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Recently eXperrmenta.I evrdences in fa,vor of a d -wave superconductmg pmrlng
in h'gh ‘A cupra.tes [1] have been Supported by theoretrca.l studles of mod-

T oels wrth strong electron correla.tlons [2] Many unconventrona,l normal state ! .

S

propertres of cuprates can be epra.med only by proper treatment of strong

E electron correla.trons on copper sites Wthh could be also j important for super—l' '
conductmg pamng The srmplest model a.liowmg for'the eIectron correla.tlons - )

‘ 1s a tWO drmensronal Hubba.rd model with' on srte repulsron U a.nd hopmner
energy t [3]. Recent studies [4I [7] of the Lllashberg equations for the

Hubbard model in the weak couplmg I:mrt U <4t

s proved a d—wave pairing
mediated by spin fluctuasion exchange ]n the vrc:mty of antiferromagnetic
msta,brllty near half ﬁl!mg a superconductmg temperature T. of order 0 02t
ha.s been obtained.

In the strong couplmg hm:t U >> Lat-J model rs more a.pproprrate _

3, 8] Exclusron of doubly occupred states in electromc hoppmg and their .
strong couphng with spm ﬂuctuatlons wrth excha,nge energy J o~ 482/ does

“not a.llow to apply mea.n ﬁeld t_ype a.pproxrma.trons or. perturba.tron theory Ex-

o a.ct numenca.l studres 2, 9 10] for small clusters wrthm the ¢ — J model show
& d Wa.ve superconductmg msta.bthty However, t{o elucrdate the na.ture of thrs

; - bairing an a.nalytxcal treatment of the t J model is needed For these purpose

one can employ a spin pola.ron model [11 12] reduced from the t —iJ modeI
in the imit of low tempera.ture and small hole concentra.trons A number of
studies of this mode! [11}- [18] predicts that a doped hole dressed by strong an-

trférromagnetrc spin fluctuations can propagate coherently as a quasx-pa.rtlcle

with werght Zy >~ Jft. In addltron to a Rarrow qua.sr-pa.rtrcle ba.nd of order J
there is a broa.d incoherent band of order 6 — 7t at higher energres It is quite

natural to suggest that the same spm fluctuations could mediate 2 supercon-

2 .

ducting pairing of the spin polarons. Recently this problem was treated in the
framework of the standard BCS formalism [19, 20]. A simple model of quasi-

particles with numerically evaluated spectrum and effective pairing interaction

-in the atomic limit [19] and mediated by antiferromagnetic magnon exchange

[QO] has been used. However, since the pairing 'spin-ﬂuctua.tion energy is of
the same order as a quasi-particle bandwidth J the weak coupling BCS equa-
tion is inadequate to treat the problem. A full eelf-consistent solution of the
Eliashberg equations and spin fluctuation susceptibility is needed to resolve
this problem,

In this paper for the first time a consistent solution of the strong cou-
pling spin polaron model at finite temperatires and hole concentratrons for
normal and superconducting states is presented. A numerical solution of a
self-consistent system for hole and magnon Green functions for a two sublat-
tice spin polaron model unambiguously demonstrate a singlet d-wave super-
conducting pairing. The maximum superconducting temperature T of order
0.012f is obtained around hole concentrations é = 0.25. .

Combining the results for the Hubbard mode! [4]-{7] obtained in the weak
coupling limit with the present one for the strong coupling spin polaron modeI
we can argue that the spin-exchange pairing could be true mechanism for h1g1:r-
temperature superconductivity proposed earlier by several groups on the basis

of some phenomenological models (see e.g., [21} - [23]).

2 Polaron model

We start from the t — ¢ — J model with the Hamiltonian

1

er e N — =) = H;. (1)

Hg_J = - E t,J C;-:CJ', +J (E)(SsSJ 4ntnj) H, 4+ Hy
ijo i .



where the first term describes electron hopping with energy t;; = f for the
nearest neighbors and #;; = ' for the next nearest neighbors sites on a two
+

dimensional square lattice. The electron operators & = ¢},

(1 —-mn;-)act in
the space without double occupancy and-n; = nj;-+n;| is the number operator
for electrons. The second term describes spin-1 /2 Heisenberg antiferromagnet
(AF) with exchange energy J. In the model two main features of doped hole
motion in copper-oxides are properly taken into account: constra,ii_ﬂ_; on 1o
double occupancy for holes on lattice sites due to strong electron correlations

and interaction of holes with AL spin

huctuations that brings about strong
renormalization of the QP spectrum.

