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The problem of the adequate description of the strongly correlated electron sy
stems has been studied intensively during the last decade, especialy in context of 
Heavy Fermions and High-Tc superconductivity [1]. The understanding of the true 
nature of the electronic states and their quasiparticle dynamics are the one of the 
central topics of the current experimental and theoretical efforts in the field. The 
plenty of experimental and theoretical results show that this many-body quasipar
ticle dynamics is quite non-trivial. The theoretical description of the strongly corre
lated systems have led to the formulation of two model Hamiltonians which plays a 
central role in our attempts to get an insight into this complicated problem. These 
are the Anderson single-impurity model(SIAM) [2] and Hubbard model [3]. It was 
only relatively recently recognized that the both model have a very complicated 
many-body dynamics and their "simplicity" manifests itself in the dynamics of two
particle scattering, as was shown via elegant Bethe-anzatz solution [4]. In this paper 
the problem of the adequate description of the many-body dynamics of SIAM will be 
discussed in the framework of-equation-of-motion appproach for two-time thermo- · 
dynamic Green's Functions. Our main motivation was the fact that the consistent 
theory of dynamical properties of the Hubbard model was formulated recently [5] 
using this approach. The second moti~ation- was recent publication [6], .where an 
"exact" dynamical solution of the SIAM has been derived by means the equation of 
motion for the two-time GFs. This "derivation" gives to us an opportunity to em
phasize some important issues about the relevant dynamical solutions of the strongly 
correlated electron models (SIAM, Hubbard model, PAM etc.) and to formulate in 
a more sharp form the ide_as of the method of the Irreducible Green's Functions 
(IGF) [7]. This IGF method allows one to describe the quasiparticle spectra with 
damping of the strongly correlated electron systems in a very general and natural 
way and to construct the relevant dynamical solution in a self-consistent way on the 
level of Dyson equation without decoupling the chain of the equation of motion for 
the GFs. 
Let us consider standard Hamiltonian of SIAM [2]: 

H =I>:kctaCka + LEoadtadoa + U/2Lnoano-a + LVi(ckadoa + dtaCka) .(1) 
ka a . " ka 

where ct and dt" are respectively the creation operators for conduction and loca
lized electrons; other notations are standard. In the past years many theoretical 

. pap:ers have been published , in which the approximative dynamical solution of 
the model (1) have been investigated by means of various advanced methods of 
many-body theory. ·Despite the _considerable contributions to development of the 
many-body. theory and t~ our better. ~nderstanding of the physics of the correlated 
electron systems, the fully consistent dynami~l analytycal solution of the SIAM is 
still lacking. A detailed review of the results obtained thus far and the methods used 
will be done in an extended publication. Here we shall discuss some selected papers 
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only which are directly related to the problem under consideration [8] - [13]. Our 
goal is to propose the new nonperturbative many-body approach for description of 
the many-body dynamics of SIAM at finite temperatures using the circle of ideas 
of the Irreducible Green's Functions approach for the consideration of the strongly 
correlated electron systems [1], [5], [7]. The interplay and the competition of the 
kinetic energy (Ek), potential energy (U) and hybridisation (V) affects substantially 
the electronic spectrum. Because these aspects of the problem are of great import
ance and are still not yet clarified completely( as it follows e.g. from paper [6]), we 
briefly discuss these questions here. The renormalized electron energies are tempe
rature "dependent and the electronic states have a finite life times. These effects are 
most suitable accounted for by the Green's functions method [14]. The purpose of 
the present approach is to find the electronic quasiparticle spectrum re-normalized 
by the interactions(U- and V-terms) in a wide temperature and parameters of the 
model range and to account explicitly for the contribution of damping of the elec
tronic states when calculating the various characteristics of the SIAM. 
For this aim we shall use the method of Irreducible Green's Functions (IGJ:c) for 
the strongly correlated electronic systems [l], [5]. The essense of the methods is as 
follows [7]. 
The introduction of the irreducible parts of the GFs results in separation of all sui
table renormalizations of the "generalized mean fields"(GMF). As a result, without 
having to make any truncation of the hierarchy of equations for the GFs, one can 
write down a Dyson eq~ation (in terms of retarded GFs ! ) 

a= aMF + aMFMp (2) 

and obtain an exact analytical representation for the s~lf-energy operator M in terms 
of high~r-order GFs . . 

