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Surface clectromagnetic waves, propagating along the boundary. be- -
tween two media with- different optical properties were widely  stud-
ied [1-7]. Nonetheless the'integration of the. correspondmg equations
presents difficulties because of their comphcated nonlinear form. We -
will consider surface TM waves for the case of two. dlelectrlc medla o
with the dmgonal dielectric perm1tt1v1ty tensor g;; = diag(ex, E4r Ez)v
therewith ,, &y, &, are con51dered as arbltrary real functlons ‘of electrlc
field strength E. - i —

‘Suppose the plane z = 0 to be that of separatlon and plane electro—
mag,netl( wave with frequency w and wave vector k to propagate along

z-axis. We will cons1der TM wave, assuming

= 0, H,0); -_E,=_(Euov E).

Putting 9, = —wv 82, where v = w/k = fc is the wave ve10c1ty, we
write the system of Maxwell 8 equatlons in each medium:

/B(eIE)+8(ezE)_O | "(1)»
0, (H - Be, B =0, . - (2
azEr_arEz =582H R (3)

Inasmuch at # = 4 oo the field is supposed to vanish, from (2) we will
find

‘ H = B¢, E,. (4)
Assuming that (9; =ik, E, =iA, E, = B, where A and B 5re
real functions, from (1), (3) and (4) we deduce

(e A)Y + ke, B =0, ' (5)
B' = kA f - 1), (6)

where prime denotes differentiation with respect to z. Taking the func-
tions €;(A% + B?) and ¢,(A? 4+ B?) as given ones, we will admit that
|E|2 and ¢, can be expressed as some functions of &,, i.e. ’

' = 4%+ B* = I(e.), &(Ef) = K(e). (7)
Denoting €, A = £, from (5) and (7) we will find
f2 le . .
I(e, e
€ =5+ ot ®
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~where, according to (5)

_ N 9

B=-txey | )

Differentiating the equation (8) in view of (6), one gets ’ :
al , oyl B 1) 2f, 10

des T T (f ) (s K + e K el Ca- (10)

The equetion (10) admits the integrating factor Y (e;) (see Appendix

1)

FdK (1 fode,
W¥(e:) = | 372 (_ - ﬁ2> /m ()

where ' : .
= . 12
X =g -7 T ox (12)

Given £,(0), the value of permittivity ¢, at E = 0, L.e. at z = oo,
from (10) we deduce the quadrature ‘

/ Y(e)dle) = X (=Y (e (13)
e-(0) ’ .

The equation (13), thus, defines the function f = F(e;), and finally
one gets A = €;1 F(ez).

Solving the equation (8) with respect to f' and taking into account
(13), we find the equation

dF : Fe,)]"?
r_ - : _
f = e, = +kK(e,) [I(e,) 22 ,

which is integrated in quadratures:
dF(e;)
) 1/2°
K(ez) [I(ez) - F_E(Z&l]

Here the sign =+ is to be chosen in accordance with the domain z > 0
or £ < 0. The integration constants in (14) are to be found from the

kx = £ (14)

2

boundary conditions, which are equivalent to the continuity conditions
for the functions f and f" at » = 0. The solution of the boundary
conditions, mentioned, is defined bV the form of the functions z,(|E|?)

and &,(|E[?).

Let us consider a simple example assuming that
€. = a; + b |E]%. g, = a, +B|E|?, €. = a. + b.|E]%.  (15)

with a:, a,, a., by, by, b; being constants. Then from (7) one gets the
functions: ‘

Er — Uy . b. »
Ie:) = ==, K(&) = ¢ + ~eo, (16)

with q = a. — (b./b;) a,. Putting them into (11) we get (see Appendix
2) ' '

b\ [20% + d — VD|/YP :

Y(e;) = (g + —¢) C (17)
br zf_r +d + \/5

whered = b,/b, — 1 and D = (1 + b./b,)? + 4 3%q. Here we assume

that D > 0. For simplicity we will now consider the case when the

diclectric is isotropic, i.c.

€ =€, =¢, =¢=a+ b|EP (18)

In this case one gets the integrating factor Y(e) = . Putting it into
(13) and taking into account that at © — oo, f — 0 and ¢ — a. we
find '

(19)

The equation (14) in this case reads:

' - 32 3 2' ‘ ’ k
k:c:i/ Fre - o (20)

5(5 - a)(2 - ﬂzs)\/ﬁ(—

where P(€) = (€ + a) (3e — 232¢? — a). One can rewrite this equality
in the form:

kx :‘

i[/ \/(Ii)s(g):+ ¢ / | (e - a()lf/P(s) .
a : a3* e . ,
5./5\/(11%+(1+'éi)./(2;ﬁ22)6m]' )
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Using the substitution

X .
“1gEt % cos2p, p=vV9-8y, v=0af (22)

one can rewrite the last equality by means of elliptical integrals (see -

Appendix 3):

, ] ,
kx = -'-F[C()F((p, S) +'Z Cj Hj((p; nj, S)], . (23)
j=1 .
where - |
CO : '2£1 32'_'2_51
3 §
N 8V2v . 2
Ch = 07—, m=-
CE@—-4dv+p) 3—dv+p
Gy = ———-——4\/51/ 3 n2=4—2ﬂ )
EB+up) 3+p
L 8&V2(14v/2) 2
Cy = —(—+= = - )

R TY

with &€ = /3 +4v + pu.

The bbundar_y conditions at z = 0

€1 Bz = €2 By, (24)
and : ' '
Ezl = Li2 » (25)
for the case considered can be represented as follows:
be(er — a)(er+ 1) _ £2(e2 — @) (62 + ap) (26)
b1 ,6%6{—2 ,6%62—2, ’

v  (€1 —atn)a-—qa-n)_ (82— @+ n)(a - e — ) (27)

et (er + a1) : €3(e2 + az)
where ¢; = 3/43% and 7; = /9= 8a;0%/482%, i = 1,2.
. The explicit form of relations (26) and (27) makes evident the exis-
tence of such parameters by/b; or § for Wthh the equations (26) and
(27) are satisfied.
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Appendix 1:

Multiplying the equation (10) by Y one gets:
al , (1 B 1 - 2f7,
= Y — Y.
Yo 6= (Y (52 K" &K el o

The righthand side of the last equation can be written as:

[f2XY]’ 26f IY f2XY’ ) f2XIY
Here X = 1/e2 — B%/K + 1/e, K. Equating the last three terms of
the R.H.S. to zero we come to the equation
y' K 1 9
Y= x5 - ")+ agx
which leads to the equation (11).

Appendix 2:
Putting K (6,) and X into (11) one gets
' de;

de,
lnY(C:',_-) = (b /b;) / — m,

with Q = ¢, (1 — B%¢,). Assuming that D = (1+b,/b,;)2+48%¢ > 0
after integrating one finds:

28%, +d - VD
2%, + d+ VD

Y () = ln|q + %'6,1 +[d/b. VD)l | .

Appendix 3:

For ¢ = W + 7 cos2<p, one gets de = — —*“—fsin2<p dy, and

p (3 + 48?) + pcos2p
57 Sm2“"[ e

In view of these express1ons we get ,

Analogously one can find the other terms.

P(e) =

= —CgF((p, s).
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