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/.INTRODUCTION 

In our previous paper /I/ it was shown that in some 
cases the scattering mechanism of current-carriers 
from randomly distributed electric dipole centres in 
solids is found to be particularly essential and even 
more effective than the other scattering mechanisms. 
This effect is considerable at low temperatures, great 
effective mass of current-carries and, naturally, at 
great values of the electric dipole moment and of the 
concentration of the dipole impurity centres. Moreover, 
the relative contribution in the scattering from electric 
dipole centres with respect to the one from the Coulomb 
centres (for equal concentrations) grows with increasing 
concentration of the current-carriers because of their 
weaker screening effect in the case of dipole centres 
and it is possible for the former to be significant at the 
room-temperatures. Impurities and defects in the crys
tals which practically could scatter the current-carriers 
at static point (ideal) electric dipoles are, for instance, 
the neutral associations by opposite-charged atom f'efects 
(ions)/ 2-s/ the dipole vacancies in ion crystais, or, when 
instead of two neighbouring opposite-charged to the same 
degree ions, one has, in such crystals, neutral atom-impu
rities, the impurity molecules with a substantial electric 
dipole moment in some molecular crystals, etc. (See, 
for instance, /6-R/ ). A number of electric properties of 
semiconductors, semimetals and metals could be related 
to such a kind of impurities and defects, e.g., electric 
conductivity, coefficient of light absorption in the infrared 
range, and so on. 

The free-carrier optical absorption in semiconductors 
or metals, when the scatterers in solids are phonons or 
ionized impurity centres, has been calculated by various 
authors /9 -17/. 
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The present paper aims at calculating the coefficients 
of light absorption and the dielectric losses in crystalline 
solids due to the scattering of the qua.si-free current
carriers from electric dipole impurity centres. Besides, 
similar to paper /I/, it is considered that the lattice 
deformation, connected with the presence of these centres, 
is small so that its additional effect on the scattering 
could be neglected. The calculations are carried out in 
the approximation of the effective mass method by a_ simple 
law of dispersion of current-carriers (electrons and 
holes), the interaction of the latter with every separate 
electric dipole centre being described by a screening 
potential obtained in the Febye-Huckel approximation 
paper /I/. It is assumed that the distribution of the dipole 
centres in the volume of the crystal is random and not 
with a very great average concentration so that the scat
tering from each centre should practically occur indepen
dently of the others, whlle the distribution over orientation 
does not depend on the position in the volume and could 
be arbitrarily given. Final results are obtained in the 
case of equally oriented dipole centres and when all pos
sible orientations of the latter are of equal probability. 
The scattering amplitudes are calculated in the Born 
approximation. It is assumed that the absorbed light is 
monochromatic with frequency much larger than the 
characteristic value of the frequency of the current-car
riers collision. It is also reckened that the influence of 
the spatial dispersion of the electric field of the light 
wave is inessential and can be neglected. 

II. CALCULATION OF HIGH-FREQUENCY 
ELECTRONIC CONDUCTIVITY 

Now we will calculate the high-frequency electric 
conductivity tensor ;(w) which is related to the scat
tering of a definite type of quasi-free current-carriers 
(conductivity electrons or holes) in crystalline solids. 
The external electric field (of the electromagnetic wave 
falling on the solids) is assumed to be weak and depend 
simple-periodically on the time with circular frequency 
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w so that the one-zone approximation should hold and 
the inequalities 

1 « w r (w), J1 = 1, 2, 3, 
·11 (1) 

should be satisfied, where r f1 (w) is the J1 -th main tensor 
value of the average transport relaxation time. The tensor 
is related to the electroconductivity tensor by means of 
the relation 

ne 2 "' a(w)r(w) = r(w)a(u,) = --1, (2) 
mw 2 

where n is the average current-carriers concentration, 
e and m are the absolute values of the electric charge 
and the effective mass of one current-carrier, respecti
vely, while I is the unit tensor. 

