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1. INTRODUCTION 

The essential step in many solid state physics calcula
tions is the evaluation of integrals over solid angle or 
over volume in the appropriate regions defined by the 
symmetry of a crystal. (Brillouin Zones - BZ). The 
papers II I andl21 give some examples of such problems 
in connection with thermodynamic properties of crystals, 
while papers131 and I 41 - in connection with electro
nic properties. All the methods of numerical integration 
developed and used in the mentioned papers exhibit some 
disadvantages. First of all, each of them is confined to 
that asymmetry of the crystal, to which it was designated 
and their extension to other symmetries is very difficult 
or impossible. They need elaborate programming, since 
their algorithms involve a great number of special cases 
connected with subzones and symmetrical positions of 
some points (e.g., ref. 121 ). Almost all of those methods 
are slowly convergent, because a widely used uniform 
distribution of sampling points assures that only the first
degree polynomials are integrated exactly. 

As it will be shown below, the methods proposed by us 
are free of those disadvantages. 

2. INTEGRATION OVER THE SOLID ANGLE 

2.1. General Formula 

We are concerned here with the evaluation of the 
direction average 
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'A 

1 2 -> 
<f> = -f d n. f(r) 

417 477 
(1) 

of the function f depending on direction cosines 
A 

; = (~,~. ;) = ;/1;1. (2) 

If the function f possesses the crystal symmetry, then 
instead of the integration over the full 4rr -steradian 
angle (1), it is enough to integrate f over the symmetry
irreducible solid angle n ir , so 

1 2 ~ 
<f> = - r d n. f(r). (3) 

n. n. 
If If 

Typical symmetry-irreducible angle is a trihedral 
solid angle, which may be characterized by the three 

X -> -> 
vectors ~ u Q 2 , Q 3 along its edges OA' , OB' , OC' 
(see Fig. 1) .... In the examples given below we shall define 
the vectors Qi for some commonly used high symmetry 
crystals (for lower symmetries the irreducible angle may 
not be a trihedral one, but it can always be represented 
by the sum of few trihedral angles). 

0 
Qir/g 

~ 
Fig. 1. A typical trihedral solid angle and an elementary 
tetrahedron of BZ. 
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According to the definition the element of the solid 
~ngle · d 20. may be expressed by means of the element 
of the surface d 2Sn laying at the distance I ;I and normal 
to r: 

d2n ~ d2Sn;;2. (4) 

Using the element d 2S of the surface other than nor
mal, one should project it on the direction of the radius ~ : 

2-> ... 

d
2n = 1 d 8 . .!. 1 . (5) 

r2 r 

So by (5) the problem of solid angle integration is trans
formed to the surface integration. 

In order to apply this transformation to the integral 
(3) we intersect the angle n ir by the plane ABC wee 
Fiu. 1) going through the ends of the vectors Q , Q , 

... ~ -> l 2 
Q 3• If we define vectors K i as: 

~ -+ -+ -+ -+ -+ -+ -+ 

K 1 = Q 1 ' K2 = Q 2- Q 1' K 3 = Q 3- Q 2 (6 ) 

then any point of the surface ABC may be expressed in 
terms of them (see Fig. 1): 

; = I<l + 771(2+ 0(3 (7) 

and surface element, also 
-> ... ... 

d2 s = (K 2 X K 3 )d7] d;; • (8) 

In this way (3) may be rewritten as 

1 7] " 1 -> < f> = - f d7] f d( w(7], () f(r(7], ()), 
n ir 0 • 0 

(9) 

where the· weighting function w according to (5), (8) 
and (7) equals 
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w(rr.~) = !K 1• (K2 x K3 ll/r 3. (10) 

So we reduced the problem of the integration over the 
irreducible solid angle to the integration over the triangle 
with vertices (0,0), (0,1) and (1,1)in the space of variables 
(r/, .;) • The variable transformation (7) and weighting 
function (10) are very easy to program and practically 
no time consuming because they involve only one square
root routine besides the elementary arithmetic operations. 

