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1. Introduction

The ionic degrees of freedom dominate the thermodynamical properties of liquid
clusters. As the statistical description of thermodynamics in terms of these de-
grees of freedom is already a rather complex problem:for classical bulk liquids,

such'a description of large liquid clusters is expected to be even more’ difficult.

Thus, a more phenomenological dpproach appears to be useful. As a suitable phe-
nomenological model we suggest to consider a'small, but macroscopic droplet of
liquid alkali metal, whose thermodynamical properties are taken from experiment.

On the other hand, the shéll structure appearmg in the system of the delocalized
valence electrons influences many propemes of alkali clusters ina 51gmﬁcant way
[1]. Obviously these shell effects can be described only in terms of the micro-
scopic degrees of freedom of the valence-electrons. The shell correction method
(SCM) developed in nuclear physics [2] presents a possibility to merge these two
apparently conflicting aspects into a unified description of liquid alkali clusters.
In section 2 we develop the SCM for alkali clusters at finite temperature, in sec-
tion 3 calculations of the free energies and shapes of sodium clusters for different

temperatures are presented and in sectlon 4 we discuss some consequences for the
evaporation of neutral atoms. '
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2. Shell correction for finite temperature

The SCM for alkali clusters at finite temperatures has been suggested by us in
ref. [3]. It is formulated for the free energy F(T, N) of a cluster with mass
number /V at a temperature T'. Since F' is a thermodynamical potential all other
thermodynamic quantities may be calculated by taking the derivatives appropriate
for the process considered. The total free energy is written as the sum

F:‘FLD+(5F (1)

where Fyp is the free energy of a classical drop of liquid alkali metal, consisting
of NV atoms, and § F' is the shell correction, which accounts for the shell structure
in the valence electron system.
Let us first consider the droplet free energy. Restricting to the case of neutral
clusters,
Fip = fN 4 41r4N*365(a, a,). (2)

The first, "volume" term is determined by the specific free energy f. The second,
"surface” term is the product of the surface tension o and the surface area. The

functlon S(a, ) is the area of the surface enclosing the unit volume It depends
on the deformation parameters «, a3, a4, ..., which fix the quadrupole, octupole,
hexadecapole and higher deformations, respeetiyely I. The Wigner - Seitz radius
r,, the specific free energy f* and the surface tension o are assumed to be given
by the experimental values at standard pressure Po = 1 atm, as quoted in the
tables (e. g. in [4, 5]). 2

The central assumption of the our model is that the scaling of FL D with the
number of atoms N holds down to a few tens of atoms. It is noted that the surface
term, which is usually called "surface energy”, is actually a free energy, since the
experiments to measure it are always carried out at a fixed temperature.

The temperature dependence of the droplet is parametnzed as follows. Usu-
ally, the tables quote the specific heat ¢, as a polynomlal in T. One may safely
ignore the difference between c, and ey for the liquid, smce the volume work

"This is only ‘correct for not too large deformation. The accurate definition of the deformation
parameters can be found in ref. [6].

2In using these parameters for clusters in the vacuum, we assume that the presence of the vapor
changes them only insignificantly. This is an uncritical assumption, since the vapor density of most
materials is very low at standard pressure (the critical point is far away).
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Pov is negligible compared to ¢. Using a third order polynominal, as in [5], the
specific heat of the liquid reads '

e(T)=co+ clT + T ; (3)

By integration one obtains the specrﬁc energy

e(T)=eo+ coT —c,T2 + 3czT3. ' (4)

Integratmg ¢/T glves the specific entropy

s(T)=sp+colnT % ;T + —-czT2 P (5)
and the specific free energy 1s g'ven by ’
()=o) -ToT). (6)
The surface tension can be approximated by |
a(T) = oo —oT, (7
and the Wrgner Sertz radlus by 7

3v(T)
47r

/3. T T T S
Ts(T) [ ] —-'1‘0 ,+ 1‘1T+ 1‘2T2. IS . (8)
Here v(T) is the specrﬁc volume For 11qu1d sodlum the parameters are [4, 5]
= 4.405,c) .= ~26.7eV"} ¢y = 172.3eV 2 5,00 = 00147eVA ,O1 =
0072A'2 ,To = 2.065A,r = 1322AeV“ 1-2 = 9.114eV2,¢y = —1 l3eV
and sg = 23.721. :
The shell correction § F is deﬁned as the dlfference

6F=F§‘—, .. ( - (9)