Under these conditions and those presented in the 
Introduction the real components of the electroconduc
tivity tensor a 11-v (w) ~, v = 1, 2, 3) for an arbitrary type 
of scattering centres can be written as follows : 

2 . 
e k 0T (+) . (-) 

a/1-V (w) = -34~- ( S/1-V (w) - 8 flV (w)) , (3) 
8rr h w 

where k 0 is the Boltzmann constant, T is the absolute 
temperature, while the quantities s;t (w) are determined 
by the formula 

S(±) (w) ~ f d.;n (,;)A(±) C.;; w). 
flV Q 0 /1-V 

Here 

] 
-l n0 <.;) = [1 + exp<.;- xF) 

(4) 

(5) 

is the Fermi-Dirac distribution function for the current
carriers, and besides, the energy ( of each of them and 
the chemical potential ( are connected with .; and x F, 
respectively, according to the equalities 

f=k 0 T.;; (=k 0 'IxF, (6) 

while the functions A(;~ <.;, w) are given by the expressions 
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+ 
(±) Pi 2 

A (~;w) = 0(~ ± wT) f dpp K (p), 
~ pv 

p± 
1 

(7) 

where 0 < x) is the step function, 

0 when x < 0, 
(J(x)= I 

1 when 0 < x; 

+ 
p- = + 

1 

y' 2m k
0 

T 

h 
( y' ~ ± wT - y' /;)' 

(8) 

+ \12mk 0 't ---
P; =± --h---(y/; ±wT + yf; ); 

2rr rr 
K ( ) t r r . p llp ,, _. p "' - d u df~ Sill f·< -----!:: __ Q (p). pP 4 . . 1-' 1-' ' 

TTO 0 p2 
(9) 

p is the wave vector with the Cartesian rectangular coor
dinates 

p ~ (p co sa sin f3, p sina sin/1, p cosf1) 

and 
h {I) 

WT = 

(10) 

(11) 
k 0 T _, 

In the general case the quantity Q (p) in (9) is defined by 
the formula 

2TT 2rr TT • 2 -> 2 -> 
Q(p)ocNe f d~' fd¢ fde sin0P0 (~1,,¢,0)IV<p·A<t,J,¢,0))1,(12) 

0 0 0 

where N is the average concentration of the scattering 
centres; P 0 (1/J, ¢, 0) is the distribution function of the 
centres over orientation ( 1/J, ¢, 0 are the Euler angles), 
for which naturally one has 
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2rr '!.rr rr 
f dtjJf d¢ fde sinOP

0
(tjJ,¢,0)= 1; 

0 0 0 

V(p) is the Fourier component of the potential of one 
scattering centre which is placed at the origi~ of the 
coordinate system with a definite fixed orientation; .A (0,¢, 0) 

is the transformation matrix of rotating of the coordinate 
system, defined by the Euler angles. One has 

4 A ....,. --Jo ...... 4 4 -l> __, 

p·A=(p·n, p·(sxn), p·s), (13) 
where 

~= (cost/Jcos¢- sint/Jsin¢cosO,sint/Jcos¢+ cost/Jsin<i>cosO, sin¢ sinO), 
-> 

s= (sint/JsinO,- cost/JsinO, cosO). (14) 

In the considered case of scattering electric dipole 
centres the Debye-Huckel screened potential V ll en of 
one of these centres placed at the origin of the coordinate 
system and its Fourier-component V n(p) were obtained 
in paper /l I and are given by the expressions, respecti
vely. 