As regards the integration over the triangle, there 
exist numerical methods which allow one to do it with 
high efficiency. In all the examples given in our paper we 
use integration formulae given by Hammer et al. (ref. /S/ , 
pages 135, 136) which hold exactly for polynomials of at 
most degree Ndcg (given there for Ndeg= 1,2 ,3 and 5), 
and represent the integral as the sum of weighted integ
rands, over a set of NP points ( NP = 1,3 ,4 and 7, respec
tively) affine-symmetrically distributed over the triangle: 

N 
p 

fAdrrdt;¢(rJ,t;) = ~ v. ¢(TJ.,t;.). 
L\ i =I I I I 

(11) 

If higher accuracy is necessary, we decompose the triangle 
into (Nd. ) 

2 equal subtriangles and apply Hammer's 
formula

1 

to each subtriangle separately. 
The above-demonstrated method of reducing the solid 

angle integral (3) to the two-dimensional integral over 
the triangle (9), though it is very simple, is not the only 
one, and, perhaps, not the best one. In principle, it is 
possible that another transformation would give smoother 
weighting function and therefore would be convergent more 
rapidly. General investigation of this question is rather 
difficult, therefore we confine ourselves to the deriva
tion of another transformation based on spherical coordi
nates. Unfortunately, this approach is not so general as 
the previous one, and the derivation must be done separa
tely for each symmetry considered, though in similar 
ways. 
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2.2. APPlication to Some Structures. spherical 
Coordinate APProach. 

2.2.1. Cubic Crystals 

The symmetry-irreducible angle equals 

nir = 4rr/ 48 

and may be characterized by vectors: 

(12) 

--> --> 1/2 _, .112 
Q I= (1, 0; 0), Q

2 
= (1, l, ())12 , Q1 = <1, 1, lll.l (13) 

in accordance with the usual definition of symmetry axes. 
Passing to the second method of integration, we 

introduce the spherical coordinates: 
... 
x=sino.·cos</J, y~sinO·sin<jJ, z=cosO (14) 

in terms of which (3) may be rewritten as 
I A /') 1\ I rr_·• TT;- _, 

f ~ -- j d 1; { d I) • Hi II() • !'( f ) , ( 1 5) 
Q i r 0 0 (<b) 

() 
wher .... e iptegration limit iJ 0 (J;) is defined by the condi-
tion y ~ z,i.e., 

t () ( cD) = cos ((} () ( c.))) = s i 11 c6 I (1 + s i 11 
2 </J ) I I 2 • ( 1 6) 

By transformation 

t • cos () (17) 

eq. (15) receives the form of the integral over the 
triangle with one side being curvolinear: 

rrl4 t 0(¢) __,"• 
< f> ~ _l_ J d<f_, f dt f(r) . (18) 

Qir 0 0 

Further variable transformation from (¢, t) to (TJ, (): 
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21/2 . ,./,. ry = sin~, 

( = t-'q(¢)/t
0
(¢) 

(19) 

changes (17) to integral over the usual triangle, i.e., 
to (9) exactly, with weighting function 

w(ry,() = (4- ry 4 )- 112 • (20) 

Transformation reciprocal to (19) and (17): 

sin¢ = ry/2 l/ 2 , 

cosO= (/(2+ ry 2) 1/ 2 

A 

(21) 

allows one to express 1 (14) as a function of (ry, (). 

2.2.2. Tetragonal Crystals 

The symmetry irreducible angle equals 

nir = 4rr/16. (22) 

and is characterized by vectors 

... -> 1/2 -> 
Ql = 0,0,0), Q2= (1, 1,0>/2 ' Q3 = (0,0, 1) (23) 

if z axis is taken as the 4-fold one. 
As in the cubic case, we derive here the formula (9) 

also using the spherical transformation. Introducing the 
spherical coordinates it will be convenient now to choose 
y -axis as the polar axis: 

" " 
z = sinO· cos¢, x = sinO· sin¢, y = cosO. (24) 

By applying the transformation (24) and (1 7), eq. (3) 
becomes: 
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<f> 
1 rr/2 t0 (¢) " 

Q f d¢ f dtf(rl 
ir 0 0 ' 

(25) 

where t 0(¢) is defined by the condition x = Y, which 
leads to the same relation as previously (16). The next 
transformation 

ry = 21
/

2 sin(¢/2), 

(= t-ry(¢)/t
0

<¢> 

leads to formula (9) with the weighting function 

w (ry ' () = 2/ [ 2 - (1 - 'I 2) 211 I 2 • 

Transformation reciprocal to (26) and (1 7) 

cos¢ = 1 - ry 2' 

cosO= (·l[2-ry2]/[2-0-ry2)2]jl/2 

" 

(26) 

(27) 

(28) 

allows one to express ~ (24) as a function of (ry, 0 . 
We note, that the transformation (19) used instead of 
(26) for tetragonal crystals would lead to the weighting 
function singular at the boundary of integration region. 

