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I. INTRODUCTION

Two identical charge particles (electrons), placed ina polar med:ium, interact with
the lattice vibrations which results in attractive forces between them. There are con-
ditions when these forces can overcome the direct Coulomb réf)ul'sbib:n and a bound
state can be formed with two electrons as constituents and a common cloud of vir-
tual phonons around them. Such a quasi‘-p'a,rticvle is called a bi;idlaror}. Possible
applications, especially to the hypothetical bipolaron mechanism of high-T, sﬁpér-
conductivity, renewed interest in this problem of two particles. strongly interacting
with a quantum field. Besides concrete goals such as to calculate characteristics of
bipolarons (ground-state energy, effective mass etc.) this system is used also as a tool
to clarify more general problems. Afnong them is the problerﬁ' of underlying symme-
tries. In the most'popular bipolaron type models one irnposés translation-invariance
which is to be taken into account before one proceeds further to various approxima-
tions. The same type of Hamiltonians was used not only to describe blpolarons but
also to study different models of particle and nuclear physics. '

Sometimes there arises a misunderstanding in the 1nterpretat10n of dlfferent ap-’
proaches to the two-particle problem. When one faces an mteractlon of the type
V(Fl — 72), one can be sure of the translation-invariance. But this is not the case
for bipolaron type systems where the interaction of particles with a field can be
represented as a sum of terms which depend on coordinates of one particle only:
V(Fl) + V(Fg). This interaction evidently would not be translation-invariant if there
is no quantum field interacting with both particles. In the presence of a field its
quanta take away some part of the total (conserving) momentum so that the latter
is not a conjugate momentum corresponding to the (particles) center of mass (cms)
coordinate R = (71 + 72)/2. Applying variational methods to such systems one can
take a trial wave vector : |¢) = ]R, 7, qg), where 7 = ) — 73 is a relative coordinate
and ¢ are field coordinates. A wave vectro [¢) can be “located” at some point R,
in the space. But this does not necessarily mean that the translation-invariance dis-
appeared in such an approximation. If one takes a trial wave vector |R I—fo, ™, q)
““located” al another point and if this wave vector happens to lead to the same
energy, this degeneracy is just another way for the translation-invariance to reveal
itself,

The goal of the present paper is to compare two different approaches to the
bipolaron type Hamiltonians which conserve translation-invariance. One of these
approaches allows us to take into account the translation-invariance from the very

beginning, before any approximation is made. Another approach is based on properly

@&ttnaﬂ'\ Hutﬂﬁ !'J l:m t
afepaak accsegozaesd
H Eﬁbnwomm £



chosen trial wave vectors so that ‘solutions obtained are asymptotically exact in the

strong-coupling limit. We demonstrate the equivalence of both approaches.

. I1. BOGOLIUBOV-TYABLIKOV ADIABATIC THEORY

The conventlonal Ham11toman to descr1be two nonrelativistic partxdcs inte ractmg

>w1th a scalar, quantum ﬁeld is g1ven by

H—- 2m,+ 2112 +U(|r‘ - rgl Z hwk (a-ak—{-aka )
NI (g,-z.‘a ‘+»e.-z-n) (aE-{-al_E), ' (2.1)

where 7(pi) are the positions (momenta) operators of the i-th particle, m is the
_particle (bape)_mass,_all; (a,;)_‘are‘ the‘ creation (annihilation) operators of the field
quantum with wave vector k and the frequency wp. The cocfficients V; are the
Fourier transform of the particle-field.interaction and U(r) stands for the direct
interaction between the particles. , ,

The Hamiltonian (2.1) can be used for dlfferent physical systems, in parhculdr

for bipolarons. In this case par}uclgs are electrons, m.is their band mass, field quanta

are phonons whose frequencies obey the Einstein law w; = w0 and coefficients VE

are specified as follows v ,

: ’ 1/2 . .
dra h '
=k A\ ] . : y
IV l WLO <Vk2 2meo) (2.2)

~The dimensionless-electron- phonon coupling constant is defined in the standard way

1 & (1 1\ [mue : ‘
a= _— —_— , 2.3
tho\/_< 60) h ( )
and depends on. the static (eo) and. hlgh frequency (exo) diclectric constants. The
direct inter-particle interaction is the Coulomb. repulsion U(r) = ¢?/esr. When

introducing the ratio of the dielectric constants 1 = €. /co, the Coulomb repulsion

can be written as follows

U(r) = hwro \/EGM : | (24)

2 i l—y + 1

Introducing center of mass and relative coordinates

.’