Here, F, is the free energy of N electrons in the average potential U, which
is generated by them and by the ions, and F, is the free energy of N electrons
distributed over a modified spectrum of U, which does not have the level bunching.
This "smooth” spectrum, from which the shell structure is eliminated, will be
defined below. The energies e; of the valence electrons are the eigenvalues of the
single particle hamiltonian k, containing the Woods Saxon potential

h= % + U,[1 + exp(I()/d)] " (10)



Here, 715 taken to be the free electron mass and { (£) measures the distance ofa
point Z from the equipotential surface U(Z) = 1/2U,. The shape of this surface
is taken to be the same as the one used to calculate the surface area S(a, a,) in
the liquid drop part The volume enclosed by the equlpotentral surface is kept
constant to - : Lo

e V, = Rp, RP_TN'/3+5 , (11)

The radius of the potentral exceeds the cluster radrus by 6 in order to account
for the electronic spill-out. For sodium the diffuseness of the surface is chosen
to be d = 0.74A4, the spill-out § = 0. 63/ and the depth of the well U,=-6eV.
The parameters are obtained from a fit to T = O spherical jellium Kohn - Sham
calculations (for details cf. ref. [6]).

The calculation of the free energy is based.on the canonical ensemble of
the valence electrons. This is important, sinee typrcal experiments study mass
selected cluster beams. The free energy of N-independent electrons is calculated

as
L. 8N

Fo= AN - Tl Ze”_H[l-{-e 51%3"—"71 (P

For I — co this is an exact expression. > We ﬁnd that L =16 glves the canonical

free energy with an relative accuracy better than 103 provrded ) is chosen such
that the mean value of the particle number in thecorrespondmg grand canonical
ensemble is equal to N.- Our-method to evaluate the canonical partition function
is different from the one suggested by Brack et al. [9]. It seems to be numencally
faster. The accuracy can be controlled by changing L.

. The smooth free energy- F,is calculated from a'set of non bunched levels & €, by
means of eq. (12) This smooth spectrum is constructed from the:smooth density
of single particle states, 2§(e), which is calculated by means of the Strutinsky
averaging procedure. from the spectrum e;. (for the detailed definition of g(e), cf.
ref. [2]). Solving numerically the equations

z._/ 24 | (13)

the set of chemlcal potentrals Ai, i = 1 2...1s found The smooth spectrum is
generated by the integrals - :

/\i i I : , .
&; =/ 25(e)ede, = 4
Xt

This can be seen best by using the projected statistics representation of refs. (7, 8).

P

where A_| = —oo. The spectrum is constructed such that it fulfills the relation

Ze, =F= //\N e)ede, ., ©(15)

where £ is the smooth energy introduced by Svtrutinsky‘[2].

3. Shapes and free energies of sodium clusters

We have minimized the free energy simultaneously with respect toa,q,,pu =
3,4,5,6 for all even-Na clusters in the mass range 90 < N < 310 and for
the pairs «, a4 and o; o3 in the mass range 310 < N < 730. Three different
temperatures, T = 0,0.04and 0.06 eV, i.e 0°,465° and 697° K have been studied.
The equilibrium deformations are presented in figures 1, 2 and 3.

We also display in figures 1 and 3 the shell contribution to the free energy
Fsp, which is defined as as the free energy at the minimum relative to the free

energy of the spherical drop: ..

Fsgp=F - Frp(a=0,a, =0) (16)

Note, in fig. 3 the zero line of F,p is not horizontal!

The deformation drastically lowers the free energies in the open shells. Though
the largest contribution (1 - 2 eV for T = 0) comes from the quadrupole deforma-
tion, the higher multipoles also contribute significantly. For T = 0 the octupole
contributes up to 0.5¢V and the hexadecapole up to 0.3 eV For selected clusters
we minimized the free energy with respect to the multipoles up to u = 10. The
energy gain due to z = 7,8,9,101s typlcal‘lyvless than a few 10 meV. Within
our five dimensional family z < 6 the axial shapes can be considered as relaxed.

As cluster deformation is a consequence of the shell structure, it is suppressed
by the thermal fluctuations. Figs. 1, 2 and 3 démonstrate that this does not occur
as a gradual decrease of the magnitude of the deformation. Rather, the regions
of spherical shape around the magic numbers are expanding with T and N. It is
also seen that the role of the higher multipoles (a,,, 2 > 3) remains as important
as for zero temperature. In other words, the average shapes for T # 0 are about
the same as for 7' = 0, provided the clusters are not spherical. One may say that

“parts of the deformed regions melt away". Even for N ~ 600 and T = 700°K
substantial islands of deformation are left in the center of open shells.
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Figure 2.