2.2.3. Hexagonal Crystals 

The symmetry-irreducible angle equals 

nir = 4rr/24 (29) 

and is characterized by vectors: 

... -> 1/2 -> 

Q
1
=0,0,0>, Q

2 
= (3 /2,1/2,0l, Q3 = <O,O,U, 

(30-
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where the z direction is along the 6-fold axis and the 
x direction perpendicular to the mirror plane. In order 
to derive the formula (9) by means of the spherical 
transformation, we again use (24) and (17) and obtain 
(25), where to(¢) is defined now by the condition 
y = X/:31/2, which gives 

t
0
(¢) ~ sin¢/ (;3 + sin 2¢) 1/2. (31) 

Next, the transformation (19) leads to the final formula 
(9) with the weighting function 

w(7J, 0 = 2/[4- (1- 77 2) :2 Jl/2 , (32) 

while the reciprocal transformation 

cos ¢ = 1 - TJ 2 ' 

cosO= (·ll2-TJ21/[4-<l-TJ2)2J!l/2 (33) 

allows one to express ; (24) as a function of (,1, (). 

2.2.4. Trigonal Crystals 

We choose the symmetry-irreducible angle 

n. = 4n/ 12 
Ir 

(34) 

defined by the vectors 

-> _, 1/2 _, 
Q1 = o,o,m, Q2 = <1/2,:3 /2,m, Q3 = w,o, u. (35) 

The derivation of (9) by means of the spherical transfor
mation goes as in the previou' case, but t 0( ¢) is defined 
now by the condition y = x. 31 2 which gives: 

t
0 

(¢) = sin¢/ (l/3 + sin2¢) l/ 2 • (36) 

The weighting function w for the formula (9) is 

10 

w<TJ,o =2/[4/3 _ n-1]2)2 11;2 (37) 

and the reciprocal transformation 

2 cos¢ = 1 - TJ , 

cosO = (. I[ 2- TJ2 ]/[4/3- <1- r()2Jil /2. (38) 

2.3. Numerical Tests 

In order to check the accuracy of our method and to 
compare the efficiency. of different our approaches as 
well as to compare our results with recently published 
methods /I/, we have performed a series of calculations. 

The direction average (3) was calculated in the case 
of four symmetry-irreducible regions considered above. 
For cubic and tetragonal crystals, as the averaged func
tions there were taken some cubic invariant polynomials: 

fl = 1' 

f "2 A 2 A 2A 2 A 2 A 2 
2 = X Y +' Y Z + Z X , 

A 4 A 4 A 4 
f 3 = X + y + Z , 

f = 
4 

fs = 

A 2 A 2 "2 
X y Z , 

"4"2 "2"4 "4"'2 "'2"4 "4"2 "'2"4 xy +xy +yz +yz +zx +z x 

(39) 

Four of them (l1esides the first one) are identical with 
the functions o2, 2 , 0 4 , 0 2, 2, 2 , 0 4, 2 used for the test 
in/I/ (where the discussion of their anisotropy may be 
found). 

For tests .in hexagonal and triagonal crystals, some 
cylindrical invariant polynomials were taken: 
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I .,.. 1 IZl IZl 1':1 1-<1 IZl IZl r.:~ f<l r.:~ f<l f<l r=1 ~~ f<l f<l f>-1 r.:~ r.:~ 
~ ~oro~~~~~n~~~mo~roN~ 

ct-; I • • • • • • • • • • • • • • • • • • I 
I 'VI ~nN.-t.-tn.-llt"'.-tN~NNNN"tn~ 

I I I I I I I 

I 1 o o I 
I nn~~'f~"t~m"t~~m.-1.-l~~'t I 
I I I I I I I I I I I I I I I I I I I I I 

I 1 ,.... IZl r.:~ r.:~ r.:~ f<l r.:~ r.:~ r.:~ r.:~ r.:~ N r.:~ 1':1 r.:~ r-<1 Iii r.:~ r.:~ 1 
1 ~ ro~nomroN~~oro~~~~~mv 
1 Cf-i • • • • • • • • • • • • • • • • • • I 

