ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 19/1-76 E17 - 9535

1388/2-70

H-54

K.Hennig, S.Matthies

11 11 11

......

ENERGIES OF ³H₄ MULTIPLET ELECTRONIC LEVELS OF Pr³⁺ IN CUBIC CRYSTAL FIELDS IN THE PRESENCE OF A MAGNETIC FIELD

E17 - 9535

K.Hennig, S.Matthies

ENERGIES OF 3 H MULTIPLET . ELECTRONIC LEVELS OF Pr ${}^{3+}$ IN CUBIC CRYSTAL FIELDS IN THE PRESENCE OF A MAGNETIC FIELD

Submitted to "Journal Phys. Chem. Solids"

1. Introduction

A crystal field, which removes the degeneracies of rare earth ion multiplets (configuration $(4 \not f)^{*}$) in a crystal compound, can be rather well described by the Hamiltonian^{/1/}

$$H_{cr} = \sum_{i=1}^{n} \sum_{\ell=2, \psi_i} \sum_{m=-\ell}^{\ell} H_{\ell,m} \mathcal{Y}_{\ell,m}(\mathcal{Q}_i). \tag{1}$$

The crystal field parameters $\mathcal{H}_{\ell,m}$ are equal or not equal to zero depending on the symmetry of the field at the rare earth ion site. The energies of electronic levels are defined by these parameters and can be found by diagonalization of (1). For n = 2 (Pr³⁺) the matrix elements are $\frac{22}{2}$

$$< (4f)^{2} L S J M | \sum_{i=1}^{2} \mathcal{Y}_{\ell,m}(\Omega_{i})| (4f)^{2} L' S' J' M' > =$$

$$= -A4 \left\{ \frac{2\ell+4}{4\pi} \right\}^{1/2} (-4)^{M+S+J+J'} \mathcal{S}_{SS'} \times$$

$$\times \left\{ (2L+4)(2L'+4)(2J+4)(2J'+4) \right\}^{1/2} \times$$

$$\times \left\{ \ell L' L \right\} \left\{ \ell J J' \\ S L' L \right\} \left(\ell J 3 3 \\ 0 0 0 \right) \left(J' \ell J' \\ -Mm M' \right).$$

$$(2)$$

Within the approximation, which considers by diagonalization of (1) only one-multiplet states (L = L', S = S', J = J'), the Hamiltonian (1) can be rewritten using the so-called operator equivalents O_{ℓ} for which the calculation of the matrix elements is simplified to a considerable extent $^{/3}$, 4/

$$H_{cr} = \sum_{\ell=2, \gamma, \ell} \sum_{m=-\ell}^{\ell} \mathcal{B}_{\ell}^{m} \mathcal{O}_{\ell}^{m}.$$
⁽³⁾

The parameters $\mathcal{H}_{\ell,m}$ and \mathcal{B}_{ℓ}^{m} are linearly dependent. Comparing experimentally obtained crystal field energies of a given multiplet with theoretical values for these levels depending on the parameters $\mathcal{H}_{\ell,m}$ (or \mathcal{B}_{ℓ}^{m}) one may find the parameters of the crystal field.

Most simple is the case of a crystal field of cubic symmetry for which only parameters $\mathcal{B}_{4}^{*}/5 = \mathcal{B}_{4}^{\circ} = \mathcal{B}_{4}$ and $-\mathcal{B}_{4}^{*}/21 = \mathcal{B}_{6}^{\circ} = \mathcal{B}_{6}$ are non-zero. From this it follows $H_{cs} = \mathcal{B}_{4} (O_{4}^{\circ} + 5 O_{4}^{\circ}) + \mathcal{B}_{4} (O_{4}^{\circ} - 21 O_{4}^{\circ}) = \mathcal{B}_{4} O_{4} + \mathcal{B}_{4} O_{6}^{\circ}(4)$

Picking out a scaling factor W in (4) one finds the problem of level energy determination to be a single parameter one. In paper^{/5/}, the results of which owing to their clearness are widely used by the experimentators Lea, Leask and Wolf carried out an investigation of the ground multiplet splitting of all threevalent rare earth elements from Ce³⁺ to Yb³⁺ depending on the parameter x (-1 $\leq x \leq 1$), defined as follows:

$$\mathcal{B}_{\mu} = \frac{Wx}{F(4)} \qquad \text{and} \quad \mathcal{B}_{\mu} = \frac{W(4-|x|)}{F(4)} \tag{5}$$

The normalization factors F(*) and F(*) for $Pr^{3+} - {}^{3}H_{4}$ are 60 and 1260, respectively.