-> ( q· ;) r r , 
V (r) = ---(1 + -) exp(- -) 

n [ r 1 Po I' o 
0 

2 -> -> 
_, 4rrip 0 (q·p) v (p)=- ---

]) ~-
'-'' 0 1 2 2 

+ Po P 

(15) 

where q is the electric dipole moment o·f the centre, 
& 0 is the dielectric permittivity of the medium, p 0 is 
the Debye-Huckel screening radius, r ~ I ;I and p ec I rl . 
Moreover, when all dipole impurity centres are equally 
oriented (they are assumed to be directed along the 
axis Oz ) one has 

P <1/J, ¢,e) = --
1-o (~,)o <¢> D(&) , (16) 

0 sinO 

where o (x) is the Dirac function, and when all their pos
sible orientations are of equal probability * 

*Naturally, our descrition is approximate, since, in 
fact, the possible orientations of the defects in crystals 
always form a discrete set. 
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1 
r~. e) - -. p 0 ( rj.J, 'f'• - 8 7T 

2 (17) 

Substituting (16) together with (13)-(15) into (12), 
one obtaines 

_, 677Ap 2 

(18) 
Q (p) = ----~-

0+p2p2)2 

0 I l I and, analogously, using (17) one finds (see also 1 ) 

_, Ap 2 
Q(p) = -----

where 
(1 + p 2p2)2 

0 

(19) 

l6772e2q2Np4 
0 

A= --------. (20) 
3& ~ 

For simplicity, here and further on we consider only 
the case of unipolar electric conductivity ·· assuming 
that all dipole impurity centres have equal magnitude 
of dipole moments q = I <1!. If that does not hold, then in 
(20) and further on instead of q 2 one should write the 
average quadratic value < q 2>, obtained using a definite 
known distribution function of the impurity dipoles ac
cording to the magnitude of the dipole moment /I/. It is 
reckoned that the current-carriers dispersion law has 
the form 

2 h k 2 
t ~ =-

!c 2m 

( k is the value of the wave-vector k ). 
First consider the case of randomly distributed over 

orientation dipole impurity centres. Then from (9), (10) 
and (19) one gets 

~ 

--------------------------
* In the general case the electric conductivity is a sum 

of terms of the form (3), each being determined by the 
corresponding type of current-carriers. 
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~ 1 2 
K (p) = -Ao P 

/lV ' 3 pY ' 
0+p6p2)2 

where o11v is the Kronicker symbol, 

(21) 

1 when 11 = v , 
0 = f 

11v 0 when 11 I= v • 

Substituting the above expression (21) into (7) and taking 
into account (8) we find 

( ±) ( t: ) A ~ ( c ( ±) ) 
A flV s ; uJ = -. -6 0 fll! e c; ± w T ) J ( ; ; w ' 

3p() 
(22) 

where 

(+) 1 
J -(l;;w)=2y [1+ hll;(l;±w )-

0 2 t: T O±y 0 wT) +4y 0 s 

1 + Yo<v t; ± wT + vO 2 
ln [ ---~ ---------~--] 

(23) 

---
1 + y (y I; ± (l) -vI;) 2 

0 T 

when 

_ 2mk T 2 
Yo - h2 o Po· (24) 

Obviously, we have 

(+) (-) 
J (/;;w)=J (/; +uJT;w). (25) 

Now, from (3) and (4) using (20), (22) and (25) we 
obtain 

a (w) = a(w) o , (26) 
f11! f11! 

2 e 4 2N k 4 
a(w)= q oTp 0 

97Th4&2 
0 

1 DO (+) 
- f d/;[n

0
(1;}-n

0
(/;+w )]J (/;;w). 

w3 0 (27) 
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When degeneration of the current-carriers is absent, 
i.e., when the inequality 

1« 
(mkoT>3/2 

- 3 
m,/277h n 

holds, from (5), (6), (23) and (27) we find 

B 32 e
4

q 
2 

N n 2 77 k 0 1 1 ; 2 1 w T 
a(w)=a (w) = 

3 2 
( ) -

3
-shz- x 

9hfi 0 m w 

WT 
(28) 

-2 a (J)T WT 2 YoWT WT 
xle (8y0 - -1)J(a,w)+-fK

1 
(-)- K

0
(-)]l, 

a a 2 2 1 + y 2w 2 2 
0 T 

where K0 (x) and K 1 (x) are 
order 0 and I, respectively; 

the Macdonald functions of 

"" V ~(~ + w T) -~ 
J(a,w) = f d~-----e ; 

o a + 4y0 ~ 

a 
2 

(1 + Yo (t, ~ 

(29) 