M = 0 -1 _ (GMF)-1 (3) 

Approximate solutions are constructed as definite approximations for the self-energy, 
in another words on the level of the higher-order GFs. It is necessary to emphasize 
that there is an intimate connection between adequate introductions of mean fields 
and internal symmetries of the Hamiltonian. Though we do not want to go here into 
the mathematical subtleties of defining the correct mean fields for different models, 
we shall mention only that GMF can exhibit a quite non-trivial structure, especially 
for the strongly correlated case [5], [12]. To obtain this structure correctly, one must 
cons.truct the full GF from the complete algebra of relevant operators. 
The fundamentai' r~le of the relevant algebra of the operators has been discussed in 
papers, [12], [13] , where the dynamical solution of SIAM, periodic Anderson mo
,del(PAM) and two~impurity Anderson model (TIAM) has been considered by' the 
IGF method: The both weak and strong correlation limits iiave been. considered. It 

. was sho~n, using the minimaJ algebra of relevant operators, that the constniction 
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of the GMFs for SIAM is quite non~trivial for the strongly c~rrelated case and it is 
rather difficult to get it from an intuitive physical point of ~iew. 
In· this papers we want to continue this line of consideration dealing with a more 
extended algebra of operators from which the relevant matrix GF :will be c~nstruc~" 
ting. In the same spirit it belongs to the most important inteIIti~~s of this work t~ 
provide the basis for future consideration or'the self-consistent interpolation soluti-. 
ons of SIAM and PAM which will be.done in the mor~ exte~ded pape~s elsewher~. 
At' this pbint it is worthwhile to underline that despite' that'ilie fuliy 'c~nsistent 
dynami.cal solution of SIAM is still lacking, a few impo;t~nt contributions· has b~en 
done previously with the equations of motion for the GFs: To give a ~o~e instri'ic
tive discussion let us consider the single- particle GF of loca,lized electrons, which is 
defined as · ' 

Gu(l) =<< dou(i), dtu >>= -iO(t) < [dou(i), dtuJ+ >= 

l
+oo . 

l/21r _
00 

dw exp(-iwt)Gu(w) (4) 

In the illl~orta~tpap~r [8] the .caic~latio~ o(th~ Gf (4}:ii~s:be~~,_~onsldered in th~. 
limit of infinitely ,strong Coulomb co.rrelation ,tJ and srnaB hybridisation, V,. It was 
shown, with, the 11sing the d~coupliIIg pr<>ce,dui~ for the high,er~w\1eT: Gf'.s, ;that the; 
obtained solution gives the.correct result in the Kondo limit at low temperatures and . 
for some oti1er limit~. The functional struct~re of the La~roi~'~ solt{tion gene~alize , 
the well known "inforp~lative'\ srn,all-V, s.olution [9] o[SIJM: .. . . ; : ; ., . , .. 
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' ' : · · 1..:.:. < n~.:.:; > • · < 71.o-/> ' 
· .. Go:(w)=.w.:...E· .:..::s(w)'+w-"E'.:...S(w)-U ,,., '·~- (5). 

00 .. OU, , 
1. , ·.• -·. ',,.,r; ·,;:: ··-·,.1-,.:··, 

where 

>$(~)'='I: 1Vkl
2 

k W- Ek 
(6) 

This solution gives,the correct results for U '= O; and V = 0 and is the simp\est 
reasonable "ato'mic~like": ~olution of SIAM. This solution. is valid ,at small V only.'. 
Oh and Doniach found [9} that for V>0.5 eV, the spectral intensity of the Gf (5) 
starts .to go negativefor·a 'certain range•of frequency values;,indicating that their 
decoupling pr·ocedure ,does· not. conserve probability at, e.tch value' of w: To show 
this, ·let ·us reinind how;to• get·•solution. {5).•· It. follows froni, the well known system 
of equation for srnall-V limit: · '·, ',,' ; · , 

(w - Eou - S(w)) << douldto >>..;=X+ u· << douno-uldttT >>w, (7) 

(w - Eou - U) << douno-uldtu >>w~< no-a > + L vk << Ckunouldt.,. >;>w, (8) 
!' ·.: •. -,, ,.-, -,·,' +· :: k .,,--·.){ , + ~. f. 