2. A combination of magnetic and crystal fields.

If a homogeneous magnetic field is present at the rare earth ion site an interaction Hamiltonian should be added

$$H_{H} = \frac{\operatorname{lel} \tilde{h}}{2\mathrm{m} \mathrm{c}} \left((\vec{L} + 2\vec{S}) \cdot \vec{H} \right) + \frac{e^{2}}{8\mathrm{m} \mathrm{c}^{2}} \sum_{i=4}^{n} \left[\vec{H} \times \vec{\tau}_{i} \right]^{2}$$
(6)

This magnetic field may originate from both external and inner fields (ordered magnetic structures of crystal compounds, consideration of the dynamical exchange interaction/7/ and so on). For magnetic fields up to the order of several thousand kOe the second term in (6) may be neglected in comparison with the first one. Earlier, simultaneous consideration of Hamiltonians (4) and (6) within some range of the parameter x and with increasing magnetic fields \vec{H} was carried out, for instance, for Nd³⁺ /7/. In the following the ³H₄ multiplet of Pr³⁺ is discussed. The parameter x was varied from -1 to 1. The homogeneous magnetic field directed along the Z-axis (parallel to the axis of rotation C_{ϕ}) was changed in the limit from y = 0 to y = 4.0. For given y and scaling factor W (in meV) the magnetic field intensity is

$$H_{2}(k0e) = -W \cdot y \cdot 1000.$$

The matrix which had to be diagonalized had the form

$$W\left[\langle J=\Psi, M | \frac{x}{F(\Psi)} O_{\Psi} + \frac{(1-|x|)}{F(L)} O_{L} | J=\Psi, M' \rangle + \right. \\ \left. + \left. C \cdot M \cdot y \cdot \delta_{M,M'} \right],$$
(7)

where C = -4,63064.

In table 1 the eigenvalues E and the parameters $\alpha_{N}^{i/j}$ of the eigenfunctions of matrix (7) (W=1) as a combination of |J=4,M> functions are given for x = -1.0; (0.2); 1.0 and y = 0;0.3; 0.7; 1.0; 2.0; 3.0; and 4.0. For y = 0 the results of our

calculations are consistent with those of ref.^{/5/}. If y is non-zero the symmetry of the problem lowers down from cubic to tetragonal C_{4h} , which leads to a complete splitting of the multiplet under consideration. The eigenfunctions $|\Gamma_i^j\rangle$, which are transformed in the case of y = 0 as the j-th component of the irreducible representation Γ_i of cubic groups, are transformed for y $\neq 0$ as the irreducible representations $\widetilde{\Gamma_i}$ of the group C_{4h} :

$$\begin{split} & \Gamma_{4} \to \widetilde{\Gamma_{4}}, \ \overline{\Gamma_{3}}^{4} \to \widetilde{\Gamma_{4}}, \ \overline{\Gamma_{3}}^{2} \to \widetilde{\Gamma_{2}}, \ \overline{\Gamma_{4}}^{4} \to \widetilde{\Gamma_{4}}, \ \overline{\Gamma_{4}}^{2} \to \widetilde{\Gamma_{3}}, \ \overline{\Gamma_{4}}^{3} \to \widetilde{\Gamma_{4}}, \\ & \Gamma_{5}^{*} \to \widetilde{\Gamma_{4}}, \ \overline{\Gamma_{5}}^{2} \to \widetilde{\Gamma_{3}}, \ \overline{\Gamma_{5}}^{3} \to \widetilde{\Gamma_{2}}. \\ & \text{Non-zero parameters } \ \Omega_{M}^{5/i} \text{ of the } \ \overline{\Gamma_{5}}^{i} \text{ level eigenfunctions} \\ & \left|\Gamma_{5}^{i} > = \sum_{M} \ \Omega_{M}^{5/i} \right| \ J = 4, M > \\ & \text{Max he found from table 1 with the halo of the } \ Set h = 5.2 \end{split}$$

