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I. INTRODUCTION 

Two identical cha~ge particles (electrons), placed in a polar medium, interact with 

the lattice vibrations which results in attractive forces between them. There are con­

ditions when these forces can overcome the dite~t Couiomb repulsion aha a bound 

state can be formed with two electrons as constituents and a common cloud of vir­

tual phonons around them. Such a quasi-particle is called a bipolaron. Possible 

applications, especially to the hypothetical bipolaron mechanism of high-Tc super­

conductivity, renewed interest in this problem of two particles, strongly interacting 

with a quantum field. Besides concrete goals such as to calculate characteristics of 

bi polarons (ground-state energy, effective mass etc.) this system is used also as a tool ,. 
to clarify more general problems. Among them is the problem of underlying symme-

tries. In the most'popular bipolaron type models one imposes translation-invariance 

which is to be taken into account before one proceeds further to various approxima­

tions. The same type of Hamiltonians was used not only to describe bipolarons but 

also to study different models of particle and nuclear physics. 

Sometimes there arises a misunderstanding in the interpretation of different ap­

proaches to the two-particle problem. When one faces an interaction of the type 

V(r1 - r2 ), one can be sure of the translation-invariance. But this is not the case 

for bipolaron type systems where the interaction of particles with a field can be 

represented as a sum of terms which depend on coordinates of one particle only: 

1/ ( r1) + \/ ( r2). This interaction evidently would not be translation-invariant if there 

is no quantum field interacting with both particles. In the presence of a field its 

quanta take away some part of the total ( conserving) momentum so that the latter 

is not a conjugate momentum corresponding to the (particles) center of mass (ems) 

coordinate R = (r1 + r'-i)/2. Applying variational methods to such systems one can 

take a trial wave vector : 1¢) = JR, r, qk)' where r = r1 - r2 is a relative coordinate 

and qk are field coordinates. A wave vectro Jip) can be "located" at some point Re 
in the space. But this does not nece~sarily mean that the translation-invariance dis­

appeared in such an approximation. If one takes a trial wave vector JR - Ro, r, qk) 

"lo~ated" at another point and if this wave vector happens to lead to the same 

energy, this degeneracy· is just another way for the translation-invariance to reveal 

itself. 

The goal of the present paper is to compare two different approaches to the 

bipolaron type Hamiltonians which conserve translation-invariance. One of these 

approaches allows us to take into account the translation-invariance from the very 

beginning, before any approximation is made. Another approach is based on properly 

i;buli:;,~tii(,:t..0 1m::ri~i i 
W'\'!~~1.11 m::: ."l!i:~~::w~ t 
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chosen trial wave vectors so tliat sril~tions obtai~~d are asymptotically exact in the 

strong-coupling limit. We demonstrate the equivalence of both approaches. 

II. BOGOLIUBOV-TYABLIKOV ADIABATIC THEORY 

.The co~ventioi:ial Hami.ltonian to des~ri~c two nonrelativi~tic parti~lcs interacting 

with a scalar. quantum field is given by 

•·. Pi Pi•··· 1· t t 
H = - + -2 + U(lr'i - r21) + -.". hwk (a-ak + akak-) 2m. m ·.. 2 L;-,,. k 

k 

+ L IVd (eik-,; +_e&,,) (ak +·a~k), (2.1) 
k . 

where r;(p;) arc the positions (momfnta) operators of the i-th particle, m is the 

particle (bare) mass, a1 (ak) are. the creation (annihilation) operators of the fidd 

quantum with wave vector .. k and t_h1< f~equency wk. The coefficients Vk arc the 

Fourier transform of, the particle-field. interacti~n. and U(r) stands for the direct 

i!lteraction between the particles. 

The Hamiltonian (2.1) can be_ used for.different physical systems, _in particular, 

_for bipolarons. In this case. pa~ticles are electrons, .m. is their band mass, ,field quanta. 

are phonons w.hose frequencies obey the _Einstein law wk = ww and coefficients Vk 

are specified as follows 

41ra Ii, ' ( . )1/2 
IVkl = hww Vk2 ✓ 27:wio . (2.2) 

-The dimensionless electron-phonon coupling constant is defined in the standard way 

i' e
2 

( 1 · 1) /mww 
0 = hww J2 foo - fo V -,;- ' (2.3) 

and depends on the static ( t:0 ) and high-frequency ( l 00 ) dielectric constants. The 

direct inter-particle interaction _is th1e Coulomb repulsion U(r) = c2/t00 r. When 

introducing th~ ratio of the_ dicl~ctric constants_ T/ ,=· ,:,=/ lo, the Coulon\h repulsion 
can be written as follows 

U( ) h 
v'za Jn/mww 

r = WLo . . 
1-T} ' T 

(2.'1) 

Introdii.cing center of mass and relative cocir'dir1atcs 

2 

.,,. 

