24) the Kubo formula in terms of 
~ • . ~ . '. : '? . ' : 1 < ·, • • ' - • ' ' • - ' <, .. 

current-current susceptibility, eq.(18). H~wever, a practi~al calculation within 

the exact representation (31).is not straightforward. So in the next Section 
"' f • • ,. -· . : ; •• ' ; ·~ -

we will use the representation (30) and calculate the force-force correlation 

function in the leading order of ita13 i/U for the Hubbard model-(6).' As we will· 

see" the irreducibility condition defined above will be preserved in the adopted 

approXimation. 

Now we can write the frequency dependent conductivity (18) by using the 

rep;esentation for the GF (24) in the form of the gener~lized D~ude law: 

· Xo m 1 
a(w) =- -- --­

V. m(w) 

w~ere the effective optical mass and the relaxation rate-~re given by 

m(w) = 1 + .-\(w), 
m 

11 

f(w) 
f(w) = 1 + ,\(w) 

. (32) 

(33) 



where the Bose-like operators· have been introduced: 

B~1 JUUI 

B~2 JUUI 

B~2 
;ua' 

B~1 
JUUI 

= 
= 

(Xf0 + X'r)8u'u + xr 8u'u , 

(Xf0 + xya)ou'u - xr 8u'u , 

(XJ2 + X'r)8u'u + xr 8u'u , 

(XJ2 + X'r)8u'u - xyu.ou'u 
-"" - -

(45) 

There are only two independent operators in eq. ·( 45) since the Hubbard opera­

torso bey the collipleteness relation, eq. (4). They describe'electron scattering 

on· spin and charge ~uctuations resulted from nonfermionic commutation re­

lations (kinematical interaCtion) for the Fermi-like Hubbard operators in the 

current operator (39). It can be demonstrated explicftlyby using thefollowing 

representation 

(x~2 + X'!U) ~ X'!li = !<""'x'!u + 2X~2) + !(X'!U - Xi!li) + X'!li = 
J J J 2 L.J J . J ! ' 2 J J J 

(j 

1 ' . .· .. 
= -N3· +2aS~ + S'! 2 J J 

(46) 

where Sj = ±1/2 and Sj = sj for 2a = ±1. ~from eq. (46) it follows that 

the operators ( 45) can be written in terms of the number Nj and spin Sf 
operators. 

In the following w~ neglect higher order corrections. to the inter band force 

(43) which are giv~n by the products of operators from the 'different bands 

in eq. (44), as; e.g., Xf0X( 2• :We neglect ~lso high-energy contributions in 

eq. (44) from creations of electron pairs given by the products of the type 

XJ2 x[u .· However, we .keep three site scattering terms i~ the force { 44) ~ith 
i =f j =f l, i =f l which give an· important contribution to ~onductivity (se.e, e.g., 

[35] ). By omitting these high-energy contributions, irrel~vant for the Dru,de 

14 

relaxation, we write the force (44) in q-representation as 

pint 
X 

, e ,· . . . .· ; , \ __ ,; .. :.·, .. .: . 
= --"" "" v (k)-v(k ~ q)_(t2 xuo xou' Bl1 + t2 xuo X_ Ou1 

B21 _ 'Ji L.J L.J x t • 11 k k-q quu 1
: __ 12 k, k_-q quu' 

V 1V k,q au' - - ~ ,·,. 

+ t2 x2uxu'2 B22 + t2 ·x2uxu'2 B12 ) H -
22 k k-q -quu 1 21 k k-q quui - · C. · 

where the following functions in q representation were introduced 

BafJ _ _1_. ""BafJ -•qR . 
qua' - . 11\T L_; iuu' e . ' 

vN -• 
ta/1,(q) ta{J'Y(q), ; Vx(q) = -f}f(q)j8qx. 

(47) . 

(48) 

Now we can calculate the relaxation.rates (36) both for the interband tran-' 

sitions given by the force ( 43) and for the intraband scattering; _the Drude part, 
. ·' 

given by the force ( 4 7). _ By applying the self~consistent Born· approximation 
, 

for the electron-hole. time-dependent. correlation functions 

(. x2u xou xu'o(t)X~'2(t): )··,,;8 0 .. :(xiu xu2(i))(~ou xuo(t)) q q q1
. q1 

• --: q,q' u,u' . q q "' q q (49) 

we obtain the following equation for the interband 'relaxation rate _ 
' . . ' ' 

fo(w) = 1- exp(f3w) foo dte•wt(F2F2(t)) = 21fe2U2t~2 {oo dz L(vx(q)): 
2xow 1-oo . X oW } -oo q · _ 

{[n(z -w)- n(z)]A1(q, z-w)A2(q, z)- [n(z+w)- n(z)]A1(q, z+w)A:.i(q, z)}. 