For a small concentration of holes when the long range AF order is pre-
served or at least strong AF correlations for nearest-neighbors still governs the
hole motion, the ¢t — J model can be reduced to a more simple spin polaron
model as it has been proposed in {11], [12]. To consider superconducting pair-
ing of spin polarons we have to take into account explicitly a two-sublattice
structure for the Heisenberg AF. By int;oc}ucing_twg sublattices wi_ih spin up
(i €7) and spin down (i €}) we define the hole spinless fermion operators for
two sublattices by the equation:

CEERLESMSIGE) as i a8 Ge) ()

where S* &7 are spin operators on the corresponding sublattices. In the
linear spin-wave approximation (LSWA) the exchange part of the Hamiltonian

(1) can be written as (see e.g., [15]):
 Hy = qu(a;aq + g B) + Ef {3)
7

where o (ag) and BF{8,) are the magnon creation (annthifation) operators

coupled with the spin lowering operators on two sublattices in LSWA : St e

ai, (1 €1),  SF = b}, (i €]) by the Bogoliubov canonical transformation:

ax = vgoy + wefly, b = veBy + upaty, (4)

2
_(irm\' lnyk)] 5
g —( o ) y U = —sign(7s) 5o . {5)

with vx = /1 =9}, 7 = 3(cos ak, +cos ak,). The spin-wave energy is given
by wy = §zJ(1 - 6)%v;, with § being 2 hole concentration and z = 4 being the
number of the nearest neighbors. The summation over wave-vectors in (3) and
below is restricted to /2 points in the AF Brillouin zone. In derivation of the
exchange part of the Hamiltonian (3) the contact interaction between holes
wz;.s taken into account only in the mean field approximation that results in
the renormalization of the magnon energy proportiohally to the i_'actor {1-6)2.

By employing the two sublattice representation (2) for holes and the LSWA

we get the following expression for the hopping part of the Hamiltonian (1):

Hox Y (i fumlolk, @) + 9(a ~ b, q)B2,1 + Hee)+

kq
I CSCSY Y BN
where
9(k,q) = \/%(um_q + ), 7

and the next nearest neighbour hopping energy e = 4¢' cos ek, cos ak,. We
ignored two-magnon scattering processes proportional to ¢’ since [ '] /¢ < 1.
The chemical potential g should be calculated self-consistently as a function

of hole concentration § and temperature 7' from the equation:

§= (kTR + (ST 1) (8)



3 Hole Green function

To discuss a singlet superconducting pairing within the spin polaron model (3),

(8) we consider the equation of motion method for the matrix Greea function
Gkt~ ) 2 W)U > ©)

in terms of the Nambu operators:

‘P( )( k ) U= (dfen) = (e £5),a0)
c-—kl f— , o

where Zubarev’s notation for the a.ntlcommutator Green fuziction (9) was used
[24]. - )
By diffeféntiﬁting the Green function (9) in respect to two times ¢ and #
we obtain the folldwing Dyson -é‘quatio'n as described in [18]:
Glhw)! =wio b (e -t - Skyw), . (11)
where 7y and 73 are the standard Pauli matrix The self-energy operator

S(k, w) is given by the irreducible pa.rt of the many—partlcle Green function.

Its components have the form

Eunlk,w) = —Zpp(=k,~w) = 3 U QF | feg@ia))6), (12)
q .

Zhp(k,w) = (Zgalk,w))" Z< (@ 1R Qe (19)

where
Qrq = gk, 0)og + g(g - k,q)8%,. o (19)
The irreducible part in (12), (13) has no parts connected by the single zero-
order Green function, GOk, w) = (wy + (ex — p)i3)~.
To obtain the self-consistent equations for the Green function (11) we em-

ploy the self-consistent Born approximation (SCBA) which has been proved

to be quite reasonable in calculation of the one-hole spectrum in the normal
state (see, e.g. [11]~ [18}). For the ma.ny—pa.rtlcle tlmewdependent correla-
tion functions in (12}, (13) the SCBA is equwa.len’c to the mode coupling

approximation which is just the noncrossing diagram approximation:
GO0 O fie@ha) = D fMQEDQea),  (15)
(0 Dhrea@eis) & i (Dhei @ (DQeeia).  (16)