may be found from table 1 with the help of the following relations:

$$\begin{aligned} \alpha_{3}^{5/4} &= \alpha_{-1}^{*/4}, \ \alpha_{-1}^{5/4} &= -\alpha_{3}^{*/4}, \ \alpha_{-3}^{5/2} &= \alpha_{1}^{*/2}, \ \alpha_{4}^{5/2} &= -\alpha_{-3}^{*/2}, \\ \alpha_{-2}^{5/3} &= -\alpha_{2}^{3/2}, \ \alpha_{2}^{5/3} &= \alpha_{-2}^{3/2}. \end{aligned}$$

The dependence of level energies on parameters x and y

(W = 1) is given in figs. 1 = 11.

If y is varied from y > 0 (+) to y < 0 (-) the picture

of level positions changes for a fixed x symmetrically with

respect to y = 0. In this case the relations

$$E(\Gamma_i^{j})^{+} = E(\Gamma_i^{j})^{-}, \quad \alpha_M^{i/j^{+}} = \alpha_{-M}^{i/j^{-}}$$

hold, except for the $\Gamma_{+}^{+}, \Gamma_{+}^{2}, \Gamma_{5}^{-1}$ and Γ_{5}^{2} levels, for
which we have

$$E(\vec{l}_{*}^{-1})^{\pm} = E(\vec{l}_{*}^{-2})^{\mp}, \ \alpha_{M}^{4/4} = \alpha_{-M}^{4/2},$$
$$E(\vec{l}_{s}^{-1})^{\pm} = E(\vec{l}_{s}^{-2})^{\mp}, \ \alpha_{M}^{5/4} = \alpha_{-M}^{5/2}.$$

Table 1

	::-		•	•					
	י <u>ר</u>	М	у =0	0.3	0.7	I.0	2.0	3.0	4.0
1 1	I I	Е	-28.0	-28.9	-32.6	-36.7	-53.I	-70.9	-89. T
		-4	•456	•29I	.147	.090	.026	.012	007
		0	.764	.713	•553	.44I	.238	.158	TT8
		4	.456	•638	•850	•893	.971	.987	.953
3/1	I	Е	-4.00	-2.38	2.77	7.47	24.7	43.7	ET-D
		4	•540	.779	.904	•84I	.980	000	
		0	645	564	4II	332	Ice	138	- 106
		4	•540	.275	•116	•065	•022	•0I0	.DU6
3/2	2	Е	-4.00	-4.26	-5.34	-6.63	-I2.8	-20.6	-29_0
1		-2	.7 07	.639	.549	.487	.334	.245	- TOT
	_	2	.707	.769	.836	.87 3	•943	•9 7 0	•682
4/I	4	E	-I4.0	-13.4	-13.0	-I3.I	-17.0	-26.3	-38.2
		-I	.935	•9I6	.878	. 836	.609	. 39T	.267
		3	.354	•40I	•479	•54 <u></u>	•793	•92I	.964
4/2	3	Е	-I4.0	-I4.8	-16.0	-17.0	-20.8	-24.9	-29.2
		-3	.354	. 3I4	.272	.247	.187	. 149	T24
		I	•93 5	•949	•962	•969	.982	•989	•104 •992
4/3	I	Е	-I4.0	-I4.7	-I6.2	-16.8	-17.6	-17.8	_T7 G
		-4	707	556	401	327	196	-17.0 -17.0	-1/-8 TOC
		0	•000	 4I7	725	834	- . 95I	 978	987
5/I	4	Е	26.0	22.6	I8.5	I5 .8	I0.4	I0.5	I3.2
5/2	3	Е	26.0	29.5	34.5	38.3	51.3	64.7	78.2
5/3	2	E	26.0	26.3	27.3	28.6	34.8	42.6	51.0

x=-I.0

Table 1 (continued)