Shell contribution Fsy to the free energy after minimization with respect

to five deformation parameters and the equilibrium deformation parameters « and a of

liquid Na clusters in the mass range 90

Figure |

< N < 310.
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Figure 3.  Shell con-

“tribution Fsp to the free

energy after minimiza-
tion with respect to pairs
of deformation parame-
ters and the equilibrium
deformation - parameters

., 3 and a4 of liquid Na

clusters in the mass range
310 < N < 730. The
full drawn lines are the
zerolines for Fs . Inthe
upper panel -the curves

.with the spike in the mid-

dle of each shell are re-
sults of the minimization
with respect to the pair

" (e, @3) “the other ones

with respect to (o, aq).
The deformation param-
eters are shown only for

T = 0 (diamonds) and

T = 0:06 eV (stars).
Oﬁly the « - values from
the minimization withre-
spect 1o (@, ag) are in-
cluded. The a - values
from the minimization
with respect to (a, a3)

“are similar. Taken from

ref. [3].
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thure 4. ‘The free energy of Nasgg as a function of the deformauon parameter a. The
quantity F'SH is defined in the same way as'in figure 3.

Such a behavior is a consequence of the fact that the surface § F{(«, o, T)
is similar to the surface. 6 E(e, a,) at T = 0. Only the scale 'of the'relief is
reduced and it is smoothed. The deformed minima of the clusters near the magic
N are relatively shallow. At finite T' they become so shallow that they can no
longer compete with the term I, p, which drives towards spherical shape (cf. fig.
4). On the other hand, in the center of the open:shells the minima of § F" are
sufficiently deep such that the reduction of their depth is not enough to make Fy p
competitive. They will remain in the total F surfaces, shifted only to sllghtly
reduced deformation (cf::fig. 5): :

The thermal fluctuations tend to wash out the shell structure [9] The dlfference
between the calculationsat T = 0and T = 700° K increases with the mass number
N. This is expected, because the. parameter controlling -the 'suppression of the
shell structure is the ratio T /iw, where iw ~ 4N.='/3eV. is the spacing of the
shel]s Thus, a temperature of 700° K" is rather low for N =~ 100 and the amplitude
of the shell modulations is about the same as for.T' = 0. For N > 300 the same
temperature causes a significant suppression of the shell structure. S

;. The deformations shown in figures 1, 2 and 3 represent the average shape
of the ensemble. There are thermal fluctuations around them. The amplitude of
these fluctuation is’ _ o

o ~ \[T(F[da?)-! an

In the centers of the spherical and of the defonned regibns the shell correction § F
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Figure 5. ,.The free energy of Naseg as a function of the deformation parameter . The
quantity Fsg is defined in the same way as in figure 3. .,

increases the curvature and, as a consequences, reduces the thermal fluctuations
(compare-fig. 4 and 5). In the transitional regions, where the deformation melts,
the contribution of d*§F/da? to the total value of d?F/da? is small. There,
the thermal fluctuations are much larger, of the order of the fluctuations of the
classical drop. : :

Fig. -6 1llustrates the lmponance of the hlgher multlpoles by dlsplaylng the
actual cluster shapes at zero temperature.. The shapes: for' higher temperature are
almost.the same, except that the regions of spherical clusters around the magic
numbers expand. It is seen that the shapes of most clusters-are rather different
from spheroids, which appear only for a restricted number of clusters in the center
of the deformed region. Instead, the sequence of spherical - pear like - [emon like
- spheroidal - barrel like - spherical shapes is repeated in each shell. '

+.. In order to check the predictions of the SCM it would be interesting to measure
the ionization potentials for the alkali cluster with a mass‘larger than 100.. Their
local variations may. serve as an indication of the predlcted meltlng away of the
shell structure. EREE

The measurement of the plasmon resonance for’ heavy mass selected clusters
should provide evidence for the predicted survival of deformation. So far there
exists only a measurement of the plasmon resonance in K clusters with masses
distributed around 500 and temperatures between 600° K and 800°K" [10]. No
splitting of the resonance has been observed. This could be taken as an evidence
that the average quadrupole deformation should be small. The SCM predicts
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Figure 6. Shapes of the even Na clusters in the mass range 90 < ‘N < 310." The
clusters are ordered'acc'ord‘ing‘ to their electron number N from the left to the right The
values of N are given for the clusters on the outer border of the ﬁgure “The’ symmetry
axes lie horizontally. ‘ s

substantial quadrupole deformations around N =500 (cf. 'ﬁg 3). According
to fig. 5, the shape fluctuations at a temperature of 0.06 eV should not be large
enough to destroy- the average "quadrupole - deformatron and a splitting of ‘the
resonance should ‘be seen. As will be discussed below, the evdporation spectra
seem to contain evidence for deformation around mass 500, in accordance with
the calculations. The reason of this discreépancy is not clear at this point. The
poor mass resolution or differences between Na and K may play a role. -

