


1 Introduction

By taking into account only ‘the on- s1te 1nteract10ns between the elec-
trons, the Hubbard model (HM) [1, 2, 3].is the SImplest 1mprovement of
the tight binding approx1mat10n, however, it mcorporates essential features
of strongly correlated electrons leading to a large variety of phenomena such
as itinerant magnetism, metal-insulator transition-or: superconductivity.The
one-dimensional (1D) version of the HM is of particular interest because an
exact (Bethe-ansatz) solution is available [4]; even in this case, the knowlédge
of its properties is far from a complete one. Besides their intrinsic importance,
the exact results can be also’used to test the va.hdlty of some-approximate
theories, many times closer to our intuition than more rigorous methods. The
aim of this paper is to compare the Bethe-ansatz (BA) results for the ground-
state energy (GSE) of the 1D HM, in both repulsive and attractive case, with
those obtained in a simple perturbative approach described below.

" The GSE at half filling and zero magnetization (equal number of spins
up and down) was obtained analytically by Lieb and Wu [4] ; its dependence
on the magnetization was determined by Takahashi [5] . Approximating the
Lieb and Wu equations by a set of coupled linear algebraic equations, Shiba
(6] calculated the GSE for a positive Hubbard .constant U (repulsive case)
and arbitrary concentration n ; for U < .0 (attractive.case), Krivnov and
Ovchinnikov [7] found in a similar manner a« universal behavior of the GSE in
terms of the model pararneters Real space renormalization studles for U > 0
and several band fillings [8] show a good agreement with the exact results.
For U < 0 a simple approximation scheme [9] for the Lieb and Wu equations,
arising from weak coupling and low density limit, gives practicaly the same
universal behavior of the GSE as that found i in the reference (7).

In computing the GSE for the 1D HM we start with the ladder approx1—
mation (LA) [10]. This approximation was used by Nagano and Singwi [11] to
calculate the GSE for a 1D Fermi gas with a repulsive §—function interaction
whose exact (BA) solution was given by Yang [12] (see also [13]) they found
that the LA results are the closest to the exact ones in comparison with other
approximate many-boby schemes , the maximum deviation:in the’extréeme case
of an infinte coupling constant being no more than 20% . For the repulsive HM,
it is shown in the next section that the LA gives good results at low densities
(n < 1/2) or weak coupling regime (U < 4t) . In pr1nc1ple, the LA can be
improved by imposing a self-consistent condition (14] Wthh amounts to treat
the problem in the manner of Brueckner and’ Gammel {15] ; hOWever, we will
consider here that only the bandwidth parameter ¢ is affected by a simplified
self-consistent requirement, leading to an effective. value t; determined be-
low. The results for the GSE obtained in this simplified self-consistent ladder
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approximation (SCLA) are rather good for every U > 0 and all densities. The
case of the attractive HM reduces to that of the repulsive HM at half filling
and a given magnetlzatlon the results obtalned in our SCLA and a comparison
w1th the exa.ct ones are presented in the last sectlon '

'2 The repulswe case’

B The Hamxltoman correspondmg to the 1D HM in-the Wanmer representa-
tionis -

H‘—tz(,a,+la+36)+UZn““ ? >0, (1)

where n ’ cja N (a —-T 1) ; m the Bloch representatlon it is given by
'H} ‘ ZE (k) Ck ng o + El—jl\_"kl g;s g czl.Uczz.—a‘ckl@kzeka.—vgka.v ' (2)
Eh (k) = —2tcos(ak) , ke BZ= (”Z’ ;]. . 3)

Every kin Eq.(2) belongs to the first Brillouin zone (BZ), a'is the lattice
constant; and N; the niimber of sites ; the @ (©) symbol stands: for the usua.l
a.ddltlon (subtra.ctlon) operaticn and reduction to the’ BZ

The GSE in LA is determmed from

E EO + Emt ~‘ . ‘ - ‘ (4) R

with - = ’ 4‘ = ,
Eo=—;,t1vsin(akf‘) o ()
and- '

s Ea;nt __:__1_ z (klak2) - " | (6)