Γίι	:	M	: Y=C	: 0.3	: 0.7	: I.C	: 2.0	: 3.0	: 4.0
I		Е -4 0 4	-38.4 .456 .764 .456	-38.9 .369 .750 .548	-40.9 .268 .696 .666	-43.3 .307 .638 .742	-55.7 .090 .441 .893	-71.5 .045 .313 .949	-88.6 .026 .238 .971
3/I		E -4 0 4	9.60 .540 645 .540	I0.5 .678 62I .393	I3.9 .803 543 .244	17.5 .859 481 .174	32.5 .941 332 .069	40.4 .068 248 .036	67.0 .580 I56 .022
3/2		E -2 2	9.60 •707 •707	8.65 .44I .897	5.78 .251 .968	3.26 .184 .983	-5.67 .096 .995	-I4.8 •064 •064	-24.0 .048 .009
4/I		Е I З	I0.4 .935 .354	-9.85 .905 .426	-9.77 .831 .556	-I0.5 .743 .669	-I8.3 .40I .9I6	-30.4 .234 .972	-43.6 .161 .987
4/2		E -3 I	-I0.4 .354 .935	-II.2 .298 .954	-I2.5 .245 .970	-I3.6 .2I5 .977	-I7.6 .151 .989	-2I.9 .II6 .993	-26.4 .094 .996
4/3		E -4 0 4	-I0.4 707 000 .707	-I0.8 635 227 .738	-12.2 531 470 .705	-I3.4 468 601 .648	-I6.0 327 834 .444	-17.2 246 917 .314	-17.7 196 951 .238
5/I		E	I6.8	I3.5	9.69	7.61	6.I9	9.06	I3. 0
5/2		E	I6.8	20.4	25.4	29.3	42.6	56.I	69.8
5/3		E	I6.8	17.7	20.6	23.I	32.I	4I.2	50.4

x=-0.8

Table 1 (continued)

.

.....

Γ _i i	M	У=0	0.3	0.7	I.0	2.0	3.0	4.0
I	· _4 0 4	-48.8 .456 .764 .456	-49.1 .397 .758 .518	-50.5 .325 .732 .599	-52.1 .276 .702 .657	-61.5 .155 .567 .809	-74.8 .090 .441 .893	-90.2 .056 .348 .936
3/1	E 4 C 4	23.2 .540 645 .540	23.8 .636 634 .440	26.3 .739 591 .323	29.1 .796 550 .254	42.0 .898 422 .123	57.6 .941 332 .069	74.4 .962 271 .044
3/2	E -22	23.2 .707 .707	23.7 .817 .576	25.5 .905 .425	27.5 .939 .343	35.5 .980 .198	44.3 .991 .136	53.3 .995 .I04
4/I	-I 3	-6.80 .935 .354	-6.43 .861 .509	-7.73 .624 .782	-I0.4 .430 .903	-22,8 .173 .985	-36.4 .105 .995	-50.1 .075 .997
4/2	Е -3 І	-6.80 .354 .935	-7.67 .261 .965	-9.16 .189 .982	-I0.4 .I56 .988	-I4.7 .098 .995	-19.2 .071 .997	-23.8 .056 .998
4/3	E -4 0 4	-6.80 707 .000 .707	-7.09 662 154 .734	-8.20 590 338 .733	-9.33 539 452 .710	-I3.0 4II 707 .575	-I5.3 327 834 .444	-I6.5 269 897 .350
5/I 5/2 5/3	E E	7.60 7.60 7.60	4.45 II.3 7.12	2.04 16.4 5.26	I.90 20.4 3.29	5.10 34.1 -4.70	9.39 47.8 -I3.5	I3.9 61.6 -22.5