(50) 

Here the spectral functions ; 

A1(q,w) = _..!:_~((X~(j I x:0))~+•6,. 
7r ' .• 

A2(q,w) = _..!:_~((X:2 I x;u))w+t6' 
7r 

(51) 
., 

define the spectra of electronic excitations by the full one-electron GF for .. 

the LHB and the UHB, respectively, and n(w) = .(expf3w+ 1)-1 • In the 

decoupling ( 49) we have neglected nondiagonal correlation functions, as, e.g., 

15 



with 

.\(w) = M'(w), f(w) = M"(w). 
w 

(34). 

The real and imaginary parts of the memory function' are coupled by the 

dispersion relation 

M'(w) = Lj"" dz. M"(z) 
7r -oo Z- W 

(35) 

It is also convenient, by using the spectral represe~tation for the GF, to 

write the relaxation rate given by eq.(34) in terms of the conventional time­

dependent force-force correlation function: 

_ 1- exp(,Bw) j"" dte'w1(FxFx(t)) 
f(w)- 2x

0
w -oo 

(36) 

where 

Xo = (Jx, Jx) = t{(Jx, Px]} (37) 

is' the static ~usceptibility. 

In the next Section we calculate the force-force correlation function and 

· relaxation rate (36) for the asymmetri~ Hubbard ~odel (6). 

4 Relaxation Rates 

We start with a definition of the polarization operator for the Hubbard model 
/ 

(6): 

P = e·~R;N; = e ~R; (L:xru + 2Xt
2

) 

I -~ ,t , cr. 

{38) 

· where R; are coordinates of electrons with charge e on_ a 2D square lattice. 

From this definition the following expression for the current operator results 

Jx = -t[Px,H] ='= 

= te '"".(R~ ~ il~){t~~ x~o xrJu + t~~ x~u xc:2 + 2at~~(x~u x~u + x~o x~2 )} 
L...., ' 3 •3 ' 3 '3 ' 3 '3 ' 3 ' 3 • 
i'#j.r 

{39) 

12 

Jl 
. 1f 

'· 

l 

By introducing the q-representation for the Hubbard _operators and·the:hop­

ping integrals 

x~.e = 1 ,fN L x;.e e-·qR, 
i ' ' 

ta.B( q) = L t~f,e-•qR, ' 
i-#0 

the current operator {39) can be written as 

(40) 

Jx = e ~) v_!1 (q)X:0x~" + v;2(q)x;u x:.2 + 2av_!2(q)(x;u x~u + x:o x:2
)}, 

qu 

(41) 

where v~.e(q) = ...:.ata.B(q)foqx are electron v:elocities. 

Now we calculate the 'force {28) for the current ( 41) whi~h can be written · 

as a sum of two terms: 

Fx = Ji'2 + F~nt = .[Jx, Ho] + [J;,, Ht]~ '(42) 

The first term has a contribution only from interband transitions: 

·Ji'2 = -:-eU L 2av_!2(q)(x;u x~u- x:ox:~). ' (43) 
qu 

The second term, being proportional to the square of the hopping integrals, 
' . ' . 

has contributions bot_hfrom electron hopping in, one band and from interband 
' . . ; ' . . , . . ) ' . .~ ' 

transitions. In the coordinate space it reads 

Fint - ..:..:ze ~ '""(R"! .:_ R:I?)(tH X~0 + 2at~~ X~u·) 
X - L....,· L...., l 3 l3 , l ' '3 l 

. i#j#l uu1 
, , :;, ·" 

{(t~I xou' BP + 2at~2 xu'2 B~2 ) - xf!2(t~2 X2" - 2at~2 xuo)} 
. 31. I .3UU1 . •I I . 3UU1 

. ' 3 .. 31 . . 1. 31 1. 

-ze_ '"" ~(R"f·_ R:I?)(t~~X~":- 2at~~X!'0) ··• • . L...., L.;.; ' 3 '3 • '3 • 
·i#j#l uu1 . 