I I 'V .-1 0'\ r-1 N .-1 0\ n .-1 0\ .-1 N .-1 .-1 n ~- L"' 0\ .-1 I 

I I I I I I I I I I I I I I 
I 'H I 

I o I 
I o o I "'I "t'f~~~~~~<O't~~C\.-1.-10\0\~ I 

I f, I I I I I I I I I I I I I I I I I I I 
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I J..iiCf-1 • • • • • • • • • • • • • • • • • • I 
1 G>lv Nnrocoro~~N~.-<<OL"~'f'O~>O~"' 1 

I Q) I I I I I I I I I I I I I I I I 
>I I 
..-!I I 

I iii I I 
I a: I I 
I P::: I o 

1 .1' 1'"'~~1~1l~'fL"\0'1.-ImO\O\CO~ I 
"' I I I I I I I I I I I I I I I'H 1':1rilrilrilri!J(il f<l~ilf>'1f>'1~·1rill':1rilrilril I 

I
~ ON~~NO~~riNv.-10'1~~0'1.-1~ 

I • • • • • • . • • . . • • • • . • • I 
"' .-1 ~ .-1 .-1 .-1 .-1 .-1 .-1 "' '1" ~ 1 .-1 "' ~ .-1 n I I I I I I I I I 

I I I 
I I I 

I 0 0 I 
I I"' ~l~~..o~~~cov~t-m.-10\0\.-t 

.-1 I I I I I I I I I I I I I I I I 

I I 'H I r.:~ r-1 r.:~ r.:~ r.:~ r.:~ r.:~ f<l r.:~ ril IZl r.:~ r-1 r-<1 r-1 r-1 I 
.., n~O'IN0'\<0~~0\~~~mO'I~.-tv 1 I I I ~~1·~~~~~~~~~~~~~~0 I I I I I I I . I I I I I I I 

I I 
I I I I I I 

I ~'~ I ..., I I 
o o "' N v v "' ro co ro ro co m ..-~, ...,, ~~rocorororo.-t.-tcoron~~~~~ro I 

I +' Z NNNNN.-Irivv~~~v~v-t 

m I 
I to I I I 
I !!I ~I ~~~~~~~~~.-1.-IN~L"\~~~ I I 
I !ll z"" I I 
I 'H I I I 
I 0 I ~ I 
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I ~II . I I 
I :a ~I • H. J..t •••• J.i M ••• J-i J..t H H';:i' I 
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~ C>Q)<VQJG>c:.>CUG.J4)0>Q)QJQ.lGJC1>G><lJ I 

1 I ~I ~!l~!l~~~~!l!l~~~!l!l!l!le I I : .... , <t:lri<O.-t<t:l<t:lto<0.-1.-100<011).-t.-1.-1.-15 I 
I • • • • I 

I II ••••J..i•~•••••••M•tl.:l• 1 
E+' .0 .0 .0 .0 +' ~ ..-! .0 ,0 ,0 ,0 ,0 ,0 ,0 +' ~ ..-! .0 I 

I i>,Gil>, I ='='='::l<>G>k='::l='='='::l::lG>Gik=' 
CllEk I OOOO+>.C:+>OOOOOOO+>.C:+>O 

I I 
I 0~ 1 .-1 "' n ~ ~ ~ ~ co "' :=: ::1 :::: ~ ;:ti :::: ~ ~ ~ I 

• 

f1 = 1' 
-'2 

f2 = z ' 

fa= ~2+ y2, 

f4 = ~2 <x 2 + y2>. (40) 

f 5 = "2 " " z + (x 2+ y2)2 

The obtained results are presented in Table 1 in the 
form of relative errors of the averages < fi > (with 
respect to the exact values, obtained analytically). The 
three methods are compared: two our methods, the 
first based on linear transformation (7) and the second -
on spherical transformation (14) or (24), and the uniform 
vector distribution (UVD) method of Overton and 
Schuch /I/. The total number of points at which integrand 
was calculated is designated as N tot . The parameters 
N div and N deg were described at the end of chapter 
2.1. 

High efficiency of our method is demonstrated in 
the best way by example No. 14, in comparison with No.18: 
at comparable (though less) number of sampling points 
our results are more accurate by 4-5 orders of magni
tude. This is achieved owing to Hammer's integration 
formula of the 5th degree polynomial accuracy. Really, 
if we apply our method together with N deg = 1 (see, 
No. 10, 11), then at comparable number of points, the 
accuracy is roughly the same as Overton's one (No. 18). 
It is easy to explain, because Overton's uniform dis
tribution of points assures the lst degree polynomial 
accuracy. 

