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1 Introduction 

By taking into account only the on-site .interactions between the elec­
trons, t.he Hubbard model (~M) [1, 2, 3])~. the si~plest improv~ment of 
the tight binding approximation; however, it incorporates essential features 
of strongly correlated electrons leading to a large variety of phenomena such 
as itinerant magnetism, metal-insulator transition or superconductivity.The 
one-dimensional (ID) version of the HM is of particular interest because an 
exact (Bethe-ansatz) solution is available [4]; even in this case, the knowledge 
of its properties is far from a complete one. Besides their intrinsic importan·ce, 
the exact results can be also.·used to test the validity of some :approximate 
theories, many times closer to our intuition th~~ ~ore rigorous methods. The 
aim ot this paper is to compare, th,e. Bethe-ansatz (BA) results for the ground­
state energy (GSE) of the ID HM , in both repulsive and attractive case, with 
those obtained in a simple perturbative approach described below. 

The GSE at half filling and zero magnetization (equal number of spins 
up and down) was obtained analytically by Lieb and Wu [4] ; its dependence 
on the magnetization was determined by Takahashi [5] . Approximating the 
Lieb and Wu equations by a se·t of coupled linear algebraic equations, Shiba 
[6] calculated the GSE for a positive Hubbard .constant CJ.. (repulsive case) 
and arbitrary concentration n ; for U < ,Q (i:!,ttracth:e case), Krivnov and 
Ovchinnikov [7] found in a similar manner al universal behavior of the GSE in 
terms of the model parameters. Real space renormalization studies for U > 0 
and several band fillings [8] show a good agreement with the exact results. 
For U < 0 a simple approximation scheine [9] for the Lieb and Wu equations, 
arising from weak coupling and low density limit, gives practicaly the same 
universal behavior of the CSE.as that found in the reference [7]. . 

In computing the GSE for the ID HM we start with the ladder approxi­
mation (LA) [10]. This approximation was used by Nagano and Singwi [11] to 
calculate the GSE for a ID Fermi gas .with a repulsive 8-function interaction 
whose exact (BA) solution was given by Yang [12] (see also [13]) ; they found 
that the LA results are the closest to the exact ones in comparison with other 
approximate many-boby schemes , the maximum deviation:in the extreme case 
of an infinte coupling constant being no more than 20% . For the repulsive HM, 
it is shown in the next section that the LA gives 'good results at low densities 
(n < 1/2) or weak coupling regime (U < 4t) .. In principle, the LA can ~e 
improved by imposing a self-consistent condition [14) which amqunts 't~treat 
the problem in the manner of Brueckner and· Gammel (15) ; however, ~e· will 
consider here that only the bandwidth parameter t is affected by a simplified 
self~consistent requirement, leading to an effective value t~j det~rmi~ed be­
low. The results for the GSE obtained in this simplified self-consistent ladder 
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approximation (SCLA) are rather good for every U > 0 arid ii.lld~nsities. The 
case of the attractive HM reduces to that of the repulsive HM at half filling 
and a give~ magiietization; the'results obtained in our SCLA and a comparison 
~ith the _exact ones· are presented in the last sec_tion. ' 

2 , The repulsive case· 

The Hamiltonian corresponding to the 1D HM in the Wannier representa-
tipn is 

1l =· -t :µ- ( cJ.,.ci+l,o- + H.c.) +UL ni,tni.i ; t > 0, 
,. . J,U I ; , J ; 

(1) 

where ni,;' = ~Lci,o- · (u =i, !) ; in the Bloch rep~esentation' it is given by 
: ' t ". ~ '. ' : ' ' ! . ' 

1l ~ (k)' t : · U . ~- t t · = L.,C ck,o-ck,o- + 2N L., _ck1,o-ck2,-0'ck1(!)k28ka,-O"ck3,0' 
k.o- · k1 ,k2 ,ka ;o-

(2) 

with 
c(k) = -2tc~s(ak) k E BZ = (-~. ~]. 

a a· 
(3) 

Every k in Eq.(2) oelongs to the first Brillouin zone (BZ), a is the lattice 
constant; and N; the niirriber of sites ; . the EB ( 8) symbol stands for the usual 
addition (subtractibn) operaticn and reduction to the BZ. 
: The GSE iri Lkis determiried from 

. E = Eo + E;nt. (4) 

with . 