(30) 

Moreover, the screening radius p 0 is determined by 
the well-known formula 

& k T 
P - ( 0 0 )l/2 
0- 2 

477 e n 

the latter, together with (11) and (24) leads to the fol
lowing expressions for y

0 
and y

0 
u; T : 
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):: 2 2 
rnlS

0
k

0 
T 

y = 
0 27Th 2e 2n 

When the inequality 

mE k Tw 0 0 

Yo w T = 2 77 h e 2n 

I 
l 

r 

4 :---Yo <_a (31) 

holds, as a good approximation for the integral (29) we 
have 

WT 
~ 1 WT -2- (dT 

J(a,w) = --- --e K
1 
(--). 

a+3y0 2 2 (32) 

Substituting (32) into (28), we obtain 

B 
a (w) = 

16e 4q 2 Nn 277 l/2 1 {LJT 
-----..2---,;2- ( --) - sh-- x 

9 h 5; 
0 

rn k
0 

T (i) 2 2 · (33) 

X lll - 1 8 Yo wT 2 Yo'0 T (t)T 
---- ] K (--) - ----K (--}! 

a+ 3yo 2 I 2 2 0 ' (a+3y 0) 2 1+y
0

wT 2 

If, in addition, the inequality 1 /< '" T is satisfied, then 
the formula (33) is approximately written in the form 

ll 8\/ 277e
4

q 
2 

Nn 1 2J'o"''T 
a (u,) = ~(1-- - ----). 

2 I/2 .'i;2 a 2 2 
9&om (h(·,) I+ Yo'''T 

In the case opposite to (31), i.e., when a<. 4 ro. and 
moreover the condition '" T 1 is satisfied; for the in-
tegral (29) we can write 

J(a,,,,) ~c __ 1 __ • 
4 Yo 

Then from (28) we approximately find 

"H ( '") .;- Hie 
4 

q 
2 

!'\ n ( 2 77 ) I I 2 _{_ • 

9 h 
2 & ~ IT k 0 T UJ 

2 
(34) 

Thus, for scattering from dipole centres and the 
Boltzmann statistics of current-carriers the dependence 
of the electric conductivity on the frequency {i) of the 
external electric field in general is by the law w-2, when 
J¥,,/k 0T <<1, andbythelaw uJ-">/ 2,when 1<< hw/k

0
T. 

Here we shall note that the high-frequency electric 
conductivity corresponding to (28) for the scattering 

u 



from the screened Coulomb centres (with charges ± Ze ) 
can be written in a similar form, namely, 

cuT 
2 6 1; 2 sh(-) 

aB{w) = BZ e Nn (~-) _1 ____ 2 __ 'l< 

I c-2 3 2 2 
3h{Som mko T uJ 1 + Yo(uT (35) 

WT 

w 2 a 
xI y~ w~K 0( 2 I)- 4y

0
e [y ~w~ +2y

0 
0-y~ w ~) a;l J (a, w)l, 

and when 1 « uJ T this expression transforms into the 
result obtained in paper 1101. Using the approximation (32) 
from (35) one obtains 

B 87
2e 6 Nn 277 112 1 uJT 

a (w) = ----------(--) -sh(-) 
I 3h Ci 2m m k T w 3 2 1 + y 2 w 2 

0 0 0 T 

2 2 
Yo(u ~ 

2 2 

X 

wT 2 2 1 - YowT edT 
x!K (-)- [y w -- ----JK (-) l. 

o 2 a+ 3 Yo o T <u T a + 3 Yo 1 2 

If the dipole centres screening is weak and may be 
neglected ( p0 ==),then the general formula (28) is reduced 
to 

1 4 2 1/2 1 
aB(w) = 6e q Nn (-~-) -sh(~)K (~) 

9h 2 & 2 m k o T w 2 2ko T 1 k o T . 
0 (36) 

