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ILINTRODUCTION

In our previous paper v/ it was shown that in some

.cases the scattering mechanism of current-carriers

from randomly distributed electric dipole centres in
solids. is found to be particularly essential and even
more effective than the other scattering mechanisms.
This effect is considerable at low temperatures, great
effective mass of eurrent-carries and, naturally, at
great values of the eleetric dipole moment and of the
concentration of the dipole impurity centres. Moreover,
the relative contribution in the scattering from electric
dipole centres with respect to the one from the Coulomb
centres (for equal conecentrations) grows with increasing
concentration of the current-carriers because of their
weaker screening effect in the case of dipole centres
and it is possible for the former to be significant at the
room-temperatures. Impurities and defects in the crys-
tals which praetically could scatter the current-carriers
at static point (ideal) electric dipoles are, for instance,

the neutral associations by opposite- charged atom fefects
(1ons) 2-5/ the dipole vacancies in ion crystals, or, when
instead of two neighbouring opposite-charged to the same
degree ions, one has, in suchcrystals, neutral atom-impu-
rities, the impurity molecules with a substantial elecfric
dlpole moment in some molecular crystals, etc. (See,

for instance, /6-8/). A number of electric properties of
semlconductors, semimetals and metals could be related
to such a kind of impurities and defects, e.g., electric
conductivity, coefficient of light absorption in the infrared
range, and so on.

The free-carrier optical absorption in semiconductors
or metals, when the scatterers in solids are phonons or
ionized impurity centres, has been calculated by various
authors /9-17/,



The present paper aims at calculating the coefficients
of light absorption and the dielectric losses in crystalline
solids due to the scattering of the quasi-free current-
carriers from electric dipole impurity centres. Besides,
similar to paper /!/, it is considered that the lattice
deformation, connected with the presence of these centres,
is small so that its additional effect on the scattering
could be neglected. The calculations are carried out in
the approximation of the effective mass method by a simple
law of dispersion of current-carriers (electrons and
holes), the interaction of the latter with every separate
electric dipole centre being described by a screening
potential obtained in the Febye-Huckel approximation
paper/l/. 1t is assumed that the distribution of the dipole
centres in the volume of the crystal is random and not
with a very great average concentration so that the scat-
tering from each centre should practically occur indepen-
dently of the others, while thedistribution over orientation
does not depend on the position in the volume and could
be arbitrarily given. Final results are obtained in the
case of equally oriented dipole centres and when all pos-
sible orientations of the latter are of equal probability.
The scattering amplitudes are calculated in the Born
approximation. It is assumed that the absorbed light is
monochromatic with frequency much larger than the
characteristic value of the frequency of the current-car-
riers collision. It is also reckened that the influence of
the spatial dispersion of the electric field of the light
wave is inessential and can be neglected.

1I. CALCULATION OF HIGH-FREQUENCY
ELECTRONIC CONDUCTIVITY

Now we will calculate the high-frequency electric
conductivity tensor o(w) which is related to the scat-
tering of a definite type of quasi-free current-carriers
(conductivity electrons or holes) in crystalline solids.
The external electric field (of the electromagnetic wave
falling on the solids) is assumed to be weak and depend
simple-periodically on the time with circular frequency
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@  so that the one-zone approximation should hold and
the inequalities

1 <or, (), p=1,23, €Y

should be satisfied, where r, (0) is the g -th main tensor
value of the average transport relaxation time. The tensor
is related to the electroconductivity tensor by means of
the relation

2 a

olw)r(w) = () ole) = ne_21’ 2)

mao
where n is the average current-carriers concentration,
e and m are the absolute values of the electric charge
and the effective mass of one current-carrier, respecti-
vely, while I is the unit tensor.

Under these conditions and those presented in the
Introduction the real components of the electroconduc-
tivity tensor Ty (@) @,v =1,2,3) for an arbitrary type
of scattering centres can be written as follows

KT @

(8@ =S )] 3)

g e

U#V
where k , is the Boltzmann consta+nt, T is the abso.lute
temperature, while the quantities S(#—V (w) are determined
by the formula

(+) = (4, ' 4

Syv (w) =0f dfno(f)/\#v (£ ). @
Here

ng (€) =1+ exp(€ - xp)™" (5)

is the Fermi-Dirac distribution function for the current-
carriers, and besides, the energy ¢ of each of them and
the chemical potential ¢ are connected with ¢ and Xp,
respectively, according to the equalities

€ =kgTé; ¢ =koTxp, (6)