,:i 

i< 

r= r1 - r2, fl'= r'1 + r2 
2 ' 

(2.5) 

and using complex field coordinates qk, (q! = q_k) instead of creation (annihilation) 

operators 

·t 
ak + a -k 

qk= ,Jz 
a 

8qk 

we write the Hamiltonian (2.1) as follows 

a ➔ - a! 
-k k 

v'2 

h2 2 h2 2 • 1 L 
II= --Vn - -V + U(r) + - hw➔q ➔q➔ 4m m ·' 2 k -k k 

k 

rn L f: • r •rn 1 L · a a +2v L. · JV.➔ J q~ cos-· e' .: . - - hw➔----. 
k k 2 2 k 8q ➔ 8q➔ 

k ' . . k ..,-k k 

(2.6) 

{2.7) 

The idea of Bogoliubov1 and of Tyablikov2 developed initially for a single particle 

interacting with a quantum field is based on an elegant physical picture of the particle 

motion .. The system is translation-invariant, and the symmetry group is defined.by 

- - - 'kR R-+ R + Ro, qk-+ qke-• . 0 

Correspondingly, the total momentum 

P = -ihVR.+h Lkafak 
. k 

.· .. "- a . 
= -ihVR - h L., kqk-. 

➔ 8qk 
k 

(2.8) 

(2:9) 

is conserved. Bogoliubov and Tyablikov suggested to split up the particle coordinate 
• I 

operator into a translation-invariant part responsible for the momentum conservation 

and an internal quantum vibrational part. Applied to the two-particle problem this 

idea can be realized with· the transformations 

fl= if+ X, qk = G➔e-&q 
k ' 

(2.10) 

where Gk are new field coordinate operators. Then the group defined by Eq. {2.8) can 

be considered as corresponding to the transformation if-+ if+ Ro of the translation­

invariant operator only, while the quantu~ vibrational coordinate operator X and 

the field coordinate operators Gk are not influenced. 

Because the'relative coordinate operator is not involved in the transformations 

(2.10), the corresponding mathematics is just the same as was developed in Ref. l; 2 

a 



for the one-particle problem. To find details, we refer ~lso ~o the German translation 

of these papers in Ref. 3. In what follows w~ present only the main ideas and results 

of the .ijogoliubov-Tyabliko\; adiabatic theory. 

If the field kinetic energy [the last term in the Hamiltonian (2.7)] were absent, 

the field coordinate operators would commute with the Hamiltonian and could be 

con.sidered as c-numbers which would take some definite value~. Thus, the authors 

of Ref. 1, 2 suggested to introduce new field operato'rs ·Qk related to Gk as follows 
' ' 

Gk = uk + Qk, uf = u_k, Q1 ~ Q~k' (2.11) 

' j' '' , ,· I. ·1 

where uk are c-numbers to be determined later on. This.allows us.to extract the clas-

sical part of the field coordinates whi~h form a well to confine constituent particles. 
• l ' • 

After that Qk-dependent parts of t~e Hamiltonian (2.7) are trfatcd as perturbations. 
'•,, ,, .. ,, . ·····-

Because the resulting Bogoliubov-Tyablikov transformations 

·.-. •1/ . _,, •/ . \ '., ·,,l /. . :.• '·k·◄ , 
R ~ q +>,, q~ = (uk +·Qk)e-• ·q 

,; •' •,; .,"!-, ! , •·,I. l I I 1 , T " ~ 

'(2.12) 

infrt>duce art additional dynamical vector variable, one•has to add three independent 

constraints to the operators Qk, They are chosen. as follows 
. . 'r ' ; \ ~ ~ 

LkvNk = 0~ 
k 

(2.13) 

. I 

where vk are arbitrary complex numbep( ~hith' s~t:isfy the same relations vf = v -k 

as field coordinates. Further, to simplify calculations, these numbers arc chosen to 

satisfy an orthogonality condition { with~tit loss of generality, as was shown in Ref. 1, 
2) . 

'°' k·k.·~'!~.~ li; 1.·; ~ i:] ,,k,lk' ~ .. 
k . 

