


The many-body problem and, in part‘.muia.r, the study of correIa.ted strongly
interacting electrons in solids is one of the most fascmatmg subjects in solid state
physics. [1, 2). The subject of the present paper is 2 microscopic many-body theory
of strongly correlated electron models. A principal importance of this problem is
related with the dual character of electrons in a wide class of materials (transition
metal oxides, intermediate-valence solids,. heavy. fermions and high-Tc supercon-
ductors). The behaviour of electrons in these materials exhibit both localized and
delocalized features [3], [4]. Contrary to the wide-band electron systems (like simple
metals), where the fundamentals are very well known and the electrons can be rep-
resented as only weakly interacting, in these substances the bands are narrow and
the electrons interact strongly giving rise to complicated spectra and interesting and
important phenomena like band magnetism, strong effective mass renormalizations .
and superconductivity.

A vast amount of theoretical searches for the suitable description of the strongly
correlated fermion systems deal with the mmphﬁed model Hamiltonians. These
include as workable patterns single-impurity Anderson model (SIAM) [5] and Hub- -
bard model [6]. In spite of certain unrealistic simplifications these models exhibit
the key physical feature: the competition and interplay between kinetic energy (itin-
erant) and potential energy (localized) effects (c.f. [7]). A fully consistent theory of
the quasiparticle dynamics of both models is “believed to be crucially 1mportant 8]
for a deeper understanding of the true nature of the electronic states in the above
mentioned class of materials.

In spite of many theoretical efforts a satisfactory solution of the dynamical prob-
lem is still missing for the "simple” Anderson/Hubbard model. The famous Bethe-
ansatz solutions of the Hubbard. model in one dimension determination of the ground
state and thermodynamic (static) properties (static susceptibility, specific heat etc. ).
But for both models there is not yet an exact solution for the many-body dynamics.
Therefore, it is still necessary and justified to develop lmproved a.pprox1mat10ns for
the dynamical propettxes of the SIAM. - o

The present paper is devoted to the development of such an 1mproved interpo-
lating approximation for the dynamlca.l properties of the SIAM. We will show that -
a self-consistent many-body approximation can be formulated which reproduces all
relevant exactly solvable Jimits of the model and mterpola.tes between the strong-
couplmg and the weak- coupltng Ilmlt .

. The Hamlltoman of the SIAM can be wrltten m ‘the form ’

H= Z exéh er, ¥ Z Foo foo foo + = Z faforfafoma +V Z(c— for+ fwc,,a) (1)

where c", and f{ are the creation operators for conduct:on and localized electrons;

€ is the conduction electron energy dispersion, Fy, is the localized (f-) electron
energy level and U is the intra-atomic Coulomb interaction at the impurity site. Vv
represents the s — f hybudlsat:on



In connection with the dynamical properties the one-particle Green function is
the basic quantity to be calculated. The two-time thermodynamic Green Function
(GF) of the localized electrons is defined by
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We start by considering the equa.tlons of motion for the Fourier transformed, frequency-
dependent GF:
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where the latter equatxon defines the one—partlcle selfenergy X,(z) and

has been used. :
The hlgher order Green function in Eq.3 fulﬁlis the equatlon of motion
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bFrom these two exact equatlons one immediately recovers the two trivial exactiy
solvable limits of the SIAM, namely
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We want to develop an “interpolating” solution for the SIAM, i.e. a solution
which recovers these two limits, which — in analogy with the terminology known
from the Hubbard model- we call "atomic limit” (V = 0) and "band limit” (U = 0).
The simplest approximative "interpolating” solution has the form f12, 13}:
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. This is equivalent to a selfenergy {ulfilling the equation
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Obviously, this is just the analogue of the Hubbard III approximation [14] for the
SIAM. As for the Hubbard model, however, Fermi liquid properties and the Friedel
sum rule, which should also hold for the SIAM [13] at least order by order within
the standard U-perturbation theory, are violated within this simple appro‘{lmat]on
(6).

An approximation, which automatically fulfills these Fermi liquid properties and
sum rules, is provided by the selfconsistent second order U-perturbation treatment
{80OPT). Within I.Im weak-coupling expansion up to order U the selfenergy is given

by ‘
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One of the goals of the present paper is to find some way to incorporate this 17
perturbation theory cxpansion in the functional structure of the interpolating dy-
namical solution of the SIAM. This means that the approximation we are looking for
shall not only fulfill the limits (5), but the approximation for the selfenergy shall be
correct up to order U? perturbationally around the band limit U = 0. On the other
hand also the atomic limit V = 0 shall be fulfilled. ‘This is the case Tor the SQOPT
around the Hartree-Fock solution [16], but only for the symmetric SIAM. For the
general situation (position of the Fermi level relative to Fy and Ey + U/) a heuristic
semi-empirical approach for constructing such an approximation has becn presented
for the Anderson model in Rel.[17] and for the Hubbard model in Refs.[18, 19); the
latter approximation [18] can also easily be applied to the SIAM. Qur intention is to
take inlo account expansion (8) self-consistently. Furthermore, in contrast to Refs.
[16, 17, 18] the approximation shall not only fulfill the atomic limit V = 0, but i
shall be correct up to order V2 in a strong-coupling expansion around the atomic
Himit. _ 7
During the last decades several different refined many-body techniques have been
applied to the SIAM [20] - {38], and many of these approaches are strong-coupling
treatments around the alomic limit and can be classified as being correct up to
a certain power in the hybridization V. This is, in particular, trae for the non-