N Tkl \k2]<kp

7. from Eq. (6) obeys in general an integral equation [16] ; in the particular case
of the HM this equation:reduces to an algebraic one with the solution .

ky, k _— co (7
‘ 7( 1 2) 1+Ud0(k1,k2) . ", 4’ » ‘. ( )
In other words the sum of the ladder dlagrams for 7 is in fa.ct a geometrical
serles with the ra.tlo U do ) where - '

do(kl,kz)—-——‘z

N E(kl) + 6(1:2) —€ ( @ k) —e ( = k) I‘ = kl & ko

(8)

and e e e [
E{keBZ/l—;—eak

" K

ke | —

> KF, 5

For ki, k, < kp, S 21-,' the range D takes the form
T T 2a ‘

‘ekvl‘>:kp}- )
| b;,(_i,,_kF_lI_{l) (kF K|

| w

ala

a o2 —2_

and passing :in Eq.(8) from sum to integral we get

1 sin [g(kp+py+q)]‘ ,

. n y y g 0
sin(aq) |, [E (ke +p— ]
- P—9q)

dO(pi q) At cos(ap) 2 . o (11)
an™! [% (kF+P)] ; g=0,
where

_ k1 + k] _ |k1—k2l. ,

The results for the GSE are represented in Fig.1 by dashed lines ; by comparing
them with the BA results from Fig.2 [6], we can see that the deviation grows
with the increasing of U or of the density n, defined through '

akp = —;En ‘ (13)

The prev1ous treatment can. be in principle 1mproved by i 1mposmg a self-
consistency condition : as in the Brueckner theory , we can ask e(k) used
in finding ~ not to have the “free’ expression (3) but an- effectlve form ec4(k)
which can be determmed self-consistently from ,
Eef(k) —E(k)+— > "/[Eef(k))ecf(k')] (14)

]klt<kF

Obviously, Eq.(14) can be solved only numerxcally, as will be disscused in

-a forthcoming paper ; here we assume that only the bandwidth parameter

modifies, i.e. et 1 e :
(k) = —2t.pcos(ak). = T (1)

Because Eq.(14) entails a k-dependence of t.;, we will replace it by a weaker
condition: we ask that the interaction energy in LA , calculated with £, f, to
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Figure 1. Ground-state energy of the one-dimensional Hubb'ard r'nodel inLtAhe
ladder approximation (LA) and self-consistent ladder approximation (SC )
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Figure 2 [6] Bethe-ansatz results for the ground-state .ener"gy of the one-
dimensional Hubbard model.

coincide with the difference between the ground state energies of a ‘free’ system
Ly e S, g e LT
with the bandwidth parameter t.; and respectively.?;'1.e.

Eo(tey) = Eoft) + Eimlter). ] (16)
Eq.(16) looks like an éverage of I;jq.(14) over k. Moreover, in érder to simplify
the expression of t.;,- we will consider that ~(ki, k;) from Eq.(6) can be ap-
proximated by 7(0,0), assumption which in the 3D case introduces quite small
errors (~ 5%) [3] . From Eq.(16) we get then .

v

te,(n,U/t)=%{1—0(7:)%“/[1—0(7:)%] +w%} (17)

where ‘ | [a2 ) M
w n :
C(n) = ~— | ————— + tan"'(7n/4)|. 18
(n) Ax [4 sin(mwn/2) an™(mn/ )} (18)
The dependence of t.;/t on n for various coupling constant U/t is presented in
Fig.3 ; the effective bandwidth always decreases with increasing of n or U/t.
The results for the GSE computed from Ey(t) + Eini(tes) are drawn in Fig. 1
by solid lines; a clear improvement in comparison with the LA results can be
observed. We expect even a better agreement with the exact results by solving

Eq.(14) numerically. e

3 The attractive case

From the conservation of the number of electrons with a given spin (up or
down) and from the electroﬁ-hole symmetry of the Hamiltonian (1) it follows
that the GSE of the 1D HM with.U < 0, concentration n and zero mag-
netization is related to that of U > 0 case , half filling and magnetization
s = (1 ~n)/2 [4] ; the correspondenceé can be written as