00

Γ.'	:	М	: y =0	: 0.3 :	0.7	: I.O	2.0	3.0	: 4.0
I		E -4 0 4	-59.2 .456 .764 .456	-59.4 .412 .760 .502	-60.4 .355 .746 .564	-61.7 .316 .728 .609	-65.0 .207 .638 .742	-80.1 .135 .533 .835	-93.8 .090 .44I .893
3/I		E -4 O 4	36.8 .540 645 .540	37.2 .6I3 639 .465	39.2 .698 613 .371	4I.4 .750 585 .3I0	52.6 .859 481 .174	66.9 .912 396 .105	82.7 .94I 332 .069
3/2		E -22	36.8 .707 .707	37.0 .756 .655	37.9 .812 .583	38.9 .847 .532	44.3 .920 .391	5I.4 .255 .298	59.3 .972 .237
4/I		E I 3	- 3.2 .935 .354	-6.03 .119 .993	-II.5 .045 .999	-15.7 .031 .599	-29.6 .015 .999	-43.5 .CIO .999	-57.4 .007 .999
4/2		3 I	- 3.2 .354 .935	-4.43 .078 .997	-6.26 .037 .999	-7.64 .027 .999	-I2.3 .0I4 .999	-I6.9 .000 .999	-21.5 .007 .999
4/3		-4 -4 0 4	- 3.2 707 .000 .707	-3.42 674 II6 .729	-4.3I 622 262 .738	-5.30 582 358 .730	-9.18 468 601 .648	-I2.4 387 748 .539	-I4.5 327 834 .444
5/T		E	-I.60	-1.55	0.265	I.65	6.27	10.9	I5.5
5/2		E	-I.60	2.4I	7.94	12.I	26.0	<u>-16.2</u>	-24.I
5/3		E	-I.60	-1.80	-2.00	-3.14		10.0	

x=-0.4

•

Table 1 (continued)

L1	: M	: У =0	: 0.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
I	E	69.6	-69.8	-70.6	-71.6	-77.6	-86.9	-99.0
	-4	.456	.421	.375	.342	.247	.174	.124
	0	.764	.762	.752	.740	.678	.596	.513
	4	.456	.493	.542	.579	.693	.784	.849
3/I	E	50.4	50.8	52.3	54.2	63.9	77.0	91.8
	-4	.540	.599	.670	.716	.825	.885	.919
	0	645	641	624	604	522	444	381
	. 4	.540	.480	.402	.349	.217	.141	.096
3/2	E	50.4	50.5	51.I	51.8	55.6	6I.I	67.8
	-2	.707	.738	.777	.803	.87I	.9I4	.941
	2	.707	.674	.630	.596	.49I	.405	.338
4/I	Е	0.4	I.3I	2.87	4.13	8.56	I3.I	17.7
	-Ц	.935	.970	.986	.991	.997	.998	.999
	З	.354	.242	.166	.134	.081	.058	.045
4/2		0.4	0.157	2.39	5.70	18.9	32.6	46.4
	-З	.354	.566	.873	.95I	992	.997	•998
	І	.935	.824	.488	.3II	126	.078	•056
4/3	E -4 0 4	707 .000 .707	C.225 682 093 .726	-0.5I2 64I 2I3 .738	-I.37 608 295 .737	-5.14 509 518 .688	-8.83 432 669 .604	-II.7 373 760 .510
5/I	Е	-10.8	-14.5	-I9.7	-23.8	-37.5	· _5I.3	-65.I
5/2	Е	-I0.8	-7.78	-6.3I	-6.84	-10.7	-I5.2	-I9.7
5/3	E	-10.8	-IC.9	-II.5	-I2.2	-I6.C	-2I .5	-28.2

5

ï

۲ <u>i</u> i	: M	: y ₌₀	: 0.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
I	-4 0 4	-80.0 .456 .764 .456	-80.2 .427 .762 .487	-80.8 .388 .756 .528	-81.7 .360 .747 .558	-86.7 .276 .702 .657	-94.7 .207 .638 .742	-I05.0 .155 .567 .809
3/I	E	64.0	64.3	65.6	67.2	75.8	87.7	102.0
	-4	.540	.589	.650	.691	.796	.859	.898
	0	645	643	630	616	550	481	422
	4	.540	.490	.424	.378	.254	.174	.123
3/2	E	64.0	64.I	64.5	65.0	67.9	72.4	78.0
	-2	.707	.730	.759	•780	.838	.881	.911
	2	.707	.683	.65I	•626	.546	.473	.411
4/I	–E	4.0	4.8I	6.16	7.28	II.4	15.7	20.2
	–I	.935	.956	.972	.979	.990	.994	.996
	3	.354	.292	.235	.204	.I40	.106	.085
4/2	Е	4.0	3.47	3.57	4.57	I3.7	26.3	39.7
	-3	.354	.438	.591	.719	.940	.980	.991
	І	.935	.899	.807	.695	.340	.199	.137
4/3	E	4.0	3.85	3.23	2.48	-I.06	-4.07	-8.34
	-4	707	686	653	626	539	468	4II
	0	.000	078	179	250	452	601	707
	4	.707	.723	.736	.738	.710	.648	.575
5/I	E	-20.0	-23.6	-28.6	-32.5	-45.9	-59.5	-73.2
5/2	E	-20.0	-16.7	-I3.I	-II.3	-II.I	- I4.5	-18.6
5/3	E	-20.0	-20.I	-20.5	-2I.0	-23.9	-28.4	-34.0