In the following we will discuss how the results of the SCM can be used to
calculate decay rates of liquid clusters. : '
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4. Evaporation of neutral atoms

The evaporatron of neutral atoms can be consrdered as a statistical process. The
evaporation rate can be estimated using the pr1nc1ple of detailed balance, which
Weiskopf[11] applied for the evaporatron of neutrons from nuclei. The probability
per unit time to evaporate an atom with the kinetic energy ¢ froma cluster w1th
mass number N and energy Eis[11] ‘

magp(E &N -
7. (E N)

Wde = g )de f (18)
Here, m is the mass of the emitted atom, g its spm degeneracy and g the Cross
section for the inverse reactlon of absorbmg one atom. The mother cluster has the
density of states p(E N) and the daughter cluster p(E — ¢, N — 1). It is assumed

" that there 'is no bamer for the atom leaving the cluster, since we consider the
evaporation of neutral atoms. The absorpt1on cross sectlon is taken to be equal to
the geometric one * C ‘ B

a_sz . L (19)

i. e. anatom st1cks when it h1ts a cluster

Rate constants have been denved and applied to clusters based on the assump-
tion that the dens1ty ‘of states is the, one for 3N = 6 oscillators, among which
the energy is equ1pamtloned (12, 13] ~Obviously, this density of states cannot
be very accurate for liquid clusters. The ions move through the cluster instead
of oscillating ; around fixed positions in a molecular skeleton. We do not use an
exphcrt model for the ions, rather we explo1t a relation between the entropy and
the density - of states that has been derived in.refs. [14, 15] and represents an
approximation to the micfocanonical ensemble . '

E,N 31BN, 20
PLE,N)= T(E, N)\/_—ZWC(—'—E N -0
The entropy S(T,N), the energy E(T N ) and the heat capacity C(T N ) are
oobtained from the free energy F(T', N') by the standard thermodynamrcal relations
for a free cluster, only in contact with a heat bath.

. T
S(T,N):——‘ﬁ‘F(T,N) | ‘ | (21)
E(T,N)= F(T,N)+TS(T,N) (22)

C(T,N)= (—%—,E(T,N) = T(%S(T, N). (23)
12

Inverting eq. (22) determines the temperature T'(E, N) as a function of the
energy and provides C(E, N)and S(E, N). The preceding relations permit to
calculate the density of states from the SCM free energy F(T, N ), which has been
introduced in section 2. It should be underlined that the droplet expression for
Fpp represents a phenomenological model for the density of states of both the ions
and the valence electrons. Since-its parameters are adjusted to the experimental
thermodynamic properties it is expected to be more realistic than the model of
3N — 6 oscillators. The shell correction 6 F deterrmnes the modulation of the
density of states by the shell structure.
Combmmg eqs (18) and (20) the evaporatlon rate becomes [15]

mR? C(E N) N |
k=g T(E,N)T(E,N - 1 A2 ) S(BN-1)-S(E.N)
g L ( )1( ) C(E,Vj—l)e (24)

A similar expression.without a shell correction has been derived in ref. [16]. For
large clusters one may assume that the temperature does not change very much
when one atom is emrtted Then )

F(T,N — 1) - F(T,N) _ AiF(T,N)
===

S(E,N — 1)— S(E,N)~ — (25)

and the rate takes the slmple form [15,17]

o mR: s prNyT B
3 1e - (26)

Tab. | quotes evaporation rates for sodium that are calculated neglecting the
shell correction, i. e. F' = Fyp. Itis seen that for N >'100 the assumption of a
small change of temperature after the emission of one atom and, as a consequence,
expression (26) become quite accurate. Below mass 100 one cannot neglect the
change of the temperature and should use the expression (24); . :

Analyzing experimental evaporation spectra it is a popular approach to use
the density of states of the system of 3N — 6 harmonic oscillators pg(E*, N),
which depends only on the thermal energy, . .