By comparison of No. 3 and 4 with 18 we demonstrate 
the efficiency of our methods in another way. Our 
results, slightly better than Overton's one, are obtained 
using the 28-point formula, while his - by the 489-point 
formula. 

What concerns the comparison between our methods 
based on spherical and linear transformation, we demon
strate it for the cubic symmetry, see examples 1 and 2, 
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3 and 4, 8 and 9, 13 and 14, 11 and 10. Spherical trans
formation method gives slightly better results in the 
case of small number of sampling points (No. 1 and 2) 
or low Nde (No. 11 and 10), what is connected with 
smoother w~ighting function. In the remaining cases 
both methods give a comparable accuracy. The same 
rule was observed by us for other symmetries. Taking 
also into account the fact that in the spherical trans
formation method more computer time is necessary to 
calculate the coordinates and weights, and that it must 
be programmed separately for each symmetry, we 
choose the method based on linear transformation as 
worthly of practical applications. 

Comparing examples 11, 12 and 13 we can see how 
the accuracy increases with increasing N de at almost 
constant level of N101 • On the other hand, k~eping integ
ration formula fixed, the accuracy practically does not 
depend on magnitude of irreducible angle (or symmetry), 
what is demonstrated by a series of examples No. 14, 15, 
16, 17 and No. 3,5,6,7. 

3. INTEGRATION OVER THE VOLUME 

3.1. General Formula 

Let us consider the average 

« F» = -
1- f ikF(k) (41) 
VBzBZ 

of the function F over the volume of the Brillouin 
Zone. We assume the function F to possess the crystal 
symmetry, and therefore, it would be enough to integrate 
over the smaller region, the symmetry-irreducible vo
lume Vir , a rather complicated polyhedron, depending 
on the symmetry considered. Nevertheless, it is easy 
to develop the general method of integration if we 
decompose the region Vir into the simplest subregions, 
tetrahedrons. First, we observe, that V can be repre-

ir 

14 

' , 

' I 

sen ted as a sum of pyramids, which bases are parts 
of the BZ boundary faces and which common vertex is 
the center of coordinate system.If bases are triangles, 
we have already tetrahedrons; other bases always can be 
decomposed into triangles. (Below we shall give the 
examples of such decompositions for a few common sym
metries). 

So the average (41) can be rewritten as 
ns (j) 

«F» = l :y___ <<F»., (42) 
j = 1 vir J 

where ns is the number of tetrahedrons into which 
V. is decomposed, and where 

H 

1 ... 
<<F». = -- f d\F(k) (43) 

J v (j) v (jl 

is the average over the j -th tetrahedron V (jl • 
Figure 1 will serve again as the illustration of a typi

cal tetrahedron OABC. We can take advantage of our 
experience with solid angle integration if we represent 
the volume element as 

d3k = d2n. k 2 • ak. (44) 

Then 
\-;I 

« F>>. ~ - 1- f d 2 fl f k 2dk F(k;), (45) 
1 v<Pn<P o 

where -; is the point laying on the base ABC, and 
therefore given by form. (7). After introducing the dimen
sionless radius 

~=k/\;1 (46) 

and using (5), (8), (9) we rewrite (45) in the form 
l • TJ 1 ... 

« F». = W. f dry f d( f d~ • ~ 2• F(k (j)(~, TJ, ()), (47) 
J J 0 0 0 

where 
... 
k(j) 

... ... ... 

~· (K(r + TJK(~)+ (K~)), (48) 
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w = [K (j) •. (K (j) X K(j) >]IV (j) 
j l 2 3 

(49) 

The last quantity may be calculated immediately 

W. = 6 .. (50) 
J 

So the average over tetrahedron (47) was reduced 
to the one-dimensional integral over e on the interval 
[0, 1] and the two-dimensional integral over (TJ, () on 
the triangle I<O,m, (1,0>, <l,l)l. 

As in the case of solid angle integration, a high 
accuracy of numerical procedure will be achieved when 
the methods of high polynomial accuracy will be involved. 
So, the integral over triangle will be taken as previously, 
while the integral over the interval will be taken by means 
of Gauss' method, in which the NP -point formula 
assures polynomials of at most Nd, co (2N - !'5 degree to 
be integrated exactly. As previously ffie umt interval may 
be preliminary decomposed into Ndiv equal subintervals, 
if necessary. 