Note, that the formula (36) is obtained from the 
corresponding formula at scattering from the Cpulomb 
centres (which isfollowingfrom(35)when Po= oo)/12, 13•18/ 

lt
. 1 . 2rnq2w 

by mu 1p ymg ---
2

-
2 3hZ e 

and substituting the function 

w T wT . 
K 0 <y) by K 1 <-2-). Bes1des, when m= 10m

0 
( m

0 is the 

mass of the free electron), T = 300° K , q = 6D , w = 
=5.1014 radjs, 2=1 and for equal concentrations ofthe 
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dipole and Coulomb centres, the electric conductivity 
at the scattering from dipole centres is only two times 
smaller than that at scattering from the Coulomb centres. 

In the case of strongly degenerated statistics of 
current-carriers, i.e., when the inequality 

<::o h2(3772n)2/3 
1 « -

kT 
0 2n:k

0
1 (37) 

is satisfied (<:: 0 is the value of the chemical potential 
when T = 0 ), from (5), (6), (23) and (2'7) we find 

F 2me
4
q

2 N 1 
a(uJ)=a {w)= 

0
_
2 

[F(<:;J-e(t;;0-hw)F((
0

hw)J-
3

, (38) 
977ht· 0 w 

where 

F(x) =(37] 0+2x+ hw)y'x(x+ hw) +27]
0

xL(x) + 

+ ~ [37]~ + (47]0 +hw)hw][&(1]
0

- hw)M(x}-N(x)]; 

L(x) = ln[ TJo + (v'x + hcu -/-;-)
2 

-2 
TJ 0 + <v x + hw +v x > 

(39) 

(40) 

[(7] 0 + hw )2 + 47]0xl hw 
M(x) = In I I; 

2 22, 222 . 22 
I2(1TJ 0-h (J) i)\'X(X+hw)-(77 o+h (J) )(2x+hw)-277oh (L) I 

2 
N(x)= ln[1 + -<x+ y'x<x+hw))]; 

hw 

h2 

11o = 2mpJ 

&<x> = @(x)- e(-x). 

As is known, because 
by the expression 

p2 = h
2
& 0 (~) l/3 

0 4me2 3n 

of (37) p 2 
0 

(41) 

(42) 

(43) 

in (43) is given 
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In the particular case when the additional conditions 

t; 0 ::: Tfo « hw 

hold, from (38) - (42) approximately we have 

1 4 2t-3/2 . 
aF (w) :: .L6me q ~ 0 N • 

- 27 h 3~2(hw)5/2. (44) 
0 

We shall note that the high-frequency electric conducti
vity corresponding to (36) for the scattering from the 
screened Coulomb centres can be written in the following 
form 

F 2 6 
a I (uJ) = 2Z e N 

2rr h 4 { 2 3 () ()) 

[I•
1 

1(
0

) - 0(( 
0

- h1u) F 
1
<(

0 
- huJ)], 

where 

-
F (x) =- 2v x<x+ hw) - xL(x) -

I 

- .!_(Tfo + hw )[ 6= (Tf 0 - tw) M(x)- !'\ (x)]. 
2 

Exactly in the same way one carries out the calcula
tion of the electric conductivity tensor for equally ori
ented dipole impurity centres. Then, it is easy to see 
that,using the expressions (18) and (20), from (3) - (10) 
one obtains * 

(T 

fll' 
(c,J) = ~a(w)a 0 

5 flll 
(45) 

where a(w) is the considered above scalar electric 
conductivity for randomly distributed over orientation 
dipole impurity centres, which in the general case is 
determined by (5), (6), (11), (23), (24) and (27), while 
a o are tensor elements with values as follows: 

flV 

o Of 1 o o lo 1 a flV = Or f1 F 1.1 ; all = a 22 = ""3" a 33 = • (46) 

-------------------------* In fact the formula (45) is valid in a more general 
case, when the impurity dipoles can be oriented opposite 
to each other too. 