E*=E- EO(N); R O Y )

where E,(/NV) is the ground state'energy. All effects of the shell structure are

“assumed to be represented by the. variation of E,(N), since pg is a-smooth

functron of V. This approach results in Engelking’s evaporatron rate [l"]

R mR-(ﬁ )3(5 _ D(N)yN-?

‘kE_ DL (2’8)
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TABLE 1. | Comparison of different evaporation rates. The decimal logarithm of the
rates is quoted, where the rates are in units s~!. The energies are given in eV and the

temperatures in meV/ . The column kp presents the droplet rate (24) calculated assuming'

T = 50 meV for the-mother. The thermal energies of the mother and daughter, as
obtained from the droplet model, are given in the column E*, The column kg quotes the
rate expression (26), evaluated for T .= 50 meV'. The column kg presents Engelking’s
rate (28), where for each pair of NV the upper line is calculated for the thermal energy as
given in the column £* and the lower line is calculated for 7' =.50 meV . The column Tg
quotes the temperatures in Engelking’s model, corresponding the case when E* is chosen
to be equal to the droplet value for the mother. The frequency the oscillators in eq. (28)
is equal to the Debeye valuefiw = 12.8 meV . In all calculations only the liquid drop free
energy has been used and g = 1.

0.2 ™ T T T T T T

0.0 s, F5F

AyF, 8V

T log kE

-0.2
90

0.4

140

190

240

290

Ln(I)

-0.3

N "E* logkp logkc Tg
20 - 404 564 650 50 _ 940 75
19 -3.09 S 40 589 6l
50 999 605 641 SO 925 €9
49 9.00 . 46 671 64
100 1985 = 621 640 50 923 68
99  18.84 48 693 65
500 9835 650 . 654 50 933 66
499 © 19728 50 720 65
103 196.15 662 664 50 943 66
) -195.07 50 732 65
10%: 195030 7.10  7.12 50 - 9.88 65
©11949.19 - ' 50 778 65
where the ground state separation energies : )
L D(N)=E(N - 1) = EJ(N) .. L (29)

have been introduced. There are two inherent assumptions that we would like to
discuss: The oscillator model for the density of states and the absence of shell
structure in E*. '

- Let us start from the first.” Table 1 compares the our droplet rate, which is
obtained by setting F' = Frp(sphere), with Engelking’s expression, in which
the separation energies: D(N') have been set equal to the sphe'rical droplet values
at T = 0. The difference between the two rates consists only in the treatment of
the thermal excitation. ‘The values of kg in the upper line of the fifth column of
table 1 are obtained assuming that the mother cluster has the same internal

14
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Figure7. :Differences of the free energies (upper panel) and logarithm of the relative
experimental intensities (lower panel) as determined in ref. [20, 21] for Na clusters in the
mass range 90 < N < 310. The quantity Ay F(N) = (Fsg(T, N —2)= Fsg (T, N))/2
is displayed for T = 0.06 eV . e

energy E* as the droplet ( quoted in the second column of table 1). The droplet.
rate is three to four orders of magnitude smaller than Engelking’s estimate. The
origin of the difference is the smaller heat capacity of -the system of oscillators.:
AtT = 50 meV, the specific heat of sodiumis ¢ = 3.5 to be compared with 3 for
the system of harmonic oscillators. As a consequence the temperature is higher

15



T =0.06 eV
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- Figure8. Differences of the free energies (upper panel) and logarithm of the relative
experimental intensities (lower panel) as determined in ref. [20, 21] for Na clusters in the
mass range 310 < N < 730. The quantity Ay F(N) = (FSH(T N—-2)— FSH(T NY))/2
is dlsplayed forT = 0.06eV

in the latter. Since more atoms are excited to energies large enough to separate
from the cluster, the evaporation rate is strongly enhanced. The-larger. specific
heat of the liquid is a consequence of the strong anharmonicities in the vibrational
amplitudes that occur when the material melts.-If in an experiment the thermal

enefgy E™ would be known, one could directly calculate the separation energies
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Figure 9. Differences of; the free energies for:Na-clusters in: the mass range
310 <. N < 730.: The quantity A,F(N) = (FSH(T N:= 7) - FSH(T N))/Z is
dlsplayed for7'=0:.12eV. i e o Pl i
D(N) from the measured evaporation ratés. The different heat capacities of the
system of harmonic oscillators and ‘the droplet would lead to different.values of