In the Hammer's and Stroud's paper (ref. /ol tab. I) 
one can find the integration formulae for squares, similar 
to those for triangles, like eq. (11), quoted earlier 
(now Ndcg = 1, 3, 5, 7With corresponding NP = 1,4,9,12). This 

allows us to treat in representation (42) as elementary 
subregious not only tetrahedrons, but also the pyramids 
with parallelogram base (which is equivalent to square 
through affine transformation). Examples of such subre
gions will be given below. In the case of using them, the 
form. (47) is to be slightly changed in that sense, that 
in the integral over ( the upper limit must be 1, 
instead of TJ• i.e., the integration over (TJ, ()is to be 
performed on the unit square now. This leads to a new 
value of the coefficient w. in (47), namely 

1 

w. = 3. 
J 

(51) 

The paper of Hammer et al. (ref. I 5 I page 136), 
quoted earlier, gives also integration formulae directly 
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for tetrahedron, exact for quadratic and cubic polynomials, 
involving 4 and 5 points of evaluation, affine-symmetrical
ly distributed over the tetrahedron. These formulae may 
be applied to (43) immediately, giving the integration 
formula with very low number of sampling points. It 
may be very useful in those cases, when crude results 
are sufficient. 

We shall not exploit this possibility in our further 
application for the two reasons. First, it should bene
cessary to decompose the tetrahedron into smaller and 
equal tetrahedrons, in order to increase accuracy. But 
this can not be done in the unique way (as was possible 
in the case of interval and triangle) and therefore it 
would introduce arbitrariness into the algorithm. Second, 
when the function of the phonon spectrum w i (k > is to 
be averaged, polynomials do not approximate it well, 
because it is not the analytical funct!_on of k at k = 0 
(but it is the analytical function of I k I , which favours 
the formulae (45) and (47)). 

3.2. APPlication to Crystals of Different Symmetries 

3.2.1. The Simple Cubic Lattice (SC) 

The BZ for this lattice is a cube, which symmetry
irreducible region is a tetrahedron. The triangular base 
of it is 1/8 of the square face of BZ. Table II contains 
all the data necessary to perform calculations according 
to (42), (47). 

3.2.2. The Body Centered Cubic Lattice 
(BC C) 

The BZ is a regular dodecahedron, which rhombic 
faces are perpendicular to (110) (and equivalent) direc
tions. The symmetry-irreducible region is a tetrahedron, 
which base is 1/4 of one of the BZ faces. See table II 
for details. 
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3.2.3. The Face Centered Cubic 
Lattice (FCC) 

Its BZ boundary consists of 6 quadratic faces (perpen
dicular to the 4-fold axes) and of 8 hexagonal ones 
(perpendicular to the 3-fold axes). Therefore the symmet
ry-irreducible region may be represented as the sum 
of one tetrahedron (which triangular base is 1/8 of the 
square face; denoted by j = 1 in Table II) and of one 
pyramid (which tetragonal base is 1/6 of the hexagonal 
face). The latter is decomposed into two tetrahedrons 
( j ' 2,3). 

3.2.4. The Hexagonal Close Packed 
La t tic e (H C P) 

The BZ is a hexagonal prism, which two bases are 
perpendicular to the 3-fold axis, while six sides are 
perpendicular to the bases. The symmetry-irreducible 
region consists of one tetrahedron (which triangular base 
is 1/12 of the hexagonal face; j c. I in Table II) and of one 
rectangular pyramid (which base is 1/4 of the BZ side; 
j = 2). 

3.2.5. The Triclinic Lattice 

The BZ considered in the previous, high-symmetrical 
lattice cases, was constructed according to the usual rule, 
requiring each BZ face to be perpendicular to some recip
rocal lattice vector. This rule when applied to low
symmetrical lattices would lead to the BZ surface 
consisitng of a great number of pieces, exhibiting no 
symmetry. Therefore we prefer to average over the 
following region ·having, as the BZ, the property of 
contributing all inequivalent points of k -space, namely 
the parallelepiped built up on the three elementary 
reciprocal lattice vectors, and then shifted in order 
to situate in its center the center of coordinate system. 
Supposing the integrand to possess the inversion symmetry 
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(as it usually occurs in the solid state applications) the 
symmetry-irreducible region consists of three pyramids 
with parallelogram bases (see Table II). 