Eo = _itN sin (ak1) 
'Tr ' 

(5) 

and 
1 

Eint =N . ·E , (k1, k2) (6) 
lkil,lk2l::;kF 

,from Eq.(6) obeys in general an integral equation [16] ; in the particular case 
of ~he HM this equation:reduces to an algebraic one with the solution 

. . u . 
,(ki,k2)= I+Udo(k1,k2)' . . · (7) 

In other words, the sum_ of the I.adder diagrams foi: ', i~ in fact a geometrical 
_series with the ratio U d0 , wh~re ·,. .· . . . . . 

. , 1 ~ · •·. , 1 ·., , .. , · ,. , , . 
do (ki, k2) = -:-- L., (K ) . (K ) ; Ii = k1 EB k2 

N kE'D c(ki) + c(k2) - C 2 EB k ~-€ 2 e k. 
(8) 

2. 

) 

I 

' 

and 

, v_= {k ~-;z /I~~ kl~ k;·, j~ e kl> kF} · 
' . 'Tr 

For k1, k2 ~ kF. ~ 
2
a, the range 1J takes the form 

. ~ =:(-~,-kF _ 1~1) U ( kF + 111, ~] 
and passing _in Eq.(8) from sum to integral we get 

1 
do(P, q) = 41rt co~(ap) 

where 

l. lsinrn(kF+p+q)] 
-.--ln --f'[a=------:---,] 
sm(aq) sin 

2 
(kF + p- q) 

tan-1 rn (kF + p)] • 

lk1 + k2I lk1 - k2I 
P = 2 ,q = 2 . 

' q =I 0 

q = 0, 

(9) 

(10) 

. (11) 

(12) 

The results for the GSE are represented in Fig.I by dashed lines ; by comparing 
them with the BA results from Fig.2 [6], we can see that the deviation grows 
with the increasing of U or of the density n , defined through 

'Tr 
akF = 2n · (13) 

The previous treatment can b~ in principle improvecfiby imposing a self­
consistency condition : as in ~he Brueckner theory , ·. we can ask c( k) used 
in finding I not to have the 'free' expression (3) but an eff~ctive form e;01(k) 
which can be determined self-consistently from.: 

CeJ(_k) = c(k) + ~ lk~F 'Y [ce1(k),_c~r(k')] · (14) 

Obviously, Eq.(14) can be· solved only numerically, as will be disscused in 
a forthcoming paper ; .here we assume that only the bandwidth parameter 
modifies, i.e. · · · · · · ·· · 

C:eJ(k) = -2tef cos(ak), . (15) 

Because Eq.(14) entails a k-dependence of t01, we will replace it by a weaker 
condition: we ask that the interaction energy in LA , calculated with t

0
1, to 
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Figure 1. Ground-state energy of the one-dimensional Hubbard model in the 
ladder approximation (LA) and self-consistent ladder approximation (SCLA). 
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Figure 2 [6]. Bethe-ansatz results for the ground-state energy of the one­

dimensional Hubbard model. 
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coincide with the difference between the ground state en~rgieJ of a 'free' system 
with the barid0idfh para1:fleter tef and resI_>ectively.t/te.. . ' ' 

Eo(teJ) = Eo(t) + Eint(ieJ) (16) 

Eq.(16) looks like 'an average of Eq.(14) ~ver k. Moreover, in brder to simplify 
the expression pf ,tef, we will consider that 1(k1 , k2 ) from Eg.(6) can be ap­
proximated by 1(0, 0), assumption whii;:h in the 3D case introduces quite small 
errors(~ 5%) [3]. From Eq.(~6) we get then . , · .. 

· t {' U J[ ., U] 2 tan- 1(,rn/4) U} 
t,1(n, U/t) ~ 'i l - C(n)t + . I - C(n)t + , . t , (17) 

' ' , ' ' ,, 
where ' 

. 1 [1r2 n2 . ] 
C(n) = ~ - . ( / ) + tan-1 (1rn/4) . 

