


1 Intrd'duction

The properties of alternating chains have been mtenswely mvest]ga{:ed in
the last time [1, 2, 3] not only due to their interesting structure, but also in
connection with a better understanding of the high-T. superconductivity mech-
~ anism. The same phenomenon renewed the interest for the Hubbard model {4},

_ a large number of papers being devoted to its one-dimensional (1D) extensions
5,6, 7, 8, 9]. However, the particularities of the Hubbard-like couplings in’
: altematmg chains are less well known. It is the aim of this paper to derive the

corresponding expressions “of the Hubbard-type interactions in the equlvalent

two-band model and to dlscuss a pquJble occurence of a superconductor state
in such structures. . :

The one- narhr‘]n ham:“‘nn'mn in the i'lﬂ'}'lf' hinﬂing annrn\nmahnn for an al-
tematmg cha,m with two non- equwalent sites per.unit cell is defined, in terms
of the atomic quantities, in Sec. 1. This hamiltenian can be diagonalized.by

2 canonical . transformation, “as-it is shown in Sec. 2; one gets a two-band
(free) hamiltonian in the Bloch representation. The Hubbard -type interac-
tions, initially introduced in the site repfesentation, give rise to both intra-
and inter-band couphngs if the gap between the two bands is Ia.rge enough, as
- for CuOj; chain, the last ones can be neglected. The intra-band interactions
are described by some k- dependent potentials with rather complicate expres- -
 sions; they are presented in Sec. 4. An évaluation of the coupling constants
§1, 594 around the Fermi points is discussed for the case of CuO; chain in the
same section; the effect of the Hubbard-type interactions in the upper half-
filled band is similar, excepting an Umklapp term, to the case of a 3/4-filled
 ideal chain. The bond-site interaction a.cts as an effectlve attraction and it .can
determine in some c1rcumstances the occurence of a superconductor instability.
The last section contains some rema,rks about poss:ble extensmns and further

development.s of the present work. ™
—
2 The one-particle hamlltonlan

-

Let us consider the altematmg chain from Flg 1, w1th two non- equlvalent
sites per unit cell (V cells, periodic boundary condltlons) the one-particle
hamiltonian corresponding to this structure can be written as -

H=Hyo+V-V,, i=LN,s=A4AB (1)

where j is the cell index and s specifies the site in the cell. H;, denotes the
atomic hamiltonian defined by its action on the orbital ¢;, corresponding to



the atomic energy level E,

. Ll |
(Pidio) (0) = —5 -S04V, ()g,0(0) 2
‘ Histss = E.'sféj,{ ' : (3)

 where V;s and m in Eq. (2) are

_ respectively the ionic potential of the site (7, s)
and the electron mass. V in Eq

- (1) is the periodical potential of the lattice:
V(z+a) = V(x) ) 'a=—;a1+q2 : {1)
- Within the tight binding ap

prdzz'mation, we assume that: (i) the atomic
orbitals ¢;,, form an orthogonal and normalized set

< qu,s l Hqu"’,s’ >= eséj,j’ s t(és,Aés',B + és,Bés‘,/l) éj,j' - ‘
S ' 2(53,1;53'.35:5.;"41 +5s.85s',A5j.j'-1)' (6)

which account for the jump of electrons only between the nearest neighbour
_sites. e4(p) and #(¥) ca '

n be easily expressed in terms of the atomic quantities

. lfﬁ = E_,+ <$is | (V ~Yis)b5a > e =AB
- <¢:5 | (Via < V)-¢5.A.>=-< $ia | (‘i/j.B-:f Vidie> (1)
t = <biral (Vs V)45 >=< P [ (Via V) 450 >

~where we used also the hermiticity of the hgmflionian (1). Without loss of _
generality, we can choose the zero of energy such that .