I' 
(2.1 '1) 

;! ,,_ 

Herek;, k; are components of the vector k. With the:constraints (2J.3) one .obtains 

the same number of independent dynamical variables as in the initial Hamiltonian . 

. . The transformed Hamiltonian dtiencts on the 'translation-invariant variable ij via 

the gradie_nt oper11t.or 8/j)if onlY,- (?~e ,can. pr<Jy~~'.~ that 

·o , . . . . . - , .,a . 
-::. = Vn-:-iI:kqf-, •. aq.,. , , •.. oqk, 

k 

(2.15) 
.,; ' 

thatis -fh"vq coincid~s with the t~tal ,conserv~d. mo~entum (2,~) o~ thc,systc.m,,iis it 

should \>e duet~ th~ tr?;n,slati~n ,invar,ianc\). It Cif~ be. r<;p,lace<l l>y ~. c-mpnh,cr ve1;to~ 

4 

~ 

! 

·, 

/'. Thus, the tra11slatio11-i11n1riant coordinates</ describe a position of the center of 

mass ;>fa bipolaron. 111 this way, the trnnslation-im·ariance of the considered system 

is taken into account <'Xplicit.ly, and we can proceed further to mak<' approximations. 

To take 111to account the fact that field quanta contribute also to the (non-zero) 

total monwntum /', we perform a transformation of the wave function 

W ~ rxp (~vQ,) <> (2.16) 

wheres;; arc complex c-1111111bers which satisfy the familiar condition s~ = s_;; and 

( again without loss of gc11i:rality) a co11st raint 

"' - . L l:ur·'f = 0. (2.17) 

k 

The trn11sfonnatio11 (2. lfi) replaces operators -iiJ I iJQ;; by ·'f - ii) I iJQ;;- This allows 

us to extract. a classical part of the field contribution to the total moment um too. 

Once derivatives an· calculated, one arrives at the results1·2 

i) i) 
~==------:::;, 
iJH iJ>. 

-ik-( .. 
qk = urc I+ O(Qr), 

I) k -( v- - -) . -
0 

= ic' ·•q -~r + i_1;_ k · I' + O(CJ;;). 
</f I, 

(2.18) 

Herc O(Qr) symbolically starnl to show that some terms arc omitlPd. They con­

tribute to the parts of the llamiltonians considPred as pcdurbalio11s in I.II<' adiabatic 

theory. Inserting Eq. (2.18) into the llamiltonia11 (2.7) we arrive at the "unper­

turbed" Hamiltonian which gives the solution to the two-particle problem to leading 

order of the strong-coupling limit 

1,2 2 h2 2 I 
//0 = --V,\ - -Vr + l!(r) + 9 Lhwpt_fllk 

'1m m _ ◄ 
k 

k • f . ◄ - ( I I' ◄ - -,2 +2 '2"°' l~-1 u ◄ cos -- c•k•,\ - - "°' hw◄ .~- + i_l;_ k • I' 
V£. L k k 2 2 L k k h (2.19) 

k k 

Note that despite of the trn11slatio11 invariance which allowed us to n·movc the depl'n­

dcnce 011 the t.r,u1slatio11-i11varia11t variable</, t.lw 1111pcrturlwd llamiltonian remains 

. esse11t.ially the two-particle 011c. It depends 011 the rdativ<' coordinate operator;;' and 

011 the qua11t11111 vibratio11ai' coordinatl' X. OrH' can t IH'11 lw back to '·011<'-particl1• co-

ordinate operators" .\1, .\2 wlH'rc 

5 



- - r 
• .-\112> = A± 2. 

Then \he Hamilto~ian (2.19) tak~s tl;c form 
' . ' ' . ' ' 

!i2 2 !t2 2 ' ' - - 'l L 
Ho= --'\7, - -'\7 + U(l.-\1 - .-\21) + - hw-u -u-2m "I 2m .x, 2 k -k k 

. k 

+V2L IVfl uk (ciHi ·+ c;H,) + ~ L hwk h + i';; k · Pl2

• 

k k 

(2.20) 

(2.21) 

It follows then that 1/0 does not depend on the field ·operators Qk so that the wave 

function to leading order takes the form <I> = cp(X,1, °X2 )0(Qi), where a functi~11 0 is 

undefined while dealing with the unperturbed llamilt.onian 1/0 . 