By using the spectral representation for the Green function in (12), (13) and

the Fourler representation for the correlation functions {15), {18) we get the
following equations for the self-energy:
*
+co
San(k,w) = 5: / 42N (w, 2, Dhalbo b — ¢ | DAia(a,2),  (17)
—o0

+oo ‘
Shilk,wy=Y / / dzdQN (w, 2, DAia(k, k ~ ¢ | Q) Ans(g,2),  (18)

where

1 tanh(z/2T) + coth(Q/2T) (19)

N(w,2 ’Q)_ w—z—§

Here by using the symmetry relation for the anticommutator Green functions

for fermions
(5 [ Yanis = (5 | S = {40 | FE)-acis

and

(b | FE awis = —((F1 | R etis = (- | Be})asis

we introduce the spectral density for holes:
. Y ) .
Annlk, 2) = ——Im (B | Ba)ayis = Ags(—F,~2), {20)

Ang(k,2) = =T (b | 5 D)esis = Apalks2), (21)



and the spin-hole interaction function
Au(k,q [9) =g q k,9)B(~q,Q) - ¢*(k,q)B(g,-Q), (52)
z\n(k,q 19) = gk, 9)9(q - k, 0){B(~q, Q) ~ B(g,-0)].  (23)
The spectral density for the magnon Green function is defined by
B(0,) = =1 (8, | 6 Dasis = ~21m ((of | aghhonis. (20

The solution of ther Dyson equation (11) can be written in the Eliashberg

notation as
ey 00a()Po + (e(w) — e} + e(w)
Glk,w) =
) = ) = (T ) = du(a)F (25)
where
W1 = Ze(w)) = 5[8anlk, ) + B (k)]
X)) = H[Zan(k,0) - Bk, (26)

B4(w) = Tas(k,w) = (Zgalk,w))"
and fo(k‘ w) = _Ehk( —w)

To solve the system of equations - (26) we have to calcula.te the magnon
Green function in_ (24).
4 Magnon Green Function

For two sublattice pola.rpn model (3), (6) we have to consider the matrix

magnon Green function

Dlg,1— 1) = (Aot A} (1)), (27)

where the two—component Magnon operators are

Ag = (ﬁ: ) A7 = (a}By). (28)
-q

8

By using the equation of motion method as in (11) for the commutator

Green function (27) we get the following Dyson equation '

DY q,w) = wiz — wyfo — 1{q,w). (29)
The polarization operator is given by the irreducible part of many-particle
Green functions

Iy (g,w) = Maa(—g,~w) = 3 gk, (K, X (fit b | i fer-g )57, (30)
kk' i

(g, = Ms(g) = 3 gk, gk — ' —a) (U ohe | B g7, (31)
k&

The irreducible parts (ir) in (30), (31) has no parts connected by the single

zero-order magnon Green function D%(g,w) = (wh — weTe)™!. To calcu-

late the polarization operator we use also the SCBA which can be written as

the mode coupling approximation for time-dependent correlation functions in

(30), (31). As a result we get the following expressions for the components

(30), (31):

(g, w) = Zf dwldsz(w wl,w){y (B, @) Ann(k, w1) Ann(k — g,w2)—

- g(k, Q)y(q k, Q)Afh(k w:)%f(‘f g:w2)t (32)
Matg,) = 3 | ] deordurN 0,01, 02) (g (b, Dala—k, ) Ann(k, o1 Ann (—g,2)~
k : b _

— g%(k, q)Asn(k,w1)Ans(k ~ q,w2)} (33)

where
1 tanh(wy/2T) — tanh(ul/QT)

9 W+ wy — we

(34)

N(w?wl,c"?)
Therefore the matrix magnon Green function {29) can be written as

J':)(q W) = w + wy + Tlax{q,w) mI[lgtq,w) 1 (35)
_ ’ —1144(q,0) —w +w, + T (g, w) det{gq,w)



where
det(g,w) = [w —wy — Hu(q,w)]{w +wq + M2a(g,w)]+ | ﬁlz(q,w) 2 (36)

"It should be pointed out that in egs. (32) (33) the contributions from the
anoma.Ious Green functlons whlch are nonzero only below the superconductmg
ternperature 7., are also taken into account.