x=0.0

Table 1 (continued)

وسيتاه

<u> </u>	: M	: y =0	: 0.3	: 0.7	: 1.0	: 2.0	: 3.0	: 4.0
I	E	-58.4	-58.6	-59.5	-60.6	-67.0	-77.0	-89.7
	-4	.456	.418	.368	.333	.232	.159	.IIO
	0	.764	.761	.750	.736	.664	.573	.486
	4	.456	.496	.550	.589	.7II	.804	.867
3/I	E	52.0	52.4	54.I	56.I	66.4	79.9	95.I
	-4	.540	.604	.680	.728	.838	.896	.928
	0	645	641	620	598	508	426	363
	4	.540	.475	.39I	.335	.201	.127	.086
3/2	-22 2	52.0 .707 .707	52.I .733 .680	52.6 .766 .642	53.2 .789 .614	56.4 .852 .524	6I.4 .896 .445	67.5 .925 .380
4/I	E	6.0	6.8	8.II	9:21	13.2	17.5	22.0
	-I	.935	954	.970	.977	.989	.993	.996
	3	.354	298	.245	.215	.151	.II6	.094
4/2	E	6.0	5.45	5.37	6.08	13.9	26.0	39.2
	-3	.354	.426	.556	.669	.916	.972	.987
	I	.935	.905	.831	.743	.401	.234	.161
4/3	E	6.0	5.8I	5.02	4.II	0.27I	-3.26	-5.84
	-4	707	679	634	590	494	415	356
	0	.000	101	230	318	594	700	795
	4	.707	.727	.738	.735	.674	.581	.491
5/I	E	-%I.3	-24.8	-29.8	-33.7	-47.0	-60.5	-74.2
5/2	Е	-2I.2	-17.9	-I4.I	-I2.0	-IC.6	- I3.5	-17.4
5/3	Е	-21.2	-2I.3	-2I.8	-22.4	-25.6	-30.6	-36.7

12

13

x=0.2

1	i تا	: M	: У=0	: C.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
	I	E -4 0 4	-36.8 .456 .764 .456	-37.I .40I .758 .5I4	-38.4 .332 .736 .591	-39.9 .286 .709 .645	-48.8 .167 .585 .794	-61.6 .099 .462 .881	-76.7 .002 .368 .928
	3/I	E -4 0 4	40.0 .540 645 .540	40.6 .630 635 .446	42.9 .729 597 .334	45.6 .785 559 .267	58.I .890 436 .I34	73.5 .935 346 .077	90.0 .958 284 .049
	3/2	E -2 2	40.0 .707 .707	40.I .738 .675	40.7 .776 .631	41.3 .801 .598	45.I .869 .495	50.6 .912 .409	57.2 .939 .343
	4/I	Е -Ц З	8.0 .935 .354	8.79 .953 .304	IO.I .967 .253	II.I .974 .225	I5.I .987 .I6I	I9.4 .992 .125	23.8 .995 .IO2
14	4/2	Е -3 І	8.0 .354 .935	7.43 .418 .909	7.23 .529 .848	7.7I .629 .777	I4.4 .888 .459	25.9 .962 .272	38.9 .983 .186
	4/3	E -4 0 4	8.0 707 .000 .707	7.73 665 145 .733	6.67 598 3I9 .735	5.56 550 430 .716	I.83 424 684 .593	-0.673 340 817 .466	-2.11 281 885 .370
	5/I	Е	-22.4	-26.0	-31.0	-34.8	-48.0	-61.5	-75.2
	5/2	E	-22.4	-I9.I	-15.2	-12.8	-10.3	-12.5	-16.2
	5/3	Е	-22.4	-22.5	-23.I	-23.7	-27.5	-33.0	-39.6

x=0.4

Table 1 (continued)