D(N ) If one chooses ‘D{ N).such that Engelking’s rate becomes equal to the

droplet value given in the:table:1, one finds ‘D(500) =:1:49 eV instead of the
value 1.06 eV . “The latter value corresponds to the zero temperature liquid drop
energies E, and is used in the calculation of the droplet rate.: An experiment, in
which a single photon of definite energy is absorbed, would permit to distinguish
between these two models.” As seen in table I, our droplet rate and Engelking’s -
rate are not very different when taken at the same temperature. Qualitatively this
is explained by the fact that the thermal activation is the same in both cases.- The
smaller value of E* for the oscillator model does not come into play. Thus, in
experiments that fix the temperature,-like the analysis of the ratios of monomer
and dimer yields carried out in refs {18,.19], the droplet rate and Engelking’s rate
agree much better. As discussed in detail in ref. [15], the separation energies
D(N) derived from the ratios of the evaporation yields agree within 100 meV'.
For example, assuming equal ratios between the dimer and monomer intensities
for N=500 the separation energies derived from the two models would differ by
80 meV.

The second assumption, that the electronic shell structure only shows up in the
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ground state energies of the clusters is equivalent to the assumption that Fsg does

- not depend on temperature. Asseeninfigs. 1and 3, this is areasonable assumption
for clusters with a mass below 100. Above mass 300 there is a significant reduction
of Fsy within the considered temperature range. Therefore, if one derives “shell
energies” from the modulation of the evaporation yields, they do not represent
the shell structure in the ground state separation energies. Rather, they should be
understood as the differences A; Fsy. In the case when T does not depend on N
this is immediately clear from the rate expression (26) for large clusters.

As discussed by S. Bjgrnholm in his lecture [20], the relationship between
the intensities observed after the evaporation cascade and the rate constants is a
complex one and the assumption that the temperature does not change with N is
not correct. Nevertheless, it seems plausible that the "experimental shell energies"
should be understood as free energies.

It would be interesting to use the rate constants derived on the basis of the SCM
method for an analysis of the evaporation cascade. Since this remains to be carried
out, we must restrict ourself to a qualitative discussion. Figs. 7 and 8 compare
Ay Fsy(T = 0.06eV, N} with In([,.1), where I, are the experimental intensities
[21] relative to a smooth background (for definition cf. S. Bjgmholms talk [20]).
The shapes of the curves-are remarkably similar. The magic numbeér correspond
to the intersections of the downsloping parts of Ay Fsg with the zero line. These
zeros agree well with the zeros of In(/;;). The function A Fsg has a horizontal
section in the. middle of each shell, which is a consequence of the deformation.
The calculations for 7" = 0.12 eV in fig. 9 demonstrate that the horizontal section
disappears for N> 190; where the calculated shapes are spherical. Flat sections
in the middle of the shells are clearly visible in the experimental curves In(I,).
They: present evidence for-the existence of deformation; in particular near mass
500 (cf.. the discussion of the plasmon resonance in section 3). .

In the experimental :curves the shell structure is- more washed out than in
the calculations. It-is:also seen that the shell structure falls off faster with N
in.experiment than in theory. This has been discussed before in refs. [22, 9].
_There is-also the question of the absolute scale. - Assuming that the intensities
are proportional to the rate constant would ensue a scaling the experiment values

' In(1I;¢r) by T'.-With this scale the calculated shell modulation is a factor of 10 to
20 too large. As discussed by S. Bjprnholm [20]; the analysis of the evaporation
spectra by means of the model suggested by Hansen [23] seems the be a remedy to
some of these problems. On the other hand, the shape of the curve In(1;;) seems
to correlate much better with the calculated curve A\ Fggy than the experimental
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curve D( N ) extracted from the intensities by means of this model.

5. Summary

We have generahzed the shell correction approach to finite temperatures A new

renormalization procedure based on the canonical eensemble has been suggested. -
Renormalizing the smooth part of the free energy of the cluster to the free energy
of a macroscopic droplet of liquid alkali metal implicitly includes the ionic degrees
of freedom. This allows us to derive the den51ty of states and a new expression.
for the evaporation rate of atoms, which we believe to be more accurate than the
ones presently used. The free energy of sodium clusters in the mass range from
100 to 700 has been minimized with respect to several deformation parameters
describing the axial shape of the cluster. :For the clusters lying in the center of *
the open shells the deformatlon survives thermal fluctuations correspondmg to
temperatures of hot clusters forming the beam. The higher multipoles of the
shape remain as important as_for zero temperature but the regions of sphencal
shape around the maglc numbers expand w1th mcreasmg temperature and mass

- number.
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