


The problem of the adequate description of the strongly correlated electron sy-
- stems has been studied intensively during the last decade, especialy in context of
Heavy Fermions and High-Tc superconductivity [1]. The understarnding of the true
nature of the electronic states and their quasiparticle dynamics are the one of the
central topics of the current experimental and theoretical efforts in the field. The
plenty of experimental and theoretical results show that this many-body quasipar-
ticle dynamics is quite non-trivial. The theoretical description of the strongly corre-
lated systems have led to the formulation of two model Hamiltonians which plays a
central role in our attempts to get an insight into this complicated problem. These
are the Anderson single-impurity model(SIAM) [2] and Hubbard model [3]. It was
only relatively recently recognized that the both model have a very complicated
many-body dynamics and their "simplicity” manifests itself in the dynamics of two-
particle scattering, as was shown via elegant Bethe-anzatz solution [4]. In this paper
the problem of the adequate description of the ma.ny—body dynamics of STAM will be
discussed in the framework of equation-of-motion appproach for two-time thermo- -
dynamic Green’s Functions. Our main motivation was the fact that the consistent
theory of dynamical properties of the Hubbard model was formulated recently [5]
usmg this approach. The second motivation was recent publication (6], where an
»exact” dynamical solution of the SIAM has been derived by means the equation of
motion for the two-time GFs. This "derivation” gives to us an opportunity to em-
phasize some important issues about the relevant dynamical solutions of the strongly
correlated electron models (SIAM, Hubbard model, PAM etc.) and to formulate in
a more sharp form the ideas of the method of the Irreducible Green’s Functions
(IGF) [7]. This IGF method allows one to describe the quasiparticle spectra with
damping of the strongly correlated electron systems in a very general and natural
way and to construct the relevant dynamical solution in a self-consistent way on the
level of Dyson equa.tlon w1thout decoupling the chain of the equation of motion for
the GFs. '
Let us con51der sta.nda,rd Hamlltoma.n of SIAM [2):

H= E CkaUCka + E and+ doa + U/2 Znoano-o + Z ‘/k(c;cl.adoa + d+ cka) (1)
. . : ko

where ¢ and dt are respectiVely the crea.tion opera.tors for conduction and loca-
lized electrons; other notations are standard. In the past years many theoretical
Kpapers have been pubhshed in which the a.pprox1ma.t1ve dynamical solution of
_the model (1) ha.ve been mvestlgated by means of various advanced methods of
,‘many-body theory. Desplte the considerable contributions to development of the
,‘many-body theory a.nd to our better understa.ndmg of the physics of the correlated
electron systems, the fully consistent dynamlcal analytycal solution of the SIAM is
still lacking. A detailed review of the results obtained thus far and the methods used
will be done in an extended publication. Here we shall discuss some selected papers
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only which are directly related to the problem under consideration [8] - {13]. Our
goal is to propose the new nonperturbative many-body approach for description of
the many-body dynamics of SIAM at finite temperatures using .the circle of ideas
of the Irreducible Green’s Functions approach for the consideration of the strongly
correlated electron systems [1], [5], [7]. The interplay and the competition of the
‘kinetic energy (e), potential energy (U) and hybridisation (V) affects substantially
the electronic spectrum. Because these aspects of the problem are of great import-
ance and. are still not yet clarified completely( as it follows e.g. from paper [6]), we
- briefly discuss these questions here. The renormalized electron energies are tempe-
rature dependent and the electronic states have a finite life times. These effects are
most suitable accounted for by the Green’s functions method [14]. The purpose of
the present approach is to find the electronic quasiparticle spectrum re-normalized
by the interactions(U- and :V-terms) in a wide temperature and parameters of the
model range and to account explicitly for the: contribution of damping of the elec-
tronic states when calculating the various characteristics of the SIAM.
For this aim we shall use the method.of Irreducible Green’s Functions (IGF) for
the strongly correlated: electronic systems ll] [5]. The essense of the methods is as
Hollows [7]. - s - L
The mtroductlon of the 1rreduc1ble parts. of the GI's results in separatlon of all sui-
" table renormalizations of the ”generalized mean fields”(GMF). ‘As a result, without
having to make any truncation of the hierarchy of equations for. the GFs, one can
write down a Dyson equation (in terms of retarded GFs ! } .
G=G"" +GM'MG @
and obtaln an exact analytical representa.tlon for the self—energy operator Min terms
of hlgher-order GFs

M=G" (GMF)‘l o (3)

: Approx1ma.te solutions are constructed as deﬁmte approxrmatlons for the self-energy,
in another words on the level of the higher-order GFs. It is necessary to emphasize
that there is an intimate connection between adequate -introductions of mean fields
and internal symmetries of the Hamiltonian. Though we do not want to go here into
the mathématical subtleties of defining the correct mean fields for different models,
we shall mention only that GMF can exhibit a quite non-trivial structure, especially
for the strongly correlated case [5], {12]. To obtain this structure correctly, one must
- construct the full GF from the complete algebra of relevant operators.”
 The fundamenta.l role of the relevant algebra of the operators has becn dlscussed in
. papers, {12}, {13] , where the dynamical solution of SIAM, periodic Anderson ‘mo-
,del(PAM) and two-impurity Anderson model (TIAM) has been considered by’ the
IGF method The both weak and strong correlation limits have béen’ considered. Tt
. was shown, using the minimal “algebra of relevant operators that 1he (onstructlon

of the GMFs for SIAM is quite non- “trivial for the strongly correlated case and it i is
rather difficult to get it from an intuitive physical point of view.