The first. "correction" //1 to the Hamiltonian /[0 (which is not. displayed here) 

is linear in the operators Qf, f)jf)Ch. Therefore, following arguments by Bogoli­

ubov and Tyablikov, its average (c/JIHilc/J} over ef>(X,)2 ) equals :,,;ero. This provides 

solutions for the parameters s;; and u;;, unspecified before. For instance 

v'!..... ..... u': ......... 
s- = -i_!;_k · P + i_!_ k · V 

k h wk ' 
(2.22) 

where V is a mean velocity of a system as a .whole. Inserting sk from Eq. (2.22) into 

the constraint (2.17) and using the condition (2.11) one obtains a relation of V to 

the tot.al momentum /1: 

- L-k-V P = h . k -· -· u_;;uf. 
w-

k k 

(2.23) 

The expressi~n f~r the ~oeffici~nts uk which folio~~ from the equation (ef>IH, leff ~ 0 

can be determined also by minimizing the average (efilHoiJ} with respect to Uf-

Taking into account Eq. (2.22) one obtains in this way 

w-V.:p: 
11 _ = -2V2 k k_ k _ 

k , hw'f; - (k • Vf 

with the notation 

fik = ~ .I d°X1 <1X2 I</>( X, 1 X2w,· ( cik,,\l + Gik-A,) .· 

(2.24) 

(2.25) 

With these parameters 8;;, u;; taken at. V = 0 and after insert,ing into the Hamil­

tonian (2.21) one arrives finally at the llarnilt.onian /100 which describes, a bipolaron 

at. rest. to leading order of the "adiabatic" limit 

6 

:i 
J 

11 

!) 

h2 2 h2 2 • : - - . . 

Hoo= -2m "7,xl - 2m "7,x~ + Ven(.-\,,.-\2;¢>), 

- - '°' lv'.-12 ~ lv'.-12 
( - - -·- ) v,ff = U(I.-\, - .-\21) + 4 L.....J h~- IP;;l2 - 4 L., h~- Pr eik:.Xi + eik-.X, • ' ·(2.26) 

k' k k' k ', ' 

Denote cp(X, )
2

) as the grou:nd~state wave function. It is ·obtained' as a solution to 

the Schrodinger equation ( Hoo - E)cp = 0. . - ' . ' ' . ~ .. , . . . 

The last term in the Hamiltonian (2.21) together with the expansion of u;; in 

powers of V lead to the expression for the bipolaron effective mass within the same 

approximation. It is given by 

Af = ~ '°'(hk)2 IV;;l
2
IP;;l

2 

3 ~ (hw;;)3 

k 

·(2.27) 

Relations (2.26),(2.27) complete the soluti~n to leading order of the adiabatic limit 

for slowly moving bipolarons. 

III. COMPARISON OF RESULTS 

Let us turn now to another approach to the same two-particle problem as consid­

ered in Ref. 4. For simplicity we consider now the case of zero total momentum. Then 

the scheme is as 'follows: canonical transformations are used to shift the creation (an­

nihilation) operators by c-numbers a;;·-+ c;;+ a;;: This means that the classical part 

of the field is extracted in'this scheme too (and c;; differs from ·u;; by a constant factor 

only). Subsequently a trial wave vector is chosen in the form 14>} = ef>(ri, r2)IO}, The 

coefficients c;; are found by minimizing the average energy (<l>IHl<l>}. Because•u;; can 

be tlnis determined too, one finally arrives' at the sarrte Hamiltonian (2.26) with the 

only (formal) difference that We:deal with variables r1 , r2 instead of their quantum 

vibrational parts X,, .X2 • The' eipression for the bipolaron effective mass derived in 

this:scheme coincides also ~ith Eq. (2.27). 
We describe this "variational" scheme very briefly now. There are peculiarities 

·which are not so important 'for the moment. Details can be found in Ref. 4. Use is 

made in this 'scheme ofa trial wave vectcir which leads some authors to think that 

the translatiori-imrar1ance is broken in this' approach. This is not the case, however, 

. despite the fact that the firial effective potential in Eq. (2.26) does not depend solely 

on the relative coordinates r. The classical parts of 'the field operators depend on the 

wave function ¢>(Xi, °X2 ) too. Let us shift the reference point by a vector Ro. When 

one takes a wave fun~tion ef>(Xi - Ro, X2 - Ro)' "localized" at another point, the only 

7 



change is that pk -4 N exp( ik · Ro). Because the modulus of Pk is not changed, 

this leads to the same effective potential which is just translated by the vector flu: 

Ven(X1,-\2;</>) - ½n(X1 - Ro,-\2 - Ro;</>). Thus, the effective potential follows a 

shift of a wave function and the bipolaron energy evidently is not influenced by this 

trans_lation. This means that _even on the level of the effective Schrodinger equation 

the translation-invariance of the system is still preserved. 