Therefore we got the closed system of equations for the hole Green func-
tion (25) and the magnon Green function (35) which should be solved self-

consistenﬂy;

5 Numerical Results and Discussion

For numemcal solution of the system of equations (26), (32), (83) we emplo_y
the i 1mavmary frequency representation for the hole Green function (25) with
W= i, = itT(2n + 1) and the magnon Green function (35) with w = dw, =

inT2n, n =0,£1, ... . By using the representation for the function (19}

-1
W — 2 Wy — W) — Q

N{iwn, 2 )= -T Z (37)
after integration in (17), (18) we get,

Sk ion) = T 35 Gualg,iwmPur(b k= g |iwn — i), (38)
G m

Zhilkyiun) = =T 3> Guplg, wm)Aialky k= q | dw — iwm).  (39)
g m .

The interaction functions are given by
’\ll(k: q l iwr’) = 92(k7 Q)DII(Q? _iwu) + gZ(q - k: Q)Dll(_'q’ iwv)! (40)

A2(k,q | iw,) = g(k,q)g(q — k, ){ Dulg, ~iw,) + Diy(—¢,4w,)}.  (41)

10

For the magnon Green function we use the representation for (34) in the
form . _

42

N(”uuawhw2) - TZ wm —w i(wm +wu) — Wy ( 5 )

with w, = 27Tv and wy,, = °T(2m + 1). After integration over duw, dwo in

egs. (32), (33) we get _
My1(g, twy) = T Z Z{gz(k, 0)Grn(k, iwm )Grrlk — g, 1w, + Wy )—
k m
— g(k, )9(g = k, )Chs(k, iwm)Ghg(k — ¢,y + iwm)} (43)
Mgy i) = T3 300k, )0(a ~ b, ) (k, i) G (k = gy, + itom) =
—k G2(k, Q)G (k, wm) Gk — gy, + iwm)) (44)
Here we have

Gh},_(k,iwm) = -fo(—k, —iwm), th(k,iwm) = th(k, —z'wm)

A linearized system of the Eliashberg equations (26} in the limit T — 7,7,

which can be used to calculate T, has the following form

- —, (45)
twy + € — it — ek, twn) :

Bkyiwn) =T Y 3 Malk, k=g | iwn—iwom )Gha(g, iwim)Grn( =G> ~itkm)B(gritom).
v . (46)

Grr(k,iwn) =

In this limit we can also neglect the contributions from the anomalous Green

functions in the polarization operator (43), (44).
System of equations (45), (46) was solved by the fast Fourier transfor-

mation [25] for a given concentration of holes

2 Gk, iw,) (47)

r=0

1
‘5—5

11



in the range 0.1 £ § < 0.35 .The calculations were performed for the param-
eters of the spin polaron model (3), (6): J = 0.4 and ¢/ = -0.1 though‘we
did not find much difference in results for ¢’ = 0 (all énergies are measured in
units of ¢).

In the numeri_cal calculations we have used a finite mesh of 64x 64 k-poi.nts
in the full BZ and 200-700 points for Matsubara frequencies with a constant cut
Wmaz = 10t in the summation over it. Usually 10 - 30 iterations were needed

to obtain a solution for the self energy with an accuracy of order 0.001. To

calculate the spectral density for holes {20) and the density of states (DOS)
Alw) = 1 Alk,w) 48
+ 3 Ak, (48)

a Pade approximation was used for analytical continuation from Matsubara
points on the imaginary axis. At first a self-consistent calculation of the normal
Green function (45) was done and then the gap equation (46) was solved for

a given concentration of holes.

5.1 Spin polaron quasi-pérti,cle _-spéct'rurh__

Self consistent ca,lculatlon of the Green functlon (45) with the self-energy
operator (38} was performed at ﬁrst by neglectmg maguon renormahza,tlon
in the interaction function (40) and then a full self- consxstent solution by
allowing for the polarization operators (43), (44), in (29) was done. The
-calculations presented in this section was done at finite temperature T = 0.012
that is slightly higher then the maximal superconducting temperature given

in the next section.