_ crossing approximation (NCA), which is correct at least up to order V* and may b(

considered to be the most successful approximate treatinent of the SIAM [21, 22,
23, 24, 25, 26, 27]. The NCA takes into account an infinite order resummalion of



all non-crossing diagrams within a systematic perturbation treatment with respect

to the hybridisation V' in terms of Goldstone diagrams. Originally this method.

was formulated for the /' — oc SIAM, but meanwhile also finite U/ versions of
the NCA exist [28, 29]. The NCA fails, however, to correctly reproduce the weak-
coupling himit for small U/, and Fermi liquid sum rules are violated. This is still
true for the even more sophisticated post-NCA developped recently by Anders and
Grewe [30}. Similar statements can be made for a higher order equation of motion
decoupling scheme [31, 32, 33]; it is correct up to order ¥? around the atomic limit
and has so far been applied only in the limit I/ — oc, but can easily be extended
to the case of finite {/. But then it is easy to see that it fails to reproduce the
SOPT of Eq. 8, and - also {or infinite I/ - the Fermi liquid sum rules are violated.
An alternative advanced many-body approximation was suggested and investigated
by Neal [34]; this treatment correctly reproduces both limits (5) and is obviously
(from the structure of the expression for the Green {unction) a direct, systematic
improvement of {6} and is correct up to order ¥'*, but it does not incorporate the
SOPT (8), too. .

When mentioning the progress achleved for an understandmv of the many-body
dynamics of the SIAM one should not forget the important numerical results ob-
tained by the numerical renormalization group treatment [39] and by quantum
Monte-Carlo methods [40]. Though a real understanding of the SIAM can only be
reached within an analytical theory, the available numerical results for the frequency
dependence of the spectral function, for instance, are very useful, in particular as
they allow for a comparison with the results of an analytical approach. ‘

To construct a suitable approximate solution for the SIAM fulfilling all desired
propertles mentioned above we start from the fo[lowmd exact re}atlon [36]:
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The equation (9} is still exact. To construct a suitable approximation for the highez-
order GI‘ (10) we consider the equatlon of mohon forit:

(z = Eos = U) << foa fo_ s foo| Fin fa- s fomo >>0=< f§ g fouo >
VY (<< e fi o foual s f oo fone >
E

— << fanth_ fooolfly Fiofoce 3>+ << fooFisio g TSy oce >>2) (1)

The three higher order Green functions on the right hand side of (11) vanish for
V = 0 and arc in lowest order finear in V. Because of the additional prefactor V in
(11) the total expresion is of order V2, To be exact up to order V? it is, therefore,
justified to replace these three GEs by their lowest order contribution, which can

be easily calculated, either by a further application of the equa.tibns of motion or in
finite order perturbation theory with respect to V. The result is
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-Simply inserting Eqs.(12 - 14) into (11) one would obtain a finite order V?
perturbation expansion of the selfenergy or one-particle Green function; of course,
infinite order resummations are desirable to obtain a selfconsistent approximation.
In general, there are several possibilities to incorporate selfconsistency, but most of
these possibilities lead once more to an approximation being exact up to order V'
but not reproducing the weak-coupling limit, i.e. one obtains solutions of a similar
or equivalent structure as the approximations of Ref. [32, 34], for instance. As far
as we can see there is only one way to replace the -Green functions on the right
hand side of (11} so that also the SOPT is contained and recovered by the resuliing
expressions, and this approximation reads:
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and an analogous equation for the GF << f“’c::-a Jool fg_a foe fga >>
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In the limit of small U/ the theorem of Wick can be applied to the equation and
the standard perturbation theory (8) up to second order in U is reproduced. In
lowest order in V' we insert the atomic Green’s function (V = 0) on the right hand
side of (15 - 17) and we recover (12 - 14). Therefore, these replacements (15 - 17)
lead to an expression for the selfenergy of the SIAM, which is exact at least up to
order U? in a weak coupling expansion and up to order V? in a strong coupling ex-
pansion. The explicit calculations within this treatment are of similar complexity as
those of selfconsistent SOPT calculations, because similar energy integrals have to
be evaluated only that the spectral functions of higher order instead of one-particle
Green functions occur,

In summary, a new advanced many-body dynamical solution for SIAM has been
developped, which recovers the exactly solvable limits V = 0 and U = 0 (5) and
which is even more at least correct up to order V2 in a strong-coupling expansion
and simultaneously up to order I/? in a weak-coupling expansion. A more detailed
discussion and consideration of this new approach for the construction of a self-
consistent solution for the SIAM as well as results of numerical calculations will be
presented elsewhere soon.
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