It is i~portant to mention that_ both schemes lead to the same energy functional 

. . ;,,2 2 h
2 

2 - - · " 1Vkl2 
2 

E = - 2m (V "J - 2m (V ",) + (U(l.\1 - .\21)) - 4 L, hw• INI .. 
k k 

(3.1) 

Applied to bipolarons with Eq. (2.2), (2.4) it takes the form 

E - t,,
2 f d' d' IV "'(' X )1 2 +" v'2a ✓ ;,, _jdX d,\ l<f>(,\1,-\2 )12 

- "I /\2 "-1 'f' At,' 2 /tWLQ 1 1 2 I- - I m . - 1/ mww .\1 - .\2 

-hww 2V2a ✓ ;,, J d-\1d-\2d5.;dX~ l<t>(Xi, ,\~ 121 <1>_(,X;, x;w 
mww l.\1 - A1 I 

(3.2) 

While deriving (3.2), symmetry properties of the wave function with respect to par­

ticles permutations were taken into account. The energy functional (3.2) which 

should be minimized with respect to </> appeared first in the pioneering paper by 

Pekar and Tomasevich5 and was used by many authors afterwards (for references sec 

the review.paper6 ). We demonstratPd for both approaches: 1) the coincidence of the 

"unperturbed" Hamiltonians, energies and effective masses and 2) the fact that the 

"variational" approach preserves the translation-invariance too. Thus,. both schemes 

are equivalent. 

It should be noted also. that the Bogoliubov-Tyablikov approach .was applied to 

the.two-particle problem already in Ref. 7. The authors splitted up both the ems and 

the relative-coordinates operators. This made the scheme much more complicated. 

We see no reasons to split up the relative coordinate operator, that is not related to 

the symmetry group (2.8). 

An attempt_ to exploit the Bogoliubov-Tyablikov technique for .the two-particle 

problem was undertaken recently by V. D. Lakhno. The author applied his model to 

bipolarons8
-

10
, to do~terons11 and to binucleons12. Unfortunately, all his results arc 

not reliable. The main reason is that he.splitted up the ems-co.ordinate operator in 

an inconsistent way, so that the dependence on the quantum vibrational coordinate;,\ 

disappeared from the interaction term [namely, the exponent expUk-5.) is not present. 

in his version of _the Hamiltonian (2.19)]. This resulted essentially in a one-particle 

8 

llamiltonian which can he obi ained if one :-,c_ts fl:=; 0,in 1 he initial Hamiltonian (2. 7). 

Thus, 1 he aut.hm· of Ikf. 8 allows the system to he al· 1 he bottom of the· effecti,·c 

potential t·o1Tcspcmding to the motio11 cif the systc1i1 as a whole. This leads to a 

significant clecreas<' of 1111' hipolaron energy. Critical. cm~ments on this pa_per,. arc 

given in Hd. 1;t Not<' also that the !Pchniquc of R~L 8 ~J~pli:•d to a ~ingle pol~ron 

would lead''to 'th<) Ilamiltoniiin 

. ' 'fi1 ' ,' • ' ' ' ' ' 
II_,==,+ L 1,:.,_;k aiak + L l\''(l(ai_: + aJ): 

~111 • • . , , 
k k 

(3:3) 

Then, th<' problem can lw solvt1d · t•xplkit.ly; · but this lla1i1ilto11ian rt'sult.s' in' tl1e 

gn!un~l-stat~~ cnc,rgy 

W·l2 I /~., = - '°' _k_ - I . . J!i/'l.mw, ci 
. L, .,,..,_,. - - IWl,()O ' • 

l " ' 'k k' ' ; ' ·'' :'"(°/ . ' 

(3..1) 
✓ '•j 

where a cut-off r(: of t.111' cff<'ctive Coulo111b potential ls.i11trod11rcd ·at small ,t Thus,· 

this energy tends to (1wgativc·) infinity when re.- 0 . .This dc11101;slralt-s that the 

scheme of ll;/ 8 inilcc;I n;r;.espond~ t.:i cnPrgic~ which arc sig;;ificant I~'. l;m:c:r in 

co1i1paris01i with the corrci:t q1iantum results. · • 

. To conclude,we analyiPd two (sccmingly·diffcrent.) 'approaches t.o tlw prciblc1i1 

of two interacting particles and· proved ·tlwir: C"quivalcnfr to leadiilg .order of tli'c 

adiabatic limit.. 1;1· 
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