3.2.6. The Rho m bob ed r a l Lattice (Rh h) 

We choose the same averaging region as in the previous 
case, but the symmetry-irreducible part of it consists now 
of one tetrahedron, which base is 1/2 of the parallelo
gram face (see Table II). 

3.3. The Numerical Test. The Calculation 
of the Phonon spectrum Moments 

In order to demonstrate efficiency of our method, 
we performed the calculations of some moments of the 
typical phonon spectrum of the crystal having HCP 
lattice. We choose phonon dispersion relations uJ i <k) of 
molecular hydrogen at zero pressure, measured by 
Nielsen /7/ and parametrized by him within the Born
Karman third-nearest-neighbour force model. We have 
calculated the average over the branches and over BZ: 

6 
«oi » = « ~ L (w )f ». (52) 

t)i=l 

The results are demonstrated in Table III in the form 
of relative errors of the mentioned quantities for r = 

= -1,1,2,3. The exact value of «w 2» has been found 
analytically, which is possible in the case of the Born
Karman model. For other momenta the values obtained 
in calculation No. 1 (using more than 30 thousands of 
points) served us as "almost exact" for the calculation 
of the relative errors. The error of «w2 >> assures us 
that it is a reasonable assumption. The values of calcu
lated momenta (rounded to four digits) are the following: 
<<w-1» =-0.1659, <<w>> = 6.727, «w2»=48.69,«w3»=372.0, 
w in units of meV. 
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Table III 

Integr.param. Relative errors of 
No 

((c.J-~ >> (<W~ )) Ndiv lNdeg Ntot ((c.J » 

I 1:3 5E\) 32768 - - I .9E-II 

2 4 5 3072 -I.OE-7 -2 .BE-8 -9.0Fr8 

3 3 5 I296 -2.7E-7 -2 ,3];;..7 -5.3E-7 

4 2 5 384 6.9E-6 -4.4E-6 -6.7E-6 

5 I 5 48 3 .IE-4 -3.5E-4 -9.2E-4 

6 4 3 1024 4.1E-7 2. 4E-5 2 ,9F1'"5 

7 2 3 128 -1.5E-5 4.3E-4 5.5F.r4 

8 I 3 16 -3,8E-3 I.IE-2 I.9Fr2 

9 8 I I024 I .3E-3 -5.0E-4 -9.0E-4 

IO 4 I 128 5.2E-J -2.IE-J -3.8E-3 

a) In this case the integral along the radius S 
has been calculated with Nd =7. eg 

<.< w3 » 

I -
-I.3E-7 ! 

-7 .2E-7 

-7. 7E-6 

-8.2E-4 

4.9E-5 

B.6F.r4 

2 .3E-2 

-I.2E-J 

-5.3E-J 

Table III demonstrates that even at small number 
of sampling points the results are of interest, e.g., 
the 16-point integration gives a few percent accuracy
(No. 8), the 48-point integration - accuracy better than 
one part in 10~ (No. 5), and so on, up to the accuracy 
of one part in 10 7 at 3 thousands of points (No. 2). 

At fixed total number of sampling points N101 , the 
calculation with higher degree of polynomial accuracy 
Ndq1; gives noticeably better results (compare No. 10 
with 7, also 9 with 6 and 3). It is well demonstrated in 
Fig. 2, where relative errors ' of <<w2

- versus !\tot are 
plotted for the tluee different N de!' We see that the 
calculated points lay fairly well on lines 

E = C· N -(Ndeg + 1)/3 
tot 

with coefficient C of the order of one. 

(53) 
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Fig. 2. The relative error ( of «w2 » vs the total num
ber of samPling points N101 • Points calculatedaccording 
to the integration formula with Ndeg= 5,3 and 1 are denoted 
by o , + and o , respectively. Line a represents 
f - N-o/3 , , b - (- N-4/3 and c - , - N-2/3 . 

tot tot tot 

The dependence (53) is a three-dimensional analog of 
the error formula in Gauss' method. It is interesting, that 
the calculated errors are well described by (53) even for 
small values of N10 t , as it can be seen from Fig. 2. 

3.4. Integration with the Density of Points 
Increasing towards the Center of BZ 

In the examples of integration over BZ considered 
above the integrands at different points of BZ were of the 
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same· order of magnitude. But calculating some thermo
dynamic properties (e.g., specific heat Cy(T)) one can 
find quite a different situation. The integrand is practi
cally zero beyond some region around the center. The 
dimensions of this region diminish with decreasing 
temperature, and become small compared to the dimen
sions of the BZ for temperatures much smaller than the 
Debye temperature. In order to integrate efficiently 
such functions, using the same formula both for high 
and low temperatures, the employed density of sampling 
points must strongly increase towards the center of BZ. 