+ . .
while the functions A(ﬁl)/ (&, w) aregiven by the expressions
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where 0 (x) is the step function

b

0 when x< 0,

0(x) = |}
1 when 0< x:
. Vamk T —_
T S o, - ),
P . Wétwp -VE
(8)
/2mk o1 -~ —
"
pt =~ Do WE twop + VED;
2 h
1 o Pubp . >
(p)= — [ da [ dBsing —L Gp); 9)
ry 4n o 0 2
p

P is the wave vector with the Cartesian rectangular coor-
dinates

p - (pcosa sin 8, p sina sinf3, pcosf3) (10)
and
ho
LI 1
o (1)

In the general case the quantity Q(p) in (9) is defined by
the formula
N 27 2n n A
Qp)=Ne® [ dy [dg [ d6 sin0 P, (y, $.0) V(- A (0,600 (12)
0 0 0

where N is the average concentration of the scattering
centres; P, (4,¢, 0) is the distribution function of the
centres over orientation (4,6,0 are the Euler angles),
for which naturally one has

27 2 7

S dy [ dg [ a0 sind P (4, ¢,0) = 1;
0 0 0

V(S) is the Fourier component of the potential of one
scattering  centre which is placed at the origin of the
coordinate system with a definite fixed orientation; A(y,e, ()
is the transformation matrix of rotating of the coordinate
system, defined by the Euler angles. One has

p-A=(p-n, p-(sxn), pes), (13)
where
n= (cosycose - siny sine cosd, sing cosd + cosyssingcost, singsind),

gz(sin¢sin6,— cosysind, cosf). (14)

In the considered case of scattering electric dipole
centres the Debye-Huckel screened potential Vi ®) of
one of these centres placed at the origin of the coordinate
system and its Fourier-component V(p) were obtained
in paper/}/ and are given by the expressions, respecti-
vely.

> (g1
Vo =y Dy expc 1oy
D {;Org Po Po
(15)
. 2 - ->
R 4 (q-p)
VI)(p):_ B ’\”Po q-p ’

Z 2 2
0 ]+p0p

where q is the electric dipole moment of the centre,
&o is the dielectric permittivity of the medium, p 0, is
the Debye-Huckel screening radius, r=|r| and p-|p| .
Moreover, when all dipole impurity centres are equally
oriented (they are assumed to be directed along the
axis 0z )one has

1
P (J,¢,0) = —
0" ¢ sin€)
where 4(x) is the Dirac function, and when all their pos-
sible orientations are of equal probability *

*Naturally, our descrition is approximate, since, in
fact, the possible orientations of the defects in crystals
always form a discrete set.

5()5()50), (16)
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Substituting (16) together with (13)-(15) into (12),
one obtaines
67Ap>
— (18)
(1+po2p2)2 ,
and, analogously, using (17) one finds (see also v )

Qp) -

. 2
Qpy = AP , (19)
(1 + p2p2)2
where 0
167%e 2q 2 Np g
A = . (20)
3¢ 2
For simplicity, here and further on we consider only
the case of unipolar electric conductivity * assuming

that all dipole impurity centres have equal magnitude
of dipole moments q- | E!. If that does not hold, then in
(20) and further on instead of q° one should write the
average quadratic value <q2, obtained using a definite
known distribution function of the impurity dipoles ac-
cording to the magnitude of the dipole moment /1/. It is
reckoned that the current-carriers dispersion law has
the form

€5 = —
%

(k is the value of the wave-vector & )-

First consider the case of randomly distributed over
orientation dipole impurity centres. Then from (9), (10)
and (19) one gets

* In the general case the electric conductivity isa sum
of terms of the form (3), each being determined by the
corresponding type of current-carriers.

: 2
o - A p (21)
(p) = —Ad —,

7= 5 A% L+ pgp2)?2

where BW is the Kronicker symbol,

l when n=v,
6 =1
g 0 when p #£v.

Substituting the above expression (21) into (7) and taking
into account (8) we find

(+)
\(:,1 ¢ w) = ‘A6 v 0ltwp)d (£i0), (22)
3eg
where
1 _———-_
10 = 2y 114 . VEEL )
L 2 23
Lt yy(WE oy +VE) (23)
- Inl - - ; 1,
1+y0(\/fin V&)
when
2 2 (24)
Obviously, we have
(25)

J(+)(§;(L)) - J(_)(E o T,(U)'

Now, from (3) and (4) using (20), (22) and (25) we
obtain (26)
6 (w) =0clwd ,
flig 1%
2e*q®Nk,Tpgs 1 =
o) = : Y
977h4§0 w

(+2
d¢[n 0( f)—no(§+w d (€ w).
(27)
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When degeneration of the current-carriers is absent,
t.e., when the inequality