In Fig:l we present spectral functions at k = (7/2,7/2) for several hole 7

concentrations. For small hole concentrations, § = 0.02,0.04,0.06,0.08,0.10

there are no much differences for spectral functions calculated from the hole

T 12

Green functions with renormalized and unrenormalized magnon energy in the
interaction function, eq.(40). Soin Fig.1(a) only the results with renormalized
magnon spectra are shown as a function of w — p. At higher hole concentra-
tions a negative contribution to the spectral density (24) at w < 0 energy
develops due to excitation of clectron-hole pairs that results in negative values
for hole spectral functions in the incoherent part of the spectrum. In Fig. 1
(b, ¢, d) we compare the spectral functions calculated with renormalized (solid
line) and unrenormalized (dashed line) magnon spectra. This negative contri-
bution develops at firsi for long wavelengih magnons for smail wave-vecior as
was pointed out already in [17, 18]. In Fig.2 we show the corresponding hole
density of states (DOS) (48) at different concentration of holes. In Fig.2(a,
b) we compare the results of calculations with renormalized (solid line) and
unrenormalized (dashed line) magnon spectra. A negative density of states ap-
pears already at § = 0.08 (Fig.2(b)) In Fig.2(c) we show the density of states
in the vicinity of the quasi-particle peak at large hole concentrations calculated
with unrenormalized magnon spectra. Since the main quasi-particle peak at
k= (w/?,'fr/2) shown in Fig. 1 does not change much in shape with doping
even at large hole concentrations the picture of spin polarons as stable quasi-

pa.rtlcle seems to be relevant even at Iarge hole concentrations, This robust

~ behaviour of spin polarons with doping can be explained by a small size of

the polarons in comparisons with antiferromagnetic correlation length at quite
large exchange energy. Here we present calculations for J = 0.4 and our esti-
mation for larger exchange energy J = 1 show that spin polarons appear to be
stable at large hole concentrations. The real part of the hole self energy at zero
frequency is shown in Fig.3 for hole concentrations § = 0.02,0.04,0.06.0.08
(from top to bottom) and in Fig.4 the k-dependence of it is shown in the full

Brillouin zone.for § = 0.10. With doping the bandwidih of the hole quasi-

13



particle spectrum increased substantially but does not change much its shape.
Nevertheless the rigid band approximation adopted in [19], {20} seems to be
inadequate and to obtain reliable numerical results for this strongly correlated
system of holes with. zeré free kinetic energy a self consistent determination
of spin polaron specirum is required. In Fig. ‘5 the Fermi surface defined
as Re Z(k,w = 0) = 0 is shown for hole concentratrions 8 = 0.1 (thick line)
and § = 0.2 (thin line). The full BZ shown in the picture consists of two
degenerate antiferromagnetic ones marked by the dashed line. We see that
at small hole concentrations only hole pockets are filled and the transition
from a small hole Fermi surface to a large one develops quite sharply around
§ = 0.15. Temperature dependence of the momentum distribution for holes in
the spin polaron model was investigated in some details in [16] where it \f;fas
shown that the Fermi surface washed out at some temperature of the order
T, = 1.5J6. So at quite low temperatures T = 0.01 considered here the Fermi
surface does not change much with temperature. It should be also pointed
out that a high density of states in the présent calculations (see Fig.2) results
from a narrowing of 2 free electron bandwidth due to strong correlations (spin

polaron formation) and has nothing to do with the van Hove singularity.

5.2 Superconducting pairing of spin polarons

In the present bape'r we consider only the linearized Eliashberg equation (46)
for the pairing energy ¢(k, iwy) to study the symmetry of the superconducting
order parameter and to evaluate the superconducting temperature T.. £q.(46)
was solved by fast Fourier transforms for different hole concentrations employ-
ing the results for the hole spectral functions (20) presented in the previous
section. Looking only for even functions of wave-vector k that are realized in

the singlet pairing we obtained only d-type symmetry for the gap function. In

Fig.6 we show k-dependence of the pairing energy, $(k,w = 0}, in the quarter
of the full BZ. It has typical d-wave sym‘metry_wit.:h two ridges resulted frqm
sharp changes of the interaction function at the Fermi surface (cp. Figd). In
Fig. 7 frequency dependence of the real (imaginary) part of the gap fuz_l_ctio.;l
Alk,w) = d(k,w)/Z(k,w) at kK = (0,7/4)(a), k = (6,371'/8)(1)) is shown l;y
solid (dashed) line. The thara.cteﬁstic for the pairing theory cut off energy is
of order J ~ 0.4 which is closed to the quasi-particle bandwidth. Therefore we
have really a strong coupling limit for spin .polarons where all quasi-particle
are paired contrary 10 the weak coupling in conventional superconductors. It
is interesting that the same w-dependence for the gap function with a cut off
energy of order 0.2t was obtained in the Hubbard model in the weak coupling
limit 4, 5,7} By examining the temperature dependence of the highest
egenvalue in the eq. (46) at differént hole concentrations (see Fig.8) we can
find the temperature when it crosses the value 1. At this temperature the
normal state becomes unstable due to singlet pairing of quasi-particle — spin
polarons on different sublattices. In Fig.9 the dependence of superconducting
temperature on hole concentrations is shown. We cannot solve our equation
at lower temperatures then T' = 0.004 and therefore has no results for T. for
§ < 0.1; The maximum of T¢ at § = 0.25is explained by crossing the maximum
of the density of hole states by the Fermi level (see Fig.2). This results are
quite different with the monotonic increasing of Te obtained within the weak
coupling limit from the BCS equation in [20] and maximum of T, observed in
[10] near half filling § = 0 for small clusters.