€A=—€g=¢€>0

/ (8)

The second quantized form of the tight binding hamiltonian in the (7, s)-

representation of the atomic orbitals is

H=eY (ala; - 5}5].) - tz (af8; + o} a;) - EZ (li8;+ f;’.faj+,) (9)
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' “From Egs. (12)-(14) it follows -

o : thilati ‘ sites.
here a-(b) operators correspond to'the annihilation of eIectrt‘)nsyon. fll)geBgf ;]ec_
g‘or simplicity we neglect for the moment (until Sec. 4} the spin variable

: - ntation
trons. From the {j, s)-representation we can pass‘to the (k,s)-represe i

by a usiual Fourier transform

1 1 T a>:_1___z,§"“f’°a"k , ke BZ = (-g',";‘:] (10)
i =_'ﬁZe o4 VN % o 7 o

k

and the same i;0r the b opcraf.ors." Eq. (9) becomes' then . |
' . .-t i’
H=eY (aa- blb.) =37 [t + e ) afb + Hec (11)
: L L k .

The a and b oberatore satisfy the usual anticommutation relations:
] 4' o N . .

~

L - LT 1 'i =
{al,ak'} = eobef = few { b = O_ (12)

o --{GI,G‘L} = {ak,ak.} = {bl,bz;} = {blﬂbk’} =0
'3 The canonical transformation |
M . - ) . - . - ) . I' 1)
| rators, Lhe itonian (9) or equivalently (1
: ixing the e and b operators,. the hami : ot ‘
“h }i);tn;u:ilir;.ggox::l‘ form; it can be diagonalized by a canonical trausformation
as. ; ) .
i | & =aklere + Bk)ess
here the ¢ ;)pef;tors 6bcy the same anticommutation relations as a and &
where ators e an 1 |
" operators: .+ -

’-{Cl,kvjcn'k'} = n,n-$k,£' 1 7 {ei.k?,c,if'.k/r}- = {en ’c"f;"'} =0 (1)

3y

{ 6Bl +1807 = . S
(k)] = (4
100k = |a{k)]

| drgla(k)] — arglA(H)] - argly(h)] + arglO(k)) = =

3



—

‘and from the reqmrement the har

complex equation: niltonian to be diagonal we get an additional and we will call it the Bloch repre;entatwn, the energ1es in Eq (22) ha.ve,_‘the
expresions
o (K)B() ~ 4" ()O(k)] — (1 4 Te- "*") (K)O(k) = (¢ + 1™ B(k) _ ex(k) = —&,(k) = /A +’4tfc032 afc 2 23
, Bk) (k) (16) . ‘ _ . _

and are gmphlcally represented in Fig. 2 for the parameteis correspondmg to
‘the CuOs chain: 2¢ = 1.23 ¢V, t = { = 1.4 eV [3]. The gap between the two
. bands is 2A and each bandwndth is VAT + 4# — A ; in the limit A — 0 yone
“’"9‘[}9(]?)] = a?‘g[’y(k)] =0 ) (17) ' recovers the usual dispersxon law for the 1deal cb.a.m e(k) = -2t cos(ak) ,as it

- ' - is shown in Fi 3
‘The canonical transformatlon takes then the form : ) : ' - &

E?qs. (13) and (16) form a system of six Ieal (quauons with eight unknowns;
we can make a particular choice for two of the ‘phase factors, for instance

g, = A(k)e- 0 . . ,
{ %= Alk)emt Gx+ B(R)ey, B _ 4 Hubbard type mteractlons
by = B(k)e, &+ A(k)ezé(k)%,k _ : ' By Hubbard -type mtemctzons we understa,nd mtera.ctlons which in the site
with the conditions representation couple only electrons belonging to the nearest neighbour sites.
‘ : : ) There are five types. of such elementary processes, schematxcally represented
A? +32 =1 o . in Fig. 4: a) on-site; b) inter-site {diagonal mtera.chons), ¢) bond-site; d)
ST : ' i ‘ . intra-bond - exchange hopping; e) intra-bond - pair hopping (off-diagonal
QeAB —tc os( #) +1 P T : ~ interactions). By analogy with the case of the ideal chain, the hamiltonians
A2 ros(a qb) (19) corresponding to the Hubbard-type interactions in an alternatihg cha.m -are

introduced in the site representation as follows:"

. tsm(qB)-—tsm(ak )