/2

(mk T)°
1 <<

n\/ah 3

holds, from (5), (6), (23) and (27) we find

o(w) = o By

32e%a*Nn  20kg1 |, | @
w) = 3 ) sh-~— x
9h g(Z) m w? 2
(28)
(UT
-5 w .., 2y.w w
xte 2 (syoi - Daw) +—L K (—H- O T (I,
Ja 2 2 14y 202 0 9

where K, (x) and K;(x) are the Macdonald functions of
order (0 and 1, respectively;

R \/ f(f + w,l-)

Ja,w)=fde—_ T -¢. (29)
0 a + 4y, ¢

a = (1+ yOu,T)2 . (30)
Moreover, the screening radius o 1s determined by
the well-known formula

&
P = (_Lko_'r)l/2
0 47 e?n

the latter, together with (11) and (24) leads to the fol-
lowing expressions for Yo and Yowr !

. 22 3
m&OkOT mﬁokom

-3 }/ w _
0T 27he?n

Y
0 27h22,

When the inequality

10

ty, < a (31)

holds, as a good approximation for the integral (29) we

have @
[43) o W

LTk, (31_) : (32)

i

Jla,w)

Substituting (32) into (28), we obtain

B 16e*q?2Nn 27 1/2 1 ®
o (w) = 9~ 9 ( ) —— sh X
9h ‘e 0 mk, T w? 2 33)
8y . 2y w. W
A et L LY B i
a+3y0 (a+3y0) 2 14+ Yoo 9
If, in addition, the inequality 1-<., 1 1s satisfied, then

the formula (33) is approximately written in the form

I 8y 27e*q? Nn | 2ygwr

a (w) = (1
o 2

1 2 2
+ yO (uvl,

In the case opposite to (31), i.e., when a-~ 4y,. and
moreover the condition « | ~1 is satisfied; for the in-
tegral (29) we can write

Jla,wm) = ——]———-

4y,
Then from (28) we approximately find
) = 16etq 2Nn (__27 )1/2 &
9h2 &3 mkol uw?
Thus, for scattering from dipole centres and the
Boltzmann statistics of current-carriers the dependence
of the electric conductivity on the frequency «© of the
external electric field in general is by the law w2, when
ho/koT <<1, and by the law «~%/2 when 1 << ho/k gl .
Here we shall note that the high-frequency electric
conductivity corresponding to (28) for the scattering

oo (34)
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from the screened Coulomb centres (with charges tZe)
can be written in a similar form, namely,

7]

T
h(—)
B 822e6Nn 27 1/2 1 S 2
oplw) = 2 3 27 °
3h§0m kaT () 1+ Yo T (35)
@ p
7 ;
2 92 “T 2 2 _,2 2y d
x{yOwTKo(—é——)—-4yOe [yowT+2y0(1 yOwT)a—a]J(a,m)},

and when 1 <<wq this expression transforms into the
result obtained in paper /10 -Using the approximation (32)
from (35) one obtains

2 2
B 87%°Nn 27 1/2 “1y Yo%
UI CL)) = > ( " T) —B'Sh(—2-—~ —"_2—— x
3h@0m mk, @ 1+ Yo “r
1) 1—-y2w2 @
K (o) - —2 [y 0~ 2 Tk (g
2 a+ 3yy 0T wy a4+ 3y, 1

If the dipole centres screening is weak and may be
neglected (p0=w),then the general formula (28) is reduced
to

4 2 1/2

o(w) = 102 Nn (27 Lok (e )

9h2€2  mk,T w? 2T 1 kT
0 0 0 (36)

Note, that the formula (36) is obtained from the
corresponding formula at scattering from the Coulomb
centres (which is following from (35) when p, = ~)/1213,18/

2m q%w
by multiplying - ——~—
y plying 3n72 o2
w w

Kolg-) by K (—-).Besides, when m-10m,(m, is the

and substituting the function

mass of the free electron), T = 300°K , q=6D, o =
=5.10% rad/s, Z =1 and for equal concentrations of the

12
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dipole and Coulomb centres, the electric conductivity
at the scattering from dipole centres is only two times
smaller than that at scattering from the Coulomb centres.