We also investigate T.-dependence on the exchange energy J which is
shown in Fig. 10. T increases with J but saturates at larger values. However,

we does not obtain a large drop of T, near J = 3 observed in small clusters

i5



. : ' L Alk,c) A{lc,0)
calculations near phase separation [9]. But the latter fenomenon is beyond

2.0 T 2.0 I
the scope of our theoretical approach. sk ' §=0.02,0.04,0.08.0.08 | | : - d=020
1
1.8 ' 18
. ’
6 Conclusions ta ' L4
1.2 [} 1.2
. ’
In the present paper the hole and magnon spectra for finite temperature and 1ol s 1o
"
hole concentrations and superconducting pairing of holes in the model with 0.8 | o 0.8 -
"
strong electron correlations have been investigated. Numerical solution of the
self-consistent equations show a strong renormalization of the hole spectra due
to AF spin fluctuations and formation of a narrow quasi-particle spin polaron
band (see Figs. 1-3). The same spin fluctuations mediate superconducting

d-wave pairing of two holes on different AF sublattices with maximum T~

0.012¢ for J = 0.4t around the hole concentration § = 0.25. In our calculations

A(k,w) - Alk,w)
we does not observed a strong 7, dependence on J (Fig. 10).. Frequency 2.0 s=0.10 R _ 520.30
dependence of the gap function (Fig. 7) demonstrates a standard behaviour 1 p , ' wr
for the boson-mediated pairing theory. It should be stressed that in our self 1.6 } 5 L8F
consistent calculations we does not make any fitting for a model with only two by Il:i i: :
dimensionless pé.rameters, Jit and pft. : o T ' ‘ Lok ~
For a small concentration of holes when the long range AT order is pre- ll

served or at least strong AF correlations for nearest-neighbors still governs the

hole motion our results obtained for renormalized and unrenormalized magnon

spectra do not differ much. For larger hole concentrations, é > 0.1, a negative

contribution to the magnon spectral density at w < 0 due to electron-hole pair

excitations results in some instability of the incoherent part of the hole spec-

trum. Therefore for large concentration of holes we perform calculations with

Fig 1. Spectral functions A{(k,w) at k = (x/2,7/2) for hole concentra-

unrenormalized magnon spectrum. To consider magnon spectra for the large tions: 6 = 0.02, 0.04, 0.06, 0.08 {from right to left) as a function of w - p(a);

hole concentrations region a more elaborate study of spin fluctuation spectra

should be done in the original ¢ — J model [26]. However, we believe that spin

16

0.1(b); 0.2(c); 0.3(d). Solid (dashed) lines in (b,c,d) correspond to renormal-

ized (unrenormalized) magnon spectra.
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Fig 2. Density of states for hole concentrations § = 0.06 {a); 0.08(b); 0.1,
0.25, 0.35 (from right to left) (c). Solid (dashed) lines in (a,b) correspond to

renormalized (unrenormalized) magnon spectra.
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Fig 3. Spin polaron spectra for hole concentrations § = 0.02, 0.04, 0.06, 0.08

(from top to bottom).
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Fig 7. The real (solid) and imaginary (dashed) parts of A(k,w) = ¢(k,w)/Z(k,w)
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Fig 6. k-dependence of the pairing energy é(k,w = 0),
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polarons dressed by AT spin fluctuations are the relevant quasi-particles even
in this region of large hole concentrations and their pairing mediated by the
spin fluctuations, which is also observed in the Hubbard model [4]- [7], could

represent the mechanism for high-temperature superconductivity in copper
oxides.
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