41r 4 sm 1rn 2 (18) 

The dependence of tef /ton n for various coupling constant U /t is presented in 
Fig.3 ; the effective bandwidth always decreases with increasing of n or U /t. 
The results for the GSE computed from Eo(t) + Eint(tef) are drawn in Fig. 1 
by solid lines; a clear improvement in comparison with the LA results can be 
observed. We expect even a better agreement with the exact results by solving 
Eq.(14) numerically. '; 

3 The attractive case 

From the conservation of the number of electrons with ~ given spin (up or 
down) and from the electrori-hole symmetry of the Hamiltonian (1) it follows 
that the GSE of the ID HM with. U < 0, concentration n and zero mag­
netization is related to that of U > 0 case , half filling and magnetization 
s = (1 - n)/2 [4] ; the correspondence can .be written as .. , 

t! (;, ;; 1~1) = ; l~I + t! ,(1 ;, ;; 1~1) (19) 

The formalism presented in the previous section can be adapted to the case 
of a nonzero magnetization; this can be done by introducing two kF, one for 
each spin 

7r 
kF1 = -n1 

a 

7r 
kF2 = -n2 · 

a (20) 

The summation over lk1 l, lk21 :S kF will be replaced by the summation over 
lkil :S kF1, lk2I :S kF2 and the domain V given by Eq.(9) will pass now in the 
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Figure 3. The effective bandwidth parameter as a function of concentration 
and for different U ft values. 
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Figure 4. The effective bandwidth parameter at half filling as a function of 
the magnetization and for some U ft values. 
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range n 
n= {k E ZB /I~ @kl> kF1, I~ ekl > kF2 }· (21) 

In our case 
7r ' 

kF1 + kF2 = - (n1 + n2 = 1) (22) 
a 

and we can consider, without loss of generality, that kF2 > kF1 ; it can be 
shown then that the range n takes the following form. 

'R= 

(-!,f8kF2)u(fEBkF2,!] , lfl<min{kF1,~} 

[(kF2 EB lfl EB 0_!, (kF2 ~ lfl 8 0+!) , lfl > max { kF1, ~} 

(-!,(kF2 8 0+!] u ((kF2 EB l½I EBB-!,!] l ~ :s; l½I < kFl 
or 

[ K K ) 2 EB kF2, 2 8 kF2 ' kF1 :s; l½I < ~ • 
(23) 

where 
( = sgn(K). · ,,_; (24) . 0± = 0(±K) , 

I' , , 1,, , . , .. • .. 

Instead of the coefficient d0 given by (12), will appear now another coefficient, 
denoted by Jo , with the following expressio~ 

where 

Jo= 

Jo1(P, q; kF2) 

{ 
J01 l 

Jo2 

IKI< (kF2 - kF1) 

IKI ~ (kF2 - kF1) • 

1 = 2 [do(P, q; kF2) + do(-p, q; kF2)] 

1 
• 1 Jo2(P, q; kF2) = · i[do(P, q; kF2) + do(P, q; 1r fa - kF2)] , 

with the same notations as in Eq.(12). , 

(25) 

(26) 

(27) 

At half filling, even in the case of zero magnetization, the LA gives rather 
good results only for smalt'Uft. As the magnetization grows the errors become 
greater and greater; for s = ±½ (total magnetization) 1 vanishes only for 

7 



E/(tN) 

-0.5 

.s 

d .' 

Figure 5. Ground~state energy of the one-dimensional Hubbard model at half 
filling as a function of the magnetiz~tion and for different U/t values in the 
self-consistent ia:dder approximation:: . . . . 

certain values of k1 and k2. Let us aplly now the s~me self-consistent condition 
(16) but at half filling and with the only excepti~n that . 

Eo(t) = _'!:._tN [sin(akF1 ) + sin(akF2)] 
7r 

4 
--tN cos(1rs). 