Γ ¹	: M	: ¥=0	: 0.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
I	E	-I5.2	-I5.7	-I7.9	-20.6	-33.8	-50.0	-67.4
	-4	.456	.360	.25I	.188	.076	.037	.021
	0	.764	.744	.682	.614	.406	.284	.214
	4	.456	.558	.687	.766	.911	.958	.977
3/I	E	28.0	29.0	32.6	36.5	51.9	69.1	86.8
	-4	.540	.691	.820	.874	.949	.973	.984
	0	645	616	527	460	309	228	179
	4	.540	.378	.223	.154	.059	.030	.018
3/2	-2	28.0	28.I	28.8	29.6	34.0	40.1	47.3
	-2	.707	.744	.789	.818	.890	.931	.954
	2	.707	.668	.615	.575	.457	.366	.300
4/I	-I -3	I0.0 .935 .354	IC.8 •951 •308	I2.0 .965 .26I	I3.I .972 .233	17.0 .985 .171	21.2 .991 .134	25.6 .994 .IIO
4/2	E	IO.0	9.42	9.13	9.43	15.1	25.9	38.6
	-7	.354	411	.509	.597	.857	.951	.977
	I	.935	912	.861	.802	.515	.311	.212
4/3	E	I0.0	9.54	8.08	6.05	4.62	3.73	3.35
	-4	707	626	514	447	305	227	179
	0	.000	350	508	641	860	931	960
	4	.707	.738	.692	.624	.405	.285	.214
5/I	Е	-23.6	-20.2	-I6.S	-13.8	-IC.T	-TI.7	-T5.I
5/2	E	-23.6	-27.2	-32.I	-36 .0	-49.1	-63 . 6	-76.2
5/3	Е	-23.6	-23.7	-24.4	-25.2	-29.6	-35.7	-42.9

Γįi	: M	: У≕О	: 0.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
I	E -4 C 4	6.40 .456 .764 .456	4.3I .135 .533 .835	-I.9I .034 .27I .762	-7.17 .(17 .ICC .982	-25.4 .004 .004 .004	-43.8 .002 .062 .998	-62.2 .001 .046 .025
3/I	E -4 0 4	I6.0 .540 645 .540	IS.0 .SI2 396 .IC5	25.7 .975 219 .028	31.1 .587 162 .014	49.3 .996 086 .004	67.8 -028 -002	86.2 .209 044 .00I
3/2	E -2 2	I6.0 .707 .707	I6.2 .753 .658	17.0 •807 •590	I8.0 .841 .542	23.2 .914 .405	30.I .250 .3II	37.0 .968 .249
4/I	-I -I 3	I2.0 .935 .354	I2.8 .950 .3II	I4.0 •964 •267	15.0 .971 .240	18.9 .984 .179	23.0 990 .I42	27.4 .993 .117
4/2	E31	I2.0 .354 .935	II.4 .405 .914	II.0 .492 .870	II.2 .570 .821	I5.9 •825 •565	26.0 .937 .350	38.4 .971 .239
4/3	E -4 0 4	I2.0 707 .000 .707	II.I 387 748 .539	IU.6 218 937 .271	I0.5 162 968 .190	I0.4 086 992 .094	I0.4 058 996 .062	IO.4 044 998 .046
5/I	Е	-24.8	-28.4	-33.3	-37.I	-50.2	-63.6	-77.2
5/2	E	-24.8	-2I.4	-17.4	-14.8	-I0.2	-II.C	-I4.I
5/3	Е	-24.8	-25.0	-25.8	-26.8	-32.0	-38.9	-46.7

x=0.8

Table 1 (continued)