In this papers we want to continue this line of cons1deratlon deallng with a more
extended algebra of operators from which the relevant matrix GF will be construc-
ting. In the same spmt it belongs to the most 1mportant 1ntentlons of this work to
provide the basis for future consideration of the self- cons1stent 1nterpolatlon solutl-
ons of SIAM and PAM which will be’ done in the more extended papers elsewhere
At this pomt it is worthwhile to underline that desplte that the fully consistent
dynamlcal solution of SIAM is still lacking, a few 1mportant contrlbutlons has been
done previously with the equations of motion for the GFs. To give a more instruc-
tive discussion let us consider the slngle— particle GF of locallzed electrons, which is
defined as

Y

Gull) =< do,dl, >>= —01) < [do)y a1 )1 >=
1/27r / doexp(—iot)Go(w)  (4)

In the 1mportant paper [8] the calculatlon of the GF (4) llas been conSIdered in the

limit of infinitely strong. Coulomb correlatlon U and sma.ll hybrrdrsatlon V. It was
shown ‘with the usmg the dccoupllng procedure for the hlgher order GFs,Ithat the .
obtamed solution gives the correct result in the Kondo limit at, low temperatures and |
_for some other limits. The functional structure of the Lacrorx ] solutlon generallze [
 the well known 1nterpolat1ve , small V solutlon 19] ¢ of SIAM e e

< no—a >

G( _ 1= <ne, > + 7
e o e e DR

where -
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This solutlon glves the correct results for U= 0iand'V = 0 and s the: simplest -

reasonable ”atomic-like”, solutlon of SIAM. This solution:is valld at'small V only.":
Oh and Doniach found. {9 9] that for V- >'0.5 eV the spectral 1ntcns1ty of the:GF: (5)
“starts:to:go- nega.tlve for'a certain: range: of frequency values;indicating-that’ their :
decoupling procedure does not. conserve probablllty at:cach'value’of .w: To show :
this, let ‘us‘remind how to:get: solutlon -(5). "It follows from:the well known system :

N ¥

of equatlon for sma.ll V llmlt e WY :‘r;- :”, motEe s T T e

(w an e S(w)) << doaldga >>w— is + U << dncno—cld:a >>w7 (7)

(w= Eo — U) << do,na_aldw >> < Mo-g >+ ZVk << Croos |dY, >>w, (8)

( - 6’\) << Ckﬂno—ﬂldaa >>w'— lk << doa"n-aldoa >>w (9)
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The equation ( 8) is approximative; it include two morc terms, which were threated
in the limit of small V in paper [8]. The solution (5) has been obtained in paper [6]
and presented as an "exact”. We shall see later on that, in fact, all results in [6] arc
approximative and are valid in the lowest order in V.

Another advanced many-body approach to analytical solution of SIAM was proposed
in paper [10]. The Schwinger-type functional derivative technique ha'; been used in_

[10] to get a solution, which have a number of truly remarkable properties. This
solution was first found analytlcally [10], then only recently verlﬁed mlmerlcally 1 1]
To find more complex expansion, including both U and V, ‘the "mean-fields”
paper [10] were introduced as follows:

<< do,dj_ack_a |dY, >>m< db eroo ><< dyo|d}, >>,
<< doact—ado—old:-a >>=< ct—ado—ﬂ ><< do”'dj.ﬂ >,

<< Chod}_ cpoldt, >>m< dY ey s ><< po|dE, >>,
<< oG _pdos|dl, >>m< &t do s ><< Oho|dt, >> (10)

In fact, the procedure of introduction of the mean field corrections in the paper [10]

remind (but not coincide) with that of the more systematic IGF method. The inela-

stic scattermg corrections (self- energy) and elastic ones (mean-ficld) are separated
in the IGF method in the most consistent and general way. The Neal’s approxima-

tion (10) is valid also for the small V but of course, completely in different sense

that solution (5). .