7r 

(28) 

We get in this way an effective bandwidth parameter with the same form (17) 
but at n = l and depending on the magnetization 

. . . t { u J[ u] 2 
· 1 u} teJ(l,s;U/t)=-2 l-C(l,s)-+l-.C(l,s)- +-- (29) . . .. t t 7r t . 

8 

(1 

Figure 6 [5]. Bethe-ansatz results for the ground-state energy of the one­
dimensional Hubbard model at half filling as a function of the magnetization. 

where 
1 [7r2 1 + 1] 

C(l; s) = 47r 4 cos(1rs) 
(30) 

The dependence of tef on the magnetization for various coupling constants is 
presented in Fig.4 where it can be seen that in the case of a total magneti­
zation the bandwidth parameter becomes zero and consequently the effective 
interaction vanishes for every value of U /t . 

The results for the GSE of the repulsive HM at half filling and a given 
magetization s are presented in Fig.5 . Let us note that for U < 0 ( at n = 1) 
the results can be obtained directly from the case U > 0 and concentration 
n = 1 - 2s. The comparison with the Bethe-ansatz results from Fig.6 [5] 
indicates a good agreement up to rather large values of U /t. 
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By:fary cD.Jl, . . . 'El 7-95-64 
3lieprli:si OCHOBHOro toCTOSIHHSI orilioMepHOH 
Mifae.i:iii Xa66ap~a B npoCTOM cai.ibcormicoBainidM llQAXO,ne•· · 
ii J1eci'ii:1-11hioM itt,ii6JiiukeHHH · . .• . . -

' .. , 3Hepl'li51 OCHOBHbrd cocfcishili:si OAHOMeplitiil MOAeJIH Xat56ap;j~ BbitiiiCJieiui 
B JieCTHHiiitbM iip116mbkeHint; H3 cpaimelinsi C TO~HblMH pe'3y Jti,i~fraMH ii tJ:iyttae 
OTTa.i:It<iiiiamur. CJieAyei-; 4TO ·iipii6JiiDKeHHe xopoiifo BWIIOJIIUieTCsi B riperieJie. 
HH3KOii IlJIOTHOCTi1. It ·cmi6ciro ii::iaHMorieifCTBHSI . .llec-riniliil:oe itptt6JimKeHHe 
f..Jo)KeT 6h1Th y.11yttineHo HaJio)Keil:iieM yc.ri:oBHSI caMocor.iiacoaaiuh1; c 0cnoJ1h3ti-
.Baii1-1eM npciCTbIX npeAno.i:Io5i<eHHH pe3y.llbTaThl c+atiotlSITCSI 6JIH3l<HMH i< T04..:. 
"ih,tM ripH BCex il.llOTHOCTSIX ii .3iJ:aqeHHSIX KOHCTclHT B::iailMOAeHCTBHSI . 
tJ:iytiae OTTaJii<HBaHHSI; Tai< _H. npHTSI)KeHHSI .. 

. : Pa6cfraBhIIlOJIHeHa B Jia6cipafopnii: TeopeTlliieckoiiq>H3HKH HM::H.H .. Boro- .• 
JIKJ6oaa· 011.5111. ' . . . ....;: .. 
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Gfoimd~State Eiiergy_ of the ()rle-Dimerlsibnal .. . .. 
HiibbarcfModei iri a Simpie Seif.:.Corisistent Version .•. 
cif the Lidder Approximation.' ' . 
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... ·The' groiirid::state energy/of. the bn~-cli~e~~ioiiaf- Hubbaid model. is 
cakulated within the ladder approxifuatioh; from the cofuparisori with the exact 

. re'suhs ih the.feptilsive case;· it foHows ihatthe appfoxiriiaticih is good at low 
densities. or small couplings. The ladder'approximatiori caii be improved. by 
imposing a,self-corisistency conditibri; tlsirig a simple assumption, the'resiilts 
beconi~ closeto the cX:act ones at all deiisiti~s ahd coilplirig coristahts iri both 
the repulsive arid attractive case. ::: . -

THe irlvestigaticih h~s been' perfcirin~d aithe Bogoliubo~' lab~raiory of 
Theoretical Physics, JlNR. ' . . I : ' • .. . •· .· . • 
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