Fef o, R=TT2 R (23)
and using complex field coordinates qk, (qE = q_g) instead of creation (annihilation)
operators : i ’ ’

: t A

3 a;+a_’: 8. a_,;—al.i ’ 96
= \/i ’ 6_q;: = V2 s . v ( )

we write the Hamiltonian (2 1) as follows

h? h?
I = ‘_Vz - —V2 +U(r)+ - Zhwkq—qu

. B L E. ! . i . :
A2V2Y Vel gz cos e R 22 *aq aqk‘ (2

~ The idea of Bogoliubov! and of Tyablikov? developed 1n1t1ally for a single particle '
interacting with a quantum field is based on an elegant physwa,l picture of the particle

motion. The system is translation-invariant, and the symmetry group is defined by
ﬁ —) i‘i + éo, q’: R d q’:e—ik'ﬂo;' o ‘ . (2.8)

C'orr‘espondingly, the total momentum

> = —ihVp+ h Z kala;
= _va - hz kqp i. A e (29)
z dqz . .

is conserved. Bogoliubov and Tyablikov suggested to spllt up the particle coordinate
operator into a translation-invariant part responsible for the momentum conservation
and an internal quantum vibrational part. Applied to the two-particle problem this
idea can be realized with' the transformations
R=G+X qp=Cpe ™7, L (210)

where G are new field coordinate operators. Then the group defined by Eq. (2.8) can
be considered as corresponding to the transformation § — ¢+ Ry of the translation-
invariant operator only, while the quantum vibrational coordinate operator X and
the field coordinate operators G are not influenced.

Because the relative coordinate operator is not involved in the transformations
(2.10); the corresporiding mathematics is just the same as was developed'iu'Ref. 1,2.
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for the one-particle problem. To find details, we refer also to the German translation
of these papers in Ref. 3. In what follows we present only the main ideas and results
of .the Bogoliubov- Tya.bllkov adiabatic theory R :

If the field kinetic energy {the last term in the Hamxltonla.n (2 7)] were abscnt

the field coordinate operators would commute with the Hamiltonian and could be

considered as c-numbers which would take some definite values. Thus, the authors -

of-Ref. 1, 2 suggested to introduce new field opera.to}s’Q,; related to Gy as follows
o !“./!' Co e ;L A

where u; are c-numbers to be determined later on. This allows us.to extract the clas-

sical part of the field coordinates whxch form a well to confine constituent particles.

After that Qk-dependent pa.rts of the Hamiltonian (2.7) are trea.ted as perturbations.

Because the resulting Bogollubov Tya.bllkov iransformations

o ”@Jn

introduce an additional dynamical vector:variable, one has to add three independent

Ta

ZEUEQ,-G.:():' T (213)
i ' '

constraints to the operators Q. They are chosen as follows
) 8 LA R

S =v_g

: vy C e . . :
where v; are arbitrary complex numbers which:satisfy the same relations v?

as field coordinates. Further, to-simplify-calculations, these numbers are chosen to

. satisfy an orthogonality —COHditiOﬂl-(V\(‘ith"Olﬁ. loss of‘generality, as was shown in Ref. 1,
) - ' ’
: ey e L
E:kkvmk_éa, ‘ , - (2.14)
Here k,, k are components of the vector k. Wath the constralnts (2:13) one obtruns
the same number of independent dyna.mlca.l va.rla.bles as in the initial Hamiltonian.
" The transformed Hamiltonian depends on the translation- invariant variable ¢ via
-~ the gradient operator 3/3(1 only. One :ca.n,p,royel_\? t}!a!; SRR
__Vn qu"(')q‘ o (215)

that is —2hV, coincides with the tota.l conserved momentum (2 9). of thc sysi( m,.as n

should be due to the translation invariance. It can be replaced by a c- j!{l]l»ﬂb}:l V(‘( tor,

4

P. Thus, the translation-invariant coordinates § describe a position of the center of
mass of a bipolaron. In this way, the translation-invariance of the considered system
is taken into account explicitly, and we can proceed further to make approximations.

To take into account the fact that ficld quanta contribute also to the (non-zero)

total momentum P, we perform -a transformation of the wave function

¥ = exp iZ‘sEQE b, S (2.16)

k

where sp are complex c-numbers which satisly the familiar condition sz = s_g and

£
(again without loss of generality) a constraint

z:‘zr= 1 @

The transformation: (2 I'6) r('plac('s operators —id/8Q; by s —i0/0Q);. This allows
us to extract a classical part of the ficld contribution to the total momentum too.
Ouce derivatives are caleulated, one arrives at the results!?
0. a
Ok ox :
—ik-§
q = upe”" T+ 0(Q),
a . ik-q » 3%
2 e (+wxﬂ+m%y (2.18)
dqg h
Here O(Q;) symbolically stand to show that some terms are omitted. They con-
tribute to the parts of the Hamiltonians considered as perturbations in the adiabatic
theory. Inserting Eq. (2.18) into the Hamiltonian (2.7) we arrive at the “unper-
turbed” Hamiltonian which gives the solution to the two-particle problem to leading

order of the strong-coupling limit

l bt

Hy=-— V2 - ——Vz +U(r) + 3 Zhwku g
e *‘:i__ s+ i EL B .
+2\/_Z IVluk Cos ¢ ZZ/)mkl.sk+1h k-P|. (2.19)
i :