(w - Ek}<< Cka1l.o-o-ld0 u >>w= h << doo-110-o-ld0 u >>w (9) 
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The equation ( 8) is approximative; it include two more terms, which were threated 
in the li~it of small Vin paper [8]. The solution (5) has been obtained in paper [6] 
and presented as an "exact". We shall see later on that, in fact, all results in [6] arc 
approximative and are valid in the lowest order in V. 
Another advanced ~any-body approach to analyticai solution of SIAM was proposed 
i~ paper [10]. The Schwinger-typ~ functional derivative technique has be_en used in. 
[10] to get a solution, which have a number of truly remarkable properties. This 
solution was first found analytically [10], then only recently verified numerically [11 ]. 
T~ find more complex expansion, including both U and V, the "mean-fields" i~ 
paper [10] were introduced as follows: 

<< do,,.dt_uCk-uldtu >>~< dt_uCk-u ><< douldtu >>, 
<< douCk-,,.do-uldt-u >>~< Ck-udo-u ><< douldtu >>, 

<< Ckudt_,,.Cp-u.ldtu >>~< dt_qCp-u ><< Ckuldt,,. >>, 
<< Ck,,.c:_udo-aldt,,. >>~< c:_,,.d0 _,,. ><< Ckaldt,,. >> (10) 

In fa.ct, the procedure of introduction of the mean field corrections in the paper [10] 
remind (but not coincide) with that of the more systematic IGF method. The inela
stic scattering corrections (self- energy) and elastic ones (mean-field) are separated 
in the IGF method in _the most consistent and general way. The Neal's approxima
tion (10) is valid also for the small V but, of course, completely in different sense 
that solution (5). · · 
We now return to the IGF method again and consider how the computations of 
papers [12], [13] changes for more general algebra of operators. Our goal is to gene
ralise solution (5) with IGF approach in a self-consistent way. In complete analogy 
with [12] let us consider the following equation of motion in the matrix form 

'I:,F(p,k)Gu(p,w) =I+ L,VpD(p,w) (11) 
p p 

where G is initial 4 x 4 matrix GF and Dis the higher-order GF. We postpone to 
write down explicitly the relevant 16 GFs from which matrix GF G consist of till 
extended publication. For our aims here it will be enough to proceed forth in the 
following way. The equation (11) results from the first-time differentiation of the 
GF G and is a starting point for the IGF approach. If one introduces irreducible 
part for the higher-order GF D, by precisely the same steps .as we have used in 
paper [12] and introduce the GMF GF according to 

L F(p, k)G~F(p,w) = I, (12) 
p 

then we will be able to write down explicitly the Dyson equation (3) and the exact 
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expression for the self-energy M in the matrix form: 

(

0 0 
-1 0 0 

Mu(k,w)=I ~Vp¼ __ 0 O 

0 0 

0 
0 

M33 
M43 

Here matrix / is given by 

Cn.~. > 

0 
1 

<no-a> 
0 

0 
< no-u > 
< no-u > 

0 

and the the matrix elements of M have the form: 

~ ) r 1 

M34 
M44 

< nI" >) 
<no_,,.> 

Af33 =<< A;r(p)IBt(q) >>,Af34 =<< A;r(P)IBt(k,q) >> 

Af43 =<< A;r(k,p)IBi"(q) >>,Af44 =<< A1(k,p)IB;r(k,q) >> 

(13) 

Since self-energy M describes the processes of inelastic scattering of electrons ( c-c , 
d-d and c-d types), its approximate representation would be defined by the nature 
of the physical assumptions about this scattering. 
To get an idea about the functional structure of our GMF solution (12) let us write 
down the matrix element GMF: 

MF _ I + _ < no_,,. > 
G33 -<< do,,.no_,,. do,,.no-a >>- w - E;;!F - U - SMF(w) - Y(w) + 