{(t~2 xu'2 B~2 - 2;tP xou' B~1 ) _:'xf!2(t~ 1xuo + 2~t~2 X 2
'u_ .)·} 

31 I . 3UU1 . •I I 3UU1 . 3 31 I· 31 I 

H. c. (44) 
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(Xga x;0 (t)}, since they give higher order corrections:in .t12/U which .have 

bee~ already omitted in the force ( 4 7). Since the difference }>etween the UHB 

arid the LHB eriergy is of 'order U the interband rela.Xationrate is nonzero only 

for this region of high energy around lwl ~ U. To analyze its temperature and 

doping dependence we,need self-consistent solutions for the one-electron GF 

in ~q. '(51). 
·•' The intraband relaxation rate is given by the following equation 

rint(w) = 1- exp(,Bw)jc;x> dte•wt(F~ntp~nt(t)). 
2xow -oo 

(52) 

To calculate the many-particle time-dependent correlation functions· in the 

right-hand side . of eq. (52) we ·apply the mode-cop. piing . approximation in 

_terms of. an independent propagation of electron-hole and charge-spin flue-
. ' 

· tuations. This approximation is essentially equivalent to the self-consistent 

Born approximation in which vertex correctio'ns are. ~eglected. The proposed 

approximation is defined by the following decoupling of the time-d-ependent 

correlation function: . 

(Xf0 X2~~B~;",jxz:~q'(t)X2t(t)(B~·l.,,(t))t) • 

~ 6~c,k'6q,q'6s,u6s',u' (Xf0 X2" ( t)) (XZ~'qxk~q( t)) (B~;",( B~;", ( t)) t) (53) 

There are 16 correlation functions ofthe type given by eq.(53) for tlie LHB a:nd 

for the UHB. However, by ti"sing the symmetry relati~ns for t_hecorrelations 

·functions in terms of the Bose-likeoperators (45) we can write thefinal res\].lt 

for. t~e intraband relaxation rate in a compact form: 

exp(,Bw)- 1 joo joo rint(w) = dwl. dw2n(wt)[l- n(w2)]N(w- Wt + w2) 
; XoW -oo -oo 

2e2 2::: x-·, 
.N k,q· 

2 . · II 
gx(k, k- q) Xcs(q,w- Wt + w2) 

16" 

'I 

I 

. x {(t~1 -t~2 )2 At(k,wt)At(k~q,w2)+(t~2 -t~2? A2(kiwt)A2(k~q,w2)}; (54) 

where the momentum dependent vertex is given by 
.· 

Yx(k, k ..:_ q) = Vx(k)t(k- q)- Vx(k:.... q)t(k) (55) 

and the charge-spin susceptibility x"cs(q,w)'is defined by the equation: 

(Pcs(q)IPcs(-q,t)) = ~(NqiN-g{t)) + L.(S;IS~9 (t)} 
a 

= ~ 1: dw~-•wtN(w)x~;(q,w). · ·. 
(56) 

Here N(w) = (exp ,Bw- 1)-1 and X~s(q,w) =- ~Xcs(q,w + t6). The formula· 
I . . ,_ . 

(54) generalize the result obtained for the relaxation rate for p-band electrons. 

in.the p- d model in Ref. [41]. 

To conclud~ this Section we calculate the static current-current suscepti­

bility (37) in the denominators of eqs.(50), (54) which is also define the sum 

rule for the conductivity, eq.(19). ·By performing-thecomniutation between 

the polarization operator (38) and the current ( 41) we readily get' 

Xo = (Jx,,J~) = t([Jx,Px]) 

"(R"~-R<!!)2 {tP(X!'0 Xf!")+t~~(X~" X'!2)·+' 2at~~((. X~a XC!"+. X!'0 X~2 ))}. L...t I J IJ I . J IJ I J IJ I J I J • 

i#j.'<1 

(57) 

For the Hubbard model with only the nearest neighbor~ h<lpplng, (Rf -Rj)2 =:= 

a;, the static susceptibility (57) is equal to the av:erage kineti<; energy, the 

hopping term Ht i~ eq.(6), t'nultipliedby a constant: 
• I 

Xo = -e2a;(l/2)(Ht) . (58) 

The latter equation for the conventional Hubbard model (5) has been used 

by many authors to study the conductivity sum rule (19) (see, e.g. [13, 14, 
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-15,· 16, 18, 19; 20, 21, 26, 28, 30, 31, 35]). In the q-representation the static 

susceptibili~y_(57) reads: 

X 
= -e2"""' { a2t11(q) (Xuo xou} +82t22(q) (X2u xu2}+ 

o L...J aq2 q . _q aq2 q q 
q,cr X , X · 

+2a 
02:

2

~q) ((X:U xya +Xf0 Xj2)}} . (59) 
qx , . 