Note that despite of the translation invariance which allowed us to remove the depen-

dence on the translation-invariant variable ¢, the unperturbed Hamiltonian remains

essentially the two-particle one. It depends on the relative coordinate operator 7 and

on the quantum v1bml|ondl coordinate X. One can then be back to * ‘one-particle co-

ordinaie op(.mtols /\|, /\2 where



_.‘- - I
Ay /\ =
e | 7 (220)
Then the iHa‘ihiltorﬁan (219) .(.ak(’:S.[}‘I‘C form
' Iz 2 1 2 liaw .. 1 .
Ho=—5=V3, - 5oV, + U([/\‘, - X)) +3 > hwpu_gug
= .
e g “ Ur » |2
ik- /\1 lk/\ . 5 . 9 ¢
+\/§Z: |Velug ( +e ’) iz:lzw;|.s;+l}—:k~l’ . (2.21)

It follows then that Ho does not depend on the field op(‘rdtors Qr S0 lhdl the wave
function to leading order takes the form ¢ = 95(/\,,/\2) (Qk) where a function 0 is
undefined while dealing with the unperturbed Hamiltonian Hy.

The first “correction™ Il to the lamiltonian il (which is not displayed here)
is lincar in the operators Q. 9/9Q;.. Therefore, lollowing arguments by Bogoli-
ubov.and Tyablikov, its average {¢|H\|8) over ¢(X1,X2) cquals zero. This provides

solutions for the parameters s; and ug, unspecified before. For instance
s,;:——l—'i P+i-tk-V, (2.22)

where V is a mean velocity of a system as a whole. Inserting sg from Lq. (2.22) into
the constraint (2.17) and using the condition (2.14) onc obtains a relation of Vto
the total momentum P:

P =k k V

U C - (2.23)

The cxpr(*s'ﬂon for the cocfficients uz which follows from the equauon (ol |d>) =Q
can be determined also by minimizing the average (4 [Ho|¢) with respect to uj.

“Taking into account Fq. (2.22) one ol)taips in this way
2\/‘ ———q—ﬂ— 2.24
e e
with the notation

|
/’;:E

With these parameters sg, ug taken at V=0 dn(l dl't( T ms('rhng into thc Harml
tonian (2.21) one arrives finally at the Hamiltonian //op which describes a blpola.ron

at rest to leading order of the “adiabatic” limit

6

/d/\.d/\,|¢(/\,, ‘)|‘(( "‘*'4@*“2) : o (225)

h R?
Hm =— V - —V L+ Ve/f(/\l,/\2,¢),

en—U(ul—Azl)HZ' Vil |pkl2—42' ' (*~'*'+e'k'*2)./ (226)

Denote ¢(X], Xz) as the grou'ndr-sta.te wave fuﬁction. It is'obta.i'nedfas a solution to
the Schrodinger equation (Hoo — E)¢ = o . k }

The last term in the Hamiltonian (2 21) together with the expanswn of u,; in
powers of V lead to the expression for the bipolaron effective mass within the same

approximation. It is given by

8 x /7 2|VE|2|PEI2 L ‘
=3 TR (2
3%:(“) hop)? (2.27)

Relations (2.26),(2.27) complete the solution to leading order of the adiabatic limit
for slowly moving bipolarons. -
111. COMPARISON OF RESULTS

Let us turn now to another approach to the same two-particle problem as consid-

“ered in Ref. 4. For simplicity we consider now the case of zero total momentum. Then -

the scheme is as follows: canonical transformations are used to shift the creation (an-

' mhllatlon) operators by c-numbers ap — cp'+ ag: This means that the classical part

of the field is éxtracted in‘this scheme too (and ¢; differs from'ug by a constant factor
only). Subsequently a trial wave vector is chosen in the form'|®) = ¢(71,72)|0): The

coefficients c; are found by minimizing the average energy (®|H|®). Because uy can

‘be thus determinéd too, one finally arrives’ “at the same Hamiltonian (2.26) with the -
T’only (forma.l) difference that we'deal with variables 7, 72 instead of their quantum
'vibrational parts M, X,. The expression for the bipolaron effective mass derlved in

" this'scheme coincides also with Eq. (2.27)."