E(nn U _ EIU_I;_E_l nn U], 19
tNA\2°2" ¢t ) 2t TN\ 272t ) ‘()

The formalism presented in the previous section can be adapted to the case’

of a nonzero magnetization; this can be done by introducing two kr, one for
each spin

T T
kp = —n , kpp= —na - (20)
a . a

The summation over |ky|, |kz] < kr will be replaced by the summation over
|k1| < kp1, |k2| < kpy and the domain D given by Eq.(9) will pass now in the
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Figure 3. The effective bandwidth parameter as a function of concentration
and for different U/t values. P
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Flgure 4. The effectlve bandW1dth parameter at half ﬁllmg as a function of
the magnetization and for some U/t values. : o
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range R :

K K
'RE“GZBA3@4>knwE94>km} (21)
In our case ‘

kpit k== (4 ma=1) o (22)

and we can consider, without loss of generality, that kg > krp ; it can be
shown then that the range R takes the following form.

R =
' ( ar2 ekm) (2 GBsz,f] »,? |%| < min{kpl,fﬂ—;—"ﬂ}
[&m@%@ﬂﬁ@m@%ehﬁ, 5] > maz {ke, te2gher}
(~z. k00U (ko @027 e < |E] <k
or

\ [géﬁkm,%@km) , ke < |K| < kekm
(23)

where |
o i_wiK),’g_WqK) ()

Instead of the coefﬁc1ent dy given by (12), w1ll appear now another coefﬁc1ent
denoted by fo , with the following expression

| for II{|«<‘ (kr2 — kr1) L
fo= : T (25)
f02 ) II{IZ (k):FZ_kFl) ’
where l :
1
for(pgikra) = 5 1do(p:; kr2) + do(—p, g kr2)] (26)
. ,
o fm(Paq; kr2) = 5do(p, s kr2) + do(p, g;7/a — krz)] (27)

with the same notations as in Eq.(12).
At half filling, even in the case of zero magnetlzatlon the LA gives rather
good results only for small U/t. Asthe magnetization grows the errors become

greater and greater; for s = %1 (total magnetization) + vanishes only for
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Figure 5. Ground- -state energy of the one-dimensional Hubbard model at“h'alf
filling as a function of the ma.gnetlza.tlon a.nd for dlfferent U/t va.lues in the
self-consistent la.dder a.pprox1ma.t10n

certain values of k; and k,. Let us aplly now the same self-consistent condition
(16) but at half ﬁllmg and with the only exceptlon that

Eo(t) = —%tN[sin(akpl) + sin(akps)]
| | (28)
= —-%tN cds(frs)A

‘We get in this way an effective bandwidth parameter with the same form (17
but at n =1 and depending on the magnetxzatxon

ef(l.%U/t)— {I—C'(ls 4 \/[1 -‘-‘0(1,3)(:]2412}‘ (29)

t
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Fi’gu‘rebﬁ [5] Bethe-ansatz results for the ground—‘st‘ate energy of the one-
dimensional Hubbard model at half filling as a function of the magnetization.

where 2

C(l;s) = 1[” ! +1]’ (30)

4 cos(rs)

The dependence of t.; on the magnetization for various coupling constants is
presented in Fig.4 where it can be seen that in the case of a total magneti-
zation the bandwidth parameter becomes zero and consequently the effective
interaction vanishes for every value of U/t .

The results for the GSE of the repulsive HM at half filling and a given
magetization s are presented in Fig.5 . Let us note that for U <0(atn=1)
the results can be obtained directly from the case U > 0 and concentration

= 1 — 2s. The comparison with the Bethe-ansatz results from Fig.6 [5]
indicates a good agreement up to rather large values of U/t.

e
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'calculated w1th1n the ladder aporo tnatlon from the comparlson w1th the exact

| resulis in the: repulslve case; it follows that the approx1mat10n is good at low

fdensmes or small couplings. T he ladder approxtmanon can. be improved: by
flrnposmg a self—-consnstency COﬂdlllOﬂ using a s1mple assumptlon, the results
become close to the exact ones at-all densmes and couphng constants in both
| the repulslve and attractlve case
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