. 'where. the k-dependence has been omltted The system (19) has the solution Hon site = ~ Z UAann — + Usnja dme 'L‘ ', o .,(24)
( 1 [ T S - s :
A= — 11— < . wheren} ( )--Q:Na”(“r ”)and
2| VAT 4t cos?(ak/2) R
B J T 11 L : UA(B) ffdz dy 4?52‘4(3')(50)‘4;([3? T"'yl)‘ﬁ;z'.A(é)(l!) SR (25)»
: B:_i_'/1+' s € N C(20). T I
VY AT k] |
S oL . o A‘vuth V.. the mteractmn potentxa.l between the electrons (we used also the fa,ct
- i : : . ) o tha.t in 1D the atormic orblta.Is can be chosen real fuuctlons)
. ,taﬂ(gﬁ):m IR . o
\ cos{a : - B : A ‘
with the notation - - . : . ) - . mter—s:te = Z‘ ne (Vn, p + V’n_? 1, ) (26)
‘ — 5o ‘ .
‘ I Aeyerl-yt C ) with : ' :
n terms of th t : . ‘ _ iy 3
chain hame o) ce opcra. ors, the one- -particle hamiltonian for the alternating o V=[[fdzdy qﬁ’z?A(?)Kc([a: — yl)d’is (¥)
' B : 27)
H=Yleb)el e, +e,(k)el e : _ (
;[ NEJC kCrg 2(k) 2k 2,.‘5.-1 ] (22) | V= ffdg; dy ¢?‘A($)uc(lx “yl)¢§—1,3(9)
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© Hpond—site = Z [ i o (XA P X-B—bj—l,a') + H.c;.J'nﬁ_a +

fe
o (28)
[t (Xpe +Xaapei) + Helnk,
he . : ' ) . :
with
XA(B) ffd-'"' dy 45, A(B)(-"’)‘I‘SJ B(A)( )T/;e(lﬁr y|)¢, A(B)(y

XA(B) ffd"-" dy ‘fb;-l(:ﬂ) B(A)(z)ég,A(B)(x)KE(lx !J’ )43 iy )

Hffff.,_;,o,;d—'—— Z[ (be,,.b +be b ) a j.(,r:?l-f{tq.] (30) -

J,O’ c' ’

s:!l:u—b;nd = 2 Z [ Ja J ~e (Wb ,—tera + ng—- -abj-—l-,r:r). +‘f]C] : (31)

- Frd

. Wlth

Wi dy ¢,-,,(z)¢,--3('xm;(lé ~4)4;4()4,(s)

W ffdx ﬂ'y ¢ A(z)tﬁ -1 B(x)Vee(lw yl)¢,,4(y)¢ -1 B( )-

Let us rema.rk that for the inter- site a,nd mtra.—bond mteract:on constants the

site index (A-or B) does not occur; they are invariant under the- transformation
* {4, 4) & (4, B) (for intraeell quantities, without overlme) of (5, A) & (5 i -1, B)
{for inter-cell quantities, with overline). -

Replacing now the a and & operators by the correspondmg ¢ operators .
». according to Eq. (18), we get the form of the" Hubbard-type interactions in

the two-band model (Bloch representatlon) For simplicity, we cons:dor the
particular case o = ap = a/2 when t = f and :

¢=%,A=e C (33)

In this case will be no distinction between intra-cell interaction constants and
the inter-cell ones.

(29)

(3

Any mtcract:on in terms of the a and b operators gwes rise to both intra-
and inter-band couplings. Nevertheless, if the gap between the two bands is
large enough (comparable with the bandwidth), the inter-band interactions
can be neglected and we may restrict the considerations only to one of the

“bands: (depending on the Fermi'level). For CuOs the gap is about half of the

bandwidth and the filling factor is 3/4, that means a half-filled upper band.
The intra-band interactions in tho Bloch representation ha&e the following

general form

1 R R
3N > Vo (R ooy B8 iy bk, S T T (34).
k. wkyea! - ' -
where the 8-function assures the consevation of the total momentiin up to a
reciprocal lattice vector. We give below the obtained expressions for V in each
band correspondmg lo 1he dtﬂ'orc'ni kinds of mteractlons

_ { Vonmsiten = [UaA( kl)A(kz)A(’w) (L4)+(A-»B)] s-a

Vrm s:h.\2 = [UH‘A( )A(‘h) ( )(k’i)-l"(AH Ij)