14 

The result (45) shows that for equal orientation of the 
dipole centres the high-frequency electric conductivity 
in the direction perpendicular to the dipole moments is 
3. 77 times larger and in direction parallel to them 11,3 
times larger than the corresponding electric conductivity 
with randomly distributed over orientation of dipole 
centres. 

In each of the considered cases the conditions (1) are 
written in the explicit form with the help of the corres
ponding expressions, obtained for the electric conductivi
ty tensor, and the average transport relaxation time 
tensor ~( w) is determined by the relation (2). Thus, 
for instance, from (1), {2), (26) and (34) we have 

9h2&:§uJ V 
1« v--, 

16e2q2N 2rr m 

while from (1), (2), (26), (37) and (44) we obtain 

1 « 9h { ~(huJ) 3/2 

4rr 2v 2ni e 2q 2 !'\ 

Note also that the carried-out consideration of the 
impurity centres as point (ideal) dipoles and the Born 
approximation for the scattering hold when the inequali-
ties (see also /I I ) · 

leo < 1; 4 n: e p 0 I ~. k I [ 
:Jh 2&.o 

2 
1 + <k Po> 

2 1 + (2/c p 0) 

1/2 
1 « 1 

hold, respectively, where o is the distance between 
the centres of the positive and negative electric charges 
in the dipoles. But one should take into account that a suf
ficient condition for the applicability of the Born appro
ximation is usually the inequality 1« 2rr/kr

0
, where 

r o is the distance to which a current-carrier with 
a characteristic value k of its quasi-wave vector could 
approach the force in the repulsive field eiVn<r>l.' 
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III. DIELECTRIC LOSSES AND ABSORPTION 
COEFFICIENTS 

Now we will write the formulae for the dielectric 
losses and the absorption coefficients of electromagnetic 
waves corresponding to the obtained results for high-fre
quency electric conductivity at scattering of current-car
riers from electric dipole impurity centres. Moreover, 
we will assume that the dielectric permittivity E 

0 
deter

mined by the lattice mechanisms of polarization 1s a sca
lar quantity. Then, the power W 1(u>) of the dielectric 
losses in unit volume of the crystal is defined by the 
formula: 

1 3 2 3 2 
W1 (w)= -l E(l,,a (w)= ~ l E(l,,& (w)tgo (u>), (47) 

211 =l vr- 11 8rr /1"" l vr- 11 11 

where E 011 is the projection of the external electric field 
vector amplitude onto the 11-th main axis of the electric 
conductivity tensor, &11 (w) and a 

11 
(w) are the corres

ponding to this axis main values of the tensors of the 
. A 

general dielectric permittivity {i;(w) and electric conduc-
tivity ~(w), while 

4rr a 11 (w) o (w) = arctg[- --] 
11 w fi- (w) 

11 

is the angle of dielectric losses. 

Further on, we will assume that the dependence of 
{i; o on the frequency w of the applied electric field is 
weak and may be neglected. Besides, the effects from 
the delay of the lattice polarization with respect to the 
applied electric field can be neglected, assuming them to 
be inessential. " 

For the components of the tensor {i; (w) we will have 

{i; (w) = C o + ~ E (w) , 
fLV 0 fLV fLV (48) 

where ~&11 )w) are the components of the electron part 
of the dielectric permittivity tensor. The latter could 
easily be written taking account of the current-carriers 
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scattering from impurity centres in the Born approxima

tion however, in our case, because of (1), the 
relaxation contribution, predetermined by the impurity 
dipoles, is inessential and for this reason, it is comple
tely sufficient to write /'1,/i 

11
v (co) only for the quasi-free 

gas of current-carriers, 
w2 

~& 11v (u>) = - 8/lv &o ~ ' 
w~ 

(49) 

where wpe is the plasma frequency, 

uJ = (_i77ne!_)JI2 
pe mE 0 (50) 