We describe this “variational” scheme very briefly now. There are peculiarities

" which are not so important for the moment. ‘Details can be found in Ref. 4. Use is

- made in th]S ‘scheme of a trlal wave vector which leads some authors to think that

the translation-invariance is broken'in this approach. This is not the case, however,

_ despite the fact that the final éffective potentlal in Eq. (2.26) does not depend solely

on the rela.tlve coordma.tes 7. The classical parts of the field operators depend on the

wave function ¢(/\1, /\2) too. Let us shift the reference point by a vector Ry. When

" one takes a wave function qﬁ(z\l Ro, Xo — Ro) “localized” at another point, the only

7



. change is that py — pp exp(il-é . Eo) Because the modulus of pz is not changed,
this leads to the same effective potential which is just translated by the vector Ry
V.;,,(A,,Xz; é) — Eff(xl - R'O,X2 - I-I‘o,qﬁ) Thus, the effective potential follows a

shift of a wave function and the bipolaron energy evidently is not influenced by this

translation. This means that even on the level of the effective Schrodmgcr cquation

the translation-invariance of the syqtem is still preserved

1t is important to mention that both schemes lead to the same cnergy functional

E_ vh2 V? h? ) p o X ) IV,;IZ, .2" ‘
= —5—(Vi) — 5= (VA + (V0N - ZJ)>—42Ejh—wE|p;|« (3.1)

2m

Applied to bipolarons with Eq. (2.2), (2.4) it t,a.kes the form

—/d/\ a3z [V, (3, K2)? + Ao - ‘/_" ,/ ‘ /dA d/\2 L6k, X2)*
mwLo — A

e [h 16, T 85, S ‘
hwro 2V2a oo /d/\ dXad) d/\2 | |/\l _A ; (3.2)

While deriving (3.2), symmetry propertles of the wave functlon with respect to par-

ticles permutations were taken-into account. The energy functional (3.2) which
should be minimized -with respect to6 ¢ appeared first in the pioncering paper by
Pekar and Tomasevich® and was.used by many authors afterwards (for references sec
the review.paper®). We demonstrated for both approaches: 1) the coincidence of the
“unperturbed” Hamiltonians, energies and effective masses and 2) the fact that the
“variational” approach preserves the translation-invariance too. Thus, both schemes
are equivalent. t
It should be noted also that the: Bogollubov Tya.bllkov approach-was applied to
_the two-particle problem already in Ref. 7. The authors splitted up both the ¢cms and
the relative-coordinates operators. This made the scheme much more complicated.
We see no reasons to split up the relative coordinate operator, that is not rclated to
the symmetry group (2.8). . .

An attempt. to exploit the Bogoliubov- Tya.bhkov techmquo for .the two- partlclc
problem was undertaken recently by V. D. Lakhno. The author applied his modcl to
bipolarons®1°, to douterons'! and to binucleons'?. Unfortunately, all his results arc
not reliable.. The main reason is that-he splitted up the cms-coordinate operator in
an inconsistent way, so that the dependence on the quantum vibrational coordinate X
disappeared from the interaction term [namely, the exponent cxp(zk /\) is not present.
in his version of the Hamiltonian (2.19)]. This resulted essentially in a one-particle

8

Hamiltonian which can be obtained if one sets l-é?:{O,iu the initial [tamniltonian (2.7).

Thus, the author of Ref. 8 allows the system to be at the bottom of the effective

potential corresponding to the motion of the system as a whole.. /This leads to a

~significant decrease of the bipolaron energy. Critical comiments on this paper. are

given in Ref. 13. Note also that the lo(lnnquo of Ref. 8 applwd to a slnglc polaron

O ! ! 5 . NERTIN

would leadito the Tlamiltonian
3 , 0] e o :
)m + Z IML -ak + Z I‘ L NN (33)

Then, the problem can bessolvéd explicitly; ‘but this Hamiltonian resnits in* tlic

g,mund stdto energy

e —Z ",ff B
where a cut-ofl 1 of the effective Couloinb-potential ds:introduced 4t small.#% Thus,”
this energy tends to (n('g,anw) mlnnly when re = 0. This domoﬁslldl(s lhal the
scheme of Rel. 8 indeed (orr(‘spon(]s to (‘Il(‘lgl(‘\ \\'In(h are slgnlh(dnll\ lower in
comparison with the correct quantum results. C
."To conclude, we analyzed two (scemingly -different)approaches to the problem
of two interacting particles and- proved ‘their equivalende to leading order of the
adiabatic limit. iy . »
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