In the case of strongly degenerated statistics of
current-carriers, i.e., when the inequality

Lo <o h2(372n)2/3

Tk 2k |1 S

is satisfied (¢ is the value of the chemical potential
when T =0), from (5), (6), (23) and (27) we find

5 4 2
o) =o' (@ = 29T (50 0 ho )P o holl L, (38)
97 h t‘O (Ug

where

F(x) =7+ 2x + ho)Vx(x+ he) + 20y xL0 +
(39)

+ %[37;(2) +n, +hw)hw][@(n0—hw)M(x)—N(x)] ;

o+ /X + h /—x)2
v W —
L = In[—2 Y. (40)

Y/
7, +(/x + ho +y/x)

[+ hw)? + 470x! ho

M® = Inf R
127 2~ 0w 2P yx(xr ho) (g 21w Poxs he) =27 b7’ |
(41)
N(x)=ln[1+2—(x+\/x(x+hw))]; (42)
hw
h2
Ny = Kpg— ; (43)

EX=0-0(-x).

As is known, because of (37) p2 in (43) is given
by the expression 0

,  h¥E,

po 0

(7 1/3
0 4me? 3n

13



In the particular case when the additional conditions
¢o < 1y << ho
hold, from (38) - (42) approximately we have

2 .
Flo) = 16me4q2§8/ N
w) = ¥
27h 36 Xhe)* %
We shall note that the high-frequency electric conducti-

vity corresponding to (36) for the scattering from Fhe
screened Coulomb centres can be written in the following

form

(44)

27%°N
2nh4é‘-(§ w3

o (w) =

”‘I (éO) —(}(C()— hw) F 1(40 ~hw)l,

where

F (0 = =2y x(x+ ho) - xLx) -

- ;—(7)0 + ho )& (75— tw) M(x) - N(x)].

Exactly in the same way one carries out the calculg-
tion of the electric conductivity tensor for equally ori-
ented dipole impurity centres. Then, it is easy to see
that,using the expressions (18) and (20), from (3) - (10)
one obtains *

o (w)= 977—0(w)a° 8 (45)
[0 ) 1%
where o(w) is the considered above scalar .elect?ic
conductivity for randomly distributed over or1entat19n
dipole impurity centres, which in the general caseils
determined by (5), (6), (11), (23), (24) and (27), while
a® are tensor elements with values as follows:
uv

(o]

1 .
a =0 for p#v; a]°]:a52:—3-a33 =1. (46)

* In fact the formula (45) is valid in a more general
case, when the impurity dipoles can be oriented opposite
to each other too.
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The result (45) shows that for equal orientation of the
dipole centres the high-frequency electric conductivity
in the direction perpendicular to the dipole moments is
3.77 times larger and in direction parallel to them 11,3
times larger than the corresponding electric conductivity
with randomly distributed over orientation of dipole
centres.

In each of the considered cases the conditions (1) are
written in the explicit form with the help of the corres-
ponding expressions, obtained for the electric conductivi-
ty tensor, and the average transport relaxation time
tensor 7(w) is determined by the relation (2). Thus,
for instance, from (1), (2), (26) and (34) we have
9h2égm kT

16e2¢2N ~ 27m
while from (1), (2), (26), (37) and (44) we obtain

1 <<

’

€ Hha) V2
1<

472/ 2m e?q?N

Note also that the carried-out consideration of the
impurity centres as point (ideal) dipoles and the Born
approximation for the scattering hold when the inequali-
ties (see also /1/) :

2
dmepy, 5 5 14 kp)° 12
Lk —— 0 oy

kd < 1;
3h%6 1+(2kp)?

hold, respectively, where & is the distance between
the centres of the positive and negative electric charges
in the dipoles. But one should take intoaccount that a suf-
ficient condition for the applicability of the Born appro-
ximation is usually the inequality 1< 27/kry, where
ro is the distance to which a current-carrier with
a characteristic value k of its quasi-wave vector could
approach the force in the repulsive field elV(r)] s

15



III. DIELECTRIC LOSSES AND ABSORPTION
COEFFICIENTS

Now we will write the formulae for the dielectric
losses and the absorption coefficients of electromagnetic
waves corresponding to the obtained results for high-fre-
quency electric conductivity at scattering of current-car-
riers from electric dipole impurity centres. Moreover,
we will assume that the dielectric permittivity & deter-
mined by the lattice mechanisms of polarization is a sca-
lar quantity. Then, the power W;(w) of the dielectric
losses in unit volume of the crystal is defined by the
formula:

3 3
_ 1 2 © 2
-1 =@ 2 ) , 47
WJ (w) 2;12=1E0#0#(w) & #ZzlEG#f# () tg #(w) 47
where FE,, is the projection of the external electric field
vector amplitude onto the ¢-th main axis of the electric
conductivity tensor, é# (w) and o#(cu) are the corres-
ponding to this axis main valkues of the tensors of the
general dielectric permittivity g(,) andelectric conduc-
tivity 5(w), while
Ty ()

o () =arctg[ﬂ —
# © & (e

is the angle of dielectric losses.