In paper /2/ this problem was considered in detail 
and two methods, obeying the stated requirement, were 
developed: the concentric region method (CRM) and the 
Gauss method (GM). 

Our formula (47) for the integration over BZ may be 
easily generalized to the form equivalent to CRM. 
Namely, performing the integration over ~ along the 
radius, we decompose now the interval [0, 1] into N sub
intervals, which lengths decrease towards the beginning 
(instead of the equal subintervals as used previously): 

lO, l] "· [O,pN-1 1 1 [pN-I ,pN-2J~Ip N-2,pN-3] 4 ••• -1[pl ,pol, (54) 

where the parameter p describes the ratio of the scalling 
down, p < 1. All other prescriptions remain the same, 
i.e., to each subinterval Gauss' formula is applied, and 
to the integrals over (rJ,(), Hammer's formula. 

Notice, that our approach is applicable immediately 
to any symmetry (while methods of ref. 121 suited FCC 
and SC lattices only) and there are no any troubles with 
consideration of many kinds of subzones, description of 
which filled up a few pages of paper/2/. 

In order to compare the efficiency of our method with 
methods of ref. /2/ we have performed a numerical . ' test, evaluating the function 

C(O) = «( X ) 
2
»' (55) 

sinhx 
where 

-> 

X= Ca/277)1klje 
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Fig. 3. The limiting temperature ell} __ vs the total number 
of sampling points N101 • Poiflts JTOm our calculations 
are denoted by o; from ref. /2/ according to CRM - by 
+ , to GM - by o . 

the same as in ref. / 2/ form. (47). Calculation of C(O) 

simulates the evaluation of specific heat, the parameter 
e means temperature in units of the Debye tempera
ture. 

Calculations were performed for the FCC lattice; the 
integral over (r/, () was taken according to 3-point 
Hammer's formula (applied to each of the three triangles -
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see C:hapter 3.2 .4 and Table II); the scalling factor was 
chosen p = 0.2, the number of subintervals N = 1,2,3,5, 
the integration over each subinterval according to 4-
point Gauss' formula, applied twice (to each half of a 
subinterval). So the total number of the sampling points 
was N = 72, 144, 216, 360, respectively. 

At 
1

~ach case of N we were looking for the minimal 
temperature e m• satisfying the condition, that for tem
peratures 0 > 0 m, the function C(O) is calculated with 
sufficient accuracy, i.e., with a relative error less than 
0.2%. 

Our results are demonstrated on Fig. 3, together with 
the results of ref. /2/, taken from their Fig. 2. One 
immediately sees that our method allows one to calculate 
a specific heat at lower temperatures and at a smaller 
number of sampling points. Thou~h ge.ometric.ally . it is 
completely equivalent to CRM of 121, It owes Its higher 
efficiency to Gauss' and Hammer's formula of integration, 
as it was observed already in the previous examples 
of our work. 

4. SUMMARY 

The evaluation of solid angle integral over the sym
metry-irreducible part of BZ is reduced to the evaluation 
of the integral over a triangle. The variable transfor
mation and weighting function involved are easy to be 
programmed. There are given examples of the geomet
rical information allowing one to apply this transformation 
to crystals of cubic, tetragonal, hexagonal and triagonal 
symmetry. The numerical tests convincingly demonstrate 
high efficiency of the method, if Hammer's formula / 5/ of 
high degree polynomial accuracy is used for the evalua
tion of the integral over a triangle. 

For the volume. integration the BZ should be decompo
sed preliminary into elementary subregions, tetrahed
rons. This procedure, together with all necessary geo
metrical information is demonstrated by examples given 
for ST, BCC, FCC, HCP, rhombohedral and triclinic 
structures. The integral over any tetrahedron is repre-
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sented as the integral over a standard triangle and the 
integral over the unit interval. If the first one is evaluated 
according to Hammer's formula/51, • and the second -
to Gauss' formula, then, asitis shown by numerical tests, 
a rapid convergence is obtained. 

Within our method it is easy to construct the formula 
with increasing density of sampling points towards the 
center of BZ, necessary for same thermodynamic cal
culations. 
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