Limiting our investigations to non-magnetic crystals 
and electromagnetic waves with parallel amplitude and 
p~~se planes, for the main coefficients ~ absorption 
a fL (u>) and main (real) refractiveindices n(ll (w) , 11=1,2,3, 
according to classic electrodynamics, we have 

(/1) 2(0 (fL) (fL) (/1) 
a (co) = ~ L(-)(u;) ; n (w) = L (+)(w), (51) 

where 

(f1) 1 2 4 77 2 1 I 2 1 I 2 
L (+' (uJ) = -=l [[ 1, (w) + ( --:- a

11 
((v)) ] ± {i; f1 (uJ) l , (52) _} v 2 w 

while c is the velocity of light in vacuum. 
The fo~T,ulae (51~ and (52) define the propagation 

vtlocity c f1 (w) = cln(ll (u>) and the absorption coefficient 
a 11> (u.:) of flat monochromatic wave which electric vector 
oscillates parallel to the fl -th main axis of the electric 
conductivity tensor, while the normal to the wave front 
is parallel to one of the other two main axes of this 
tensor. 

In this way, the dielectric losses and coefficients of 
the electromagnetic wave absorption in the considered 
cases are obtained from (47), (51) and (52) by substituting 
(48)-(50) into them and the corresponding expression for 
the high-frequency electric conductivity. 

For optical electromagnetic waves, when the inequali
ties 
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417 a 11 (w) 
0 < 6: 11 (w) and --;_;- T(w) « 1 

11. 

are satisfied, from (51) and (52) we have 

a(11) (ezi}:, ~ ~~ · n(IL}(w);; · 1 G (w) 
c --' VII 

vE (w} 
fL 

(53) 

Thus, for instance, from (34), (45)-(50) and (53) when 
u) <<- ez1 approximately we find pe 

. 2 2 2 1 w
1 

(w): B(E 
01

+ E
02

+ 3E
03
>-; 

w2 

O> (2} . I (3Y 
u (w) : u (t!l) = - a (w) : 

3 
8B 
-2 

evE ocv 

while from (44), (47)-(50) and (53) 

.. 2 
E 

0 W {(IJ) = G ---sJ2 
J (u 

817G 
(ll)((u):a(w):-

1
-;:- 5/2' 

a C\ \: 0 w 

where 

4 " B = ~:re q ~ Nn ( 217 I/2 

15 h 2 & ~ m k 
0 
T) ; 

8me 1q2N ( 1/2 

270172[2. 
c 0 

G 

In conclusion, let us note that for equality oriented 
dipole impurity centres the dialectric losses and electro
magnetic wave absorption are larger than those for ran
domly distributed over orientation dipole centres and 
besides, . the absorption is three times larger when the 
vector of the wave electric field is parallel to the dipole 
moments compared with the case when it is perpendicular 
to them. 
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IV. CONCLUSIONS 

In this paper the contributions to the high-frequency 
electrical conductivity, dielectric losses and free- carrier 
absorption associated with the scattering from the Debye
Huckel screened dipole impurity centres in crystals 
are calculated. The consideration is in the one-band 
isotropic effective-mass approximation and the second
order Born approximation of the scattering. When all the 
orientations of the impurity dipole moments are realized 
with equal probability and when they have parallel orien
tations in the limit cases of the Boltzmann and strongly 
degenerated statistics presents formulae for the high
frequency electrical conductivity, dielectric losses and 
absorption coefficients. As on the low-frequency case (see 
paper I I/ ) our results here show that the scattering of 
current-carriers from dipole centres in some cases may 
be comparable to or even more effective than the other 
scattering mechanisms. The considered scattering mec
hanism is found to be particularly essential in some 
adopted and specially processed materials under rela
tively low-temperatures and great concentration of cur
rent-carriers and frequency of the external electric field. 
It is possible that the dipole impurity scattering will 
give us an explanation of impurity effects in crystals. 

The corresponding results of the calculation of in
frared optical absorption and dielectric losses in n -type 
germanium and silicon with taking into account the real 
structure of conduction band will be published additionally. 
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