F; ⁱ	: M	: y =0	: 0.3	: 0.7	: I.O	: 2.0	: 3.0	: 4.0
I	E	28.0	28.0	32.6	36.7	53.I	70.9	89.I
	-4	.456	.638	.820	.893	.97I	.987	.993
	0	.764	.713	.553	.441	.238	.158	.II8
	4	.456	.291	.147	.090	.026	.012	.007
3/I	E	4.00	2.38	-2.77	-7.47	-24.7	-42.7	-61.0
	-4	.540	.275	.II6	.069	.022	.CIC	.006
	0	645	564	4II	332	196	I38	106
	4	.540	.779	.904	.94I	.980	.S90	.094
3/2	E	4.00	4.26	5.34	6.63	I2.8	20.6	20.0
	-2	.707	.769	.836	.873	.943	.570	.982
	2	.707	.639	.549	.487	.334	.245	.191
4/I	–I 3	I4.0 .935 .354	I4.8 .949 .3I4	I6.() •962 •272	17.0 .969 .247	20.8 .682 .187	24.0 .080 .140	00.2 .002 .124
4/2	3	I4.0	13.4	I3.0	13.1	17.0	26.3	38.2
	3	.354	.401	.479	•549	.793	.621	.564
	1	.935	.916	.878	•836	.609	.301	.267
4/3	E	14.0	14.7	I6.2	I6.8	17.6	17.8	17.6
	-4	707	719	561	444	238	158	- IIC
	0	.000	.417	.725	.834	.051	.578	- 687
	4	.707	.556	.401	.327	.196	.138	- ICC
5/I	Е	-26.0	- 29 . 5	-34.5	-38.3	-51.3	-64.7	-78.2
5/2	E	-26.0	-22.6	-18.5	-I5.8	-10.4	-IU.5	-13.2
5/3	Е	-26.0	-26.3	-27.3	-28.6	-34.8	-42.6	-5I.C

16

7

x=I.0

The presence of a magnetic field effects noticeably not only the relative positions of electronic crystal field levels but other physical properties of this state as well. Figs. 12 and 13 give an example of (x = -1.0; -0.6) the dependence of magnetic moments $\langle \vec{r}_i^{\ i} | \ \hat{J}_2 | \vec{r}_i^{\ i} \rangle$ of $\vec{\Gamma}_i^{\ i}$ levels on γ .

Figs. 14 and 15 show a similar dependence of the value $\left| < \overline{\Gamma_{i}^{i}} \right| \hat{J}_{\perp} | \overline{\Gamma_{i}^{j}} > \right|^{2} =$ $= \frac{4}{3} \left(\left| < \overline{\Gamma_{i}^{i}} \right| \hat{J}_{+} | \overline{\Gamma_{i}^{j}} > \right|^{2} + \left| < \overline{\Gamma_{i}^{j}} \right| \hat{J}_{-} | \overline{\Gamma_{i}^{j}} > \right|^{2} + 2 \left| < \overline{\Gamma_{i}^{j}} \right| \hat{J}_{2} | \overline{\Gamma_{i}^{j}} > \right|^{2} \right)$ which with in the block of the second second

which within the dipole approximation determines the cross - section of elastic and inelastic scattering of neutrons on the electronic levels of polycrystalline samples $^{/8/}$.

References.

- /1/ G.H.Dieke. Spektra and Energy Levels of Rare Earth Ions in Crystals, Interience Publishers, New York (1968).
 /2/ S.Matthies, D.Welsch. Phys.Sta.Sol. (b) <u>68</u>, 125 (1975).
 /3/ B.Bleaney, K.W.H.Stevens. Rep.Frogr.Phys.<u>16</u>, 108 (1953).
 /4/ M.T.Hutchings, Solid State Physics. <u>16</u>, 227 (1964).
 /5/ K.R.Lea, M.J.M.Leask, W.F.Wolf. J.Phys.Chem.Solids <u>23</u>, 1381 (1962).
 /6/ С.В.Вонсовский. Магнетизм, изд. Наука, М., 1971.
- /7/ A.Furrer. Solid State Communications 16,839 (1975).
- /8/ R.J. Hirgeneau. J. Phys. Chem. Solide 33,59 (1972)

Received by Publishing Department on February 12, 1976.