By introducing the band masses: 1/fu~fJ = -82t~f3 faq; ()ne can write the 

susceptibility as xo/V = ne2 fmeff in terms of the doping and temperature 

~ependent effective mass mef f, n :::: N JV. The latter can be calculated by 

using the solution for the one-electron GF including the nondiagonal ones (see, 

e:g. [39])> 

5 Results and Discussion 

In the present paper we have derived a closed set offormulas for the frequency 

_dependent conductivity for the asymmetric Hubbard model (6) in the form 

of the generalized Drude law (32} with the relaxation ·rates for. the inter band 

transitions (50) and the intraband scattering (54). The former gives a contri-, . 
bution for the optical cond~~tivity in the high frequency range aro~nd w ~ U. 

The latter describes the Drude relaxation due to electron scattering- on spin 

and charge fluctuations both in the LHB and UHB. Th~ static current-current 

susceptibility (59) defines the sum rule (19) and enter as a normalization factor 
... . ' 

in the definition of the relaxation rates (50), (54). 

For an estimation of the relaxation rates we can use a Hubbard I type . . . . . . 

approximation for the one-electron GF (51) (see, e.g. [39]): 

At(q,w) = Xtb(w- Utq), A2(q,w) = X26(w- !12q) ' (60) 

where 

• I . Xt = (~fl + Xf11
} , X2 = (Xf11 -t Xf2} 

.18 

and X~ = 1 - X2 = 1 - nf2. The functions U~q and U2q are the one-electron 
' . . 

spectra for the LHB and. the UHB, respectively.- They have oeen calculated for 

the asymmetric Hubbard model (6) allo~ing for the inter band hybridization 

by projection technique for the GF 'in Ref.[39] .. By using eqs.(60) we get the 

following expressions for the relaxc:tion rates 
/ 

fo(w) - 27re2U2t2 - 12 
~ow 

X1X2 L(vx(q))2 

q 

[n(U1q)- n(U2q)][o(n2q ·_ Utq- w) ~ 6(!12q _:_Htq + ~)] . '(61) 

X oW 

2e2 ·· · 

N LY;(k,k-q) 
k,q 

{(t~1 -t~2 )2x~n(Ulk)[l- n(Utk-q)]N(w- Qlk + Qlk-q)X~.(q;w- Qlk + nlk:_q) 

· +(t~2 ~t~2 )2x~n(n2k)[l-n(n2k-q)]N(w~ n~k+n2k-q)x~.(q, ~-n2k+n2k-q)} 
(62) 

These are conventional forriml~s for the optical (61) and the Drude (62) re-. 

laxation· rates calculated in the Born approximation for a two-band modeL . 
However, the relaxation rates and the conductivity (32) havequitea compli~ 

; 

cated temperature and doping dependence due to very specific dependence of 
' ' ' . . . - ' -' ~ . . . ' 

the one-electron spectra nlq and n2q on that parameters (see [39]). It canbe. 
>- ·'·•' ' • •, e" ' " 

studied only by numerical solution of a self-consistent system of equations for 
• ·: ; • • • ~ • ' • • • > ' '-" • '; ~-

the GF which will be considered elsewhere. Here .we only point out that the 
I : ' ~ • • • • ' ~ '- ; • 

Drude relaxation rate (54) disappears for the symmetric Hubbard model (5) 
, ' ' ··• • : • . • . : \ ~ . • ' ' • , . • ~ i ; I ·' > ' ' -. " • • > 

with ta{J =· t independently. of the approximatfons for the one~electron GFdue· 
,._: 

to a cancellation of the intraband ( ()( taa) and inter band ()( lt2 contributions. 

If one neglects the latter a final relaxation rate results (see, e.g. [11]). 
' . 

To estimate the Drude relaxation rates for copper-oxides we can use the 

hopping parameters given by eqs.(7), (8). The calculations show that for 

19 



electronically doped copper "oxides (the chemical potential -in ~he LHB) the 

·relaxation rate (54) being proportional to (K'f1 - K'f2)2 ~ 0.01 should be 
' ' 

much smaller then for hole doped ones (the chemical potential in the_UHB) 

where it is proportional to (K52 :- K'f2)2 ~ 0.22 .. The latter one h?S been 

calculated in Ref.[41] for a simplified model of p-band by the formula close 

to (62) but neglecting t12 term which has resulted i~ a higher value for the 

spin-fluctuation resistivity and frequency' dependent relaxation rate. 