We now return to the IGF method again and consider how the computations of
papers [12], [13] changes.for more general algebra of operators. Qur goal is to gene-
ralise solution (5) with IGF approach in a self-consistent way. In complete analogy
with [12] let us consider the following equation of motion in the matrix form

ZF(pv\k)Ga(paw) =1+ Z VPD(p’w) (11)

where G is-initial 4 X 4 matrix GF and D is the higher-order GF. We postpone to
write down .explicitly the relevant 16 GFs from which matrix- GF G consist of till
extended publication. For our aims here it will be enough to:proceed forth in the
following way. The equation (11) results from the first-time.differentiation of: the
GF G and is a starting point for the IGF approach. If one introduces irreducible
part for the higher-order GI' D, by precisely the same steps .as we have used .in
paper [12] and introduce the GMF GF according to

- Fp, IGH (p,0) = 1, (12)

then we will be able to write down explicitly the Dyson equation (3) and the exact

L i T

i e

expression for the self-energy M in the matrix form:

0 0 O 0
_ 0 0 O 0 -1
M,(kw)=1 ;q: A7 [0 0 Mg M 1 . (13)
\0 O M43 M44
Here matrix I is given by
1 0 ) < Nog >
0 1 < Npeg > 0
0 LK Ny > K N > 0
< Moy > 0 0 < Npy >

and the the matrix elements of M have the form:

Mas =<< A7 (p)| By () >>, Mas =<< Ay (p)| B (k, q) >>

My =<< AY (k,p)|Bi (q) >>, May =<< AY (k,p)|BY (k,q) >>

Since self-energy M describes the processes of inelastic scattering of electrons (c-c ,
d-d and c-d types), its approximate representation would be defined by the nature
of the physical assumptions about this scattering.
To get an idea.about the functional structure of our GMF solution (12) let us write
down the matrix element Gggp o

< No—g >
“ERF - U - $MF(0) — Y{w) ©
< Noeo > Z(w) ' ' »
(w— E}F —U = SMF(w) = Y(w))(w — Epo — S(w))

UZ(w)

Y{w) = w— E,p — S(w)

S(w)L® + ZVL” (16)

G{,ZF =<< dooNoms|dt, 100 >>_
(14)
(15)

: VPL41 Vs |2L42
) Z _MF Z eMF
P

Here the coefficients L4, L*?, L% and L3? are the certain complicated averages
(c.f. [12]) from which the functional of the GMF is build.

We now return to a description of some of the issues involved in deciding whether or
not the solution of paper [6] is "exact”. For this reason we have tried in this paper
to make our presentation of the Irreducible Green’s Functions solution of SIAM as



concise as possible. From now on we shall concenrate only on the our first equation
of motion (11) , before introducing the irreducible GFs. Let us put simply in this
equation the higher-order GF D = 0' To distinguish this 51mplest equation from
the.GMF one (12) we write it in the following form

L L FERC(Rw) =T a0
4 .
The corresponding matrix elements in which we are interesting in here reads

' ’ ‘ 1e <y > <My >

G, = oo |dh, >>= = =g 18

2 =<<duldyy >>= ) Vo= By, —S@) - U (18)
o S L g >

G =<< d,,.,n,,_.,lriol,,no_., >>—, o= o~ 50) = | (tg)

UGS, =<< dognoso|dE, >>= G C(20)

The conclusion is rather evident. The results of pape‘r.[G] follows from our matrix
GF (11) in the lowest order in V, even before introduction of GMF corrections,
not speaking about of the self-energy corrections. The two GFs G3, and G%; are
equal only in-the lowest order.in V.. It is quite_ clear that the full our solution,
which includes the self—energy correctlons, is much more complicated as well-as the
solutions of [8], [10]. In fact, it is very easy to rewrite the system of the equatlons
of motlon (2) ( ) of paper [6] in the follomng equwalent form R '

<<d,,.,[ >>=if +g°Pg B
g = (o= B = S(w)

(22)

P=U<n,,>+U%<< do,,no_,|do,,no_., >>w 3 S23)

This equa.tlon has been derlved and used in paper [12] “The adva.ntage of the equa-
tion (21) is that it is purely identity and does not include any approximation. If we
insert our GMF solution (14) in (21) we sha.ll get.an essentially new dynamical so-
lution of SIAM which reproduces the exact solutions of SIAM for V =0 and U = 0

and generalise (even on the mean-field level) the solutions of papers. [8]; [10] The :

1dent1ty (21) permit’also to reformulate the problem of the derlvatlon of the su1table
interpolative solution of the STAMj including the U-perturbation expansion, on.the

rather dlfferent then the single-particle GF level ‘on.the’ level of the hlgher order

GFS as it w111 be shown in a separate publlcatlon

It is: worthwhlle to .underline that our,4 x4 matrix GMF., GF .(12) gives. only appro-;
ximative description of the suitable mean fields. . If we shall consider more extended:
8:%.8 algebra, we shall get the more correct structure,of the relevant GMF A more "
rigorous derivation of this relevant algebra, showing its central 1mportance for- the.

self-consistent dynamical solution ot.SIAM, will be presented elsewhere.

[11] H.L.Neal, Phys. Rev.Lett. 66 (1991) 818

In summary, we presented in this paper a general technique how a dynamical so-
lution for SIAM at finite temperatures and for the broad interval of the values of
the model parameters can be constructed in the spirit of Irreducible Green’s Func-
tion approach. We used an exact result to. connect the single-particle GF with the
higher-order GF to obtain an complex expansion in terms of U and V for the pro-
pagator. This approach offer a new way for the systematic constructions of the
approximative dynamical solutions of SIAM, PAM and other models of the strongly

-correlated electron systems. The work in thls dlrectlon is in progress.
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