< no-u > Z(w) 
(w - E;;!F - U - SMF(w) - Y(w))(w - E0u - S(w)) 

Y(w) = UZ(w) 
W - E 0 ,,. - S(w) 

Z(w) = S(w) L VpL41 + L l½,12 L42 + S(w)L31 + L VpL32 
p w - ErF p w - ErF p 

(14) 

(15) 

(16) 

Here the coefficients L 41 , L 42 , L31 and L32 are the certain complicated averages 
( c.f. [12]) from which the functional of the GMF is build. 
We now return to a description of some of the issues involved in deciding whether or 
not the solution of paper [6] is "exact". For this reason we have tried in this paper 
to make our presentation of the Irreducible Green's Functions solution of SIAM as 
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concise as possible. From now on we shall concenrate only on the our first equation 
of motion (11) , before introducing the irreducible GFs. Let us put simply in this 
equation the higher-order .GF D = O! To distinguish this simplest equation from 
the GMF one (12) we write it in the following form' 

' . \ ' 

}:F(p,k)G°(p,w) = I (17) 
p 

The corresponding matrix elements in which we are interesting in here reads 

r,0 H- 1- <no-u > . < no-u > ( 
u 22 =<< ioula~u >>= W - E

0
u - S(w) + W - Eau - S(w) - U 18

) 

rtO - d Id'+ - ·< na-u >' ( ) 
l>'33 -<< ouna-u auna-u >>- W - Eau - S(w) - U 19 

. ~2 ~<< dauna-uldtu >>~ G~3 (20) 

The conclusi~n is fathe~ ,evident. The res~lts of pap~r · [6] f~ll~ws from our matrix 
GF (11) in the lowest order in V, even before introduction of GMF corrections, 
not speaking about of the self-energy corrections. The two GFs Gg2 and Gg3 are 
equal only in the lowest,prdedn V. It is quite clear, that the. full our solution, 
which includes the ~elf~en~rgy corrections, is much m~re complicated as well as the 
solutions of [8], (10]. in:, fact, it is very easy to rewrite the system of the equations 
of motion' (2) '~'(4) of paper (6] 1n the following equivalent form·' · . · · · 

' • - , '. I 

<< dauldtu ·>>= 9° + g°Pg°,, 
.. ,:, : ·. ·. , .. 'g°;,(w.:..Ea~.:..-s(w))'"1':, 

2 +'. ,,,,·,,.,.' 
p = u < na-u > +u << dauna..:uldauna-u >>.;, 

(21) · 

(22) 

(23) 

This equation has bee,n, derived ~Iid used inpaper (12]. The ~dvantage of the equa
tion (21) is that it is purely identity and does not include any approximation. If we 
insert our GMF solution (14) in. (21) we shall get an e~sentially new dynamical so
lution of SIAM which reproduces the exact solution~ ofSIAM for V = 0 and U = 0 
and generalise ( everi on the mean-field level) the solutions of papers [8], (10). The 
identity (21) permit' also to reformulate the problem of the derivation o(the suitable 
in~erpolative sol~tion of the SIAM; including the.U-perturbation expansion, on the 
rather differint then the single-particle GF ,level, on, the level of the higher-order 
GFS as it will be shown in a separate publication. 
It is worthwhile to.underline that our, 4 x 4 matrix' GMF. GF,,(12) gives.only.,appro-, 
ximati;e description of the suitable mean fields. Jf.we shall consider more extended 
8x8 algebra, we shall get the more correct stnicture,of the relevant GMF .. A.more 
rigorous derivation of this relevant algebra, showing its central importance for the 
self;consistent dynamical solution ot SIAM, :will be presented elsewhere. 
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In summary, we presented in this paper a general technique how a dynamical so
lution for SIAM at finite temperatures and for the broad interval of the values of 
the model parameters can be constructed in the spirit of Irreducible Green's Func
tion approach. We used an exact re.suit to. connect the single-particle GF with the 
higher-order GF to obtain an complex expansion in terms of U and V for the pro
pagator. This approach offer a new way for the systematic constructions of the 
approximative dynamical solutions of SIAM, PAM and other models of the strongly 
correlated electron systems. The work in 'this direction is in progress: . 
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