For discussion of a very important in the Hub~ard model (1) or (6) problem 

of the Matt-Hubbard metal-insulator transition around half-filling (n = 1) 

we have to calculate more accurately the _one~electron_ GF given by eq.(60) 

including the non-diagonal GF (X;0 x;2) which define the static susceptibility 
• 0 

(59). An estimation in the leading order of t 12 fU for a model with nearest 

neighbors hopping results in the formula 

xo = e2a2 L {l(q)[tnxtn(iltq) + t22X2n(il2q)]+ 
q, 

+ 2(tt2!(q))2XIX2 n(~q)- n(n2q)} . 
2q- nlq . 

(63) 

For a half-filled band, (n = 1), at low temperature n(il1q) = 1, n(il2q) = 0 and 

there is' only ;he int~rband cont~ib~tion of the br<ier xo/ N ~ e2a2( ti2/2U). 

This small value of xo gre~tly enhan~es the i~terb~nd relaxation rate f 0 (w ~ 
0 ' • 

U) ~ U. However; at: a final concentration of charge carriers 8 ,;, 1 - n a 

c~ntribution fr~m the LHB (or the UH~) in (63) ~?the order xo/ N ~ e2a2t008 

. app_ear~. and at some concentration 8 ~ ( ti~fto'o-U) a ~rosso~er f~om inter band 

to intraband scattering takes place. 
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rinaimJla H.M. 
OnTH~eSKllll np(;lioJlin.iocn 8 M?JleJIH Xa66~pJla 

3aoHCIIlllllll oi' '!acTOTbl npoooJlHMOCTb. cr(ro) 81 
8 npeJleJJe C."JJbHbiX KOppe.1111UHii U ::>? Ita~!.' rne i, 
HJJH ·oepxHeii (u = (3 = 2) xa66apJlOBCKoii JOHbl. 1 
onepaTOpo8 Xa66aplla8bi'IHCJJeHa cKopocrb Jie]JaKc 
" 3llp11Jl08bL,(' <fL-iyjcryaUHHx; .Unll ~(ro) nonY4eH.o6oe 
8 o6JJaCTH. HHJKHX '!aCTOT_ (JlpyJl!J8CKllll '13CTb), Ta~ 

.. ' ' .. . \ 

'ITO CKOpOCTb 'JlpyJlOBCKOH pe11aKC3UHH nponopu 

. Jtnll cH~M~TP"""o,ii ~~JleJJH. Xa66ap~a -~ra~ = ~ )._ Jt 

OKCHJlHbiX CQeJIHHeHHH C · 3JleKYpOHHOH np080JIH> 
pacceliH':II. Ha 'cn~H08biX tp-~yKryau.i11x iiomrm'a 6hl· 
np080JlHMOCTbiO. . . 

. · 
Pa6ofa s~monHeHa B Jia6()pa:ropHw Teopeni'lec 

,,_; 

, .. 
;, 

., ,, / 

,,,\· J 

, 'I . . . <. i, . \ ,. • 
OpenpHHT QmeJlHHeHHOr!l HHCTJITYI 

' ' "' -..,' - ~ ' ~ . ' ' ., ' . 

(,;. 

\',,.,· 

Plakld~ N.M .. · . . , , . 
,Optical Conductivi!Y in .. the-Hubbard Model 

< Fr~quency d~perid~nC~o~dJctivity ~(ro).is calc 
of· st_~ng corr_·. elat,ions, U >>_I; •I ~ where. r~. ru ', ' ~ , . . a.., u.p. ' 

or the ~pper. (u = (3 = 2) Hubbard bands. By a 
of the Hupbard oper~tors. relaxation. rates d?e t• 

· fluctuations are calculated:' A generalized Drude1a\l 
in the low frequency region (Drude part) .and in 

. , • '· , : ' • ' '· ..•... '· ' . . 2 
the Drude relaxation rate is'prop9rtional to ((tah) 

in~ctel (t~~:;= t t where· cr(ro)_~ O'(<o): li i~ ~~ggesl 
l , \" ~ ~ ' ' • ' \ • I .. 

• flu~tuation relaxatioil,ra~es ;sho~Id be much weakt 
. . 

The. i~v~stigation; ha~ been · perf4?rmed at the E 
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