Further on, we will assume that the dependence of
é0 on the frequency « of the applied electric field is
weak and may be neglected. Besides, the effects from
the delay of the lattice polarization with respect to the
applied electric field can be neglected, assuming them to
be inessential. -

For the components of the tensor & (w) we will have

&;#V (w) = 608;11/ + A&#V(cu) R (48)

where A& Jw) are the components of the electron part
of the dielectric permittivity tensor. The latter could
easily be written taking account of the current-carriers

16

scattering from impurity centres in the Born approxima-

tion however, in our case, because of (1), the
relaxation contribution, predetermined by the impurity
dipoles, is inessential and for this reason, it is comple-
tely sufficient to write A@;w(‘“) only for the quasi-free
gas of current-carriers, :

w2
A€, (@) = -8, & p2 , (49)
where @ e is the plasma frequency,
drne? | 1/2
e = (AL (50)
0

Limiting our investigations to non-magnetic crystals
and electromagnetic waves with parallel amplitude and
plzzls,)se planes, for the main coefficients o)f absorption
a

"’ (») and main (real) refractive indices n(“ (@), p=1,2,3,
according to classic electrodynamics, we have
() ) (1) (p) ‘ ()
a () = —z(i L(‘)((u) ;on () =1L (i)(w), (51)
where
() 2 2.1/2 1/2
L(“i)(w) = V%_f[gl,(w) + (—%10# () ] ~ + é#((u)} , (62)

while c is the velocity of light in vacuum.

The fop)'nulae (5(13 and (52) define the propagation
velocity ¢’ (o) = ¢/n*(w) and the absorption coefficient
a't (@) of flat monochromatic wave which electric vector
oscillates parallel to the ¢ -th main axis of the electric
conductivity tensor, while the normal to the wave front
is parallel to one of the other two main axes of this
tensor.

In this way, the dielectric losses and coefficients of
the electromagnetic wave absorption in the considered
cases are obtained from (47), (51) and (52) by substituting
(48)-(50) into them and the corresponding expression for
the high-frequency electric conductivity.

For optical electromagnetic waves, when the inequali-
ties

17



4n o8 @

and —- — << 1
@ E“#, ()

are satisfied, from (51) and (52) we have

), \~ 4 (w) —
a2 dr Zp 2By = VE @ . (53)

Vv &F(w)

0 < @u(m)

-

Thus, for instance, from (34), (45)-(50) and (53) when
mpe<< w approximately we find

N T 2.1
Wj(w) =BE +E ,+ 3E03);—2;

) =« Do) = la(sr(w) - 8_13-
* c\/50w2

2

while from (44), (47)-(50) and (53)

)
E G
W] (m)’ =G 0 ; a(“)((()): a(cu)-_— ___8_7_7_ -,
w /2 c\/gows/z
where
. 8retq?Nn 0n 1/2 . 8metqIN¢ 1/2
15h7&5  mk, T T rpV2ED

' In conclusion, let us note that for equality oriented
dipole impurity centres the dialectric losses and electro-
magnetic wave absorption are larger than those for ran-
domly distributed over orientation dipole centres and
besides, .the absorption is three times larger when the
vector of the wave electric field is parallel to the dipole

moments compared with the case when it is perpendicular
to them.
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IV. CONCLUSIONS

In this paper the contributions to the high-frequency
electrical conductivity, dielectric losses and free-carrier
absorption associated with the scattering from the Debye-
Huckel screened dipole impurity centres in crystals
are calculated. The consideration is in the one-band
isotropic effective-mass approximation and the second-
order Born approximation of the scattering. When all the
orientations of the impurity dipole moments are realized
with equal probability and when they have parallel orien-
tations in the limit cases of the Boltzmann and strongly
degenerated statistics presents formulae for the high-
frequency electrical conductivity, dielectric losses and
absorption coefficients. As on the low-frequency case (see
paper 2% ) our results here show that the scattering of
current-carriers from dipole centres in some cases may
be comparable to or even more effective than the other
scattering mechanisms. The considered scattering mec-
hanism is found to be particularly essential in some
adopted and specially processed materials under rela-
tively low-temperatures and great concentration of cur-
rent-carriers and frequency of the external electric field.
It is possible that the dipole impurity scattering will
give us an explanation of impurity effects in crystals.

The corresponding results of the calculation of in-
frared optical absorption and dielectric losses in n -type
germanium and silicon with taking into account the real
structure of conduction band will be published additionally.
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