"mtrr sitesl = ‘IVA(A»I )Ig(k2)/1(k3)[3(k4) "
‘ A (36)
: Wntér'—si!c-‘z = Vin!cr sitc I(A ";’ B)) .
f Vband_,,,“ = 4 {XA [Co';(akl/Q B(kl A(k3)+
S cos(aks/z)A(k. B(-’Cs)}A(kz)A(M) A B)}é
s ) S (3
S Vbond—s:te? = “"4{XA {LOS(ak /2)A(L )B(A;)+ -
coa(alcs/z)B(lc;)A(k;;)]B Lz)B(k )+ (A o B i
fozfﬁ—sond: =AW cos[alk; — ]M)/QM( B(kz b’(ks)A(L,,) .
. , . (38)
V;:;:': 6071:[2 V;'r.a!rr’:;-boudzl(A = 13)

o ’Wm[ (ky + ka)/2) (AR ACk2) Bk ) B(R)+
| (A o I3)] 6o (39)

pair = P wir
intra—bond;2 = Yintra—bond;l



All the obtained potentials have a complicated £-dependence; however, they (short) range inter-electronic potential Ve., as it hf"s been shown in the case of

are separable functions of the k-vatiables, A first step in ana]yiing the possible - the ideal chain (6, 7, 12}. '

efect of these interactions is to evaluate them around the Fermi points dhp; - . L
" we do this in terms of the g-constants which describe the clementary processes ) -

o_f backward, forward and { lnk!app scatterings, characteristic to tkhc ID l"crmz' ' ] Table 1 5 ,

gaz model [10, 11]: . o : N U A cdmpafison Between the g-constants (at the Fermi levegl), for an idea!l chain
(1/2- and 3/4-filled band) and the alternating CuO; chain (2 = 1.23 ¢V,
. o ) t = 1.4 eV, half-filled upper band [3]); the_ interaction constants from the
Jorward gy : ki =ky=2kp, k, = ks = Thy (40) ' "~ last column are defined in Eq. (41)_-

91 ki =k =ky = ky =tk ' ‘ :

baélcward ig_l T ]C-]- = -kq == ik]:' ,‘kz. = k:;: ;Fkﬁ'

- ' ' - P , Tdeal chain T Alternating chain -
o Umblapp g5 2 ki=ky = ke, ks = ks = Fhe (okp=7f2) R=T [ =33 | Falffilled upper band
In the backward séa,t;iérirlg process, the momentum transfer is 2kp; o the _ . ' ' R N :
S ) 2W 1 4

forward one, it is zero (g, couples electrons from different branches, g4 from o Heg | -2V 42w
the same branch); g3 process is possible only at half-filling, when 4kr is equal . ' ‘

‘to the reciprocal lattice vector. Each coupling constant has two components, . N S o e

as the spins are paralicl (x) or antiparallel {L), but from the expression of the C T Mg | U =2V +4W U-=4/2X +4W, U=-4/2X + 4w
hamiltonian it is clear that 93y and gaq bring tio contribution and thus the ol . R - : —
spin index can be omitted. For the Hubbard-type models it can be shown ° .'2V '

that always g, | = g4 and therefore only five constants arce independent., The ‘ G2, W~ W 2V
values of these constants for the Hubbard-like interactions in an ideal chain- : - ‘ e -

(with 1/2- and 3/4- filled band) and in an alternating ‘one (with éa_rameters o . B )
B N O] U+2V {U42V —4VEX42W | U+2V = 4V2X 20

.

- as in CuO; chain) are presented in Table 1. © . .

As can be observed from Table 1, the g-constants for a band coming from an
ideal chain differ considerably. from bne'corréspbnding to an alternating chain, , . o T e o
both of them at half-filling; maybe the most important difference consists in - g Ty —ov— | IR ' . U= 42X
the occurence of the bond-site interaction term; which in an ideal chain brings ' B R - . T :
no contribution at half-filling {6]. There is an almost complete analogy between ) _ o ' L ‘ .-

a half-filled band of an alternating chain and a 3/4-filled band of an ideal chain; Mal v +2v U422V -43X + 2W I U+2V - 4/2X +2W
 the differences consist in an appearence of an Umklapp term in the first case SN ' ' ' . I
and of course in the values of the constants which are-given by '

U = 0410,+0.13Us V=046V, X = 0'3”{4 +O'-18XB » W =046W (41) : In terms of the g-constants, a superc_onductér state is expected in the region
If we'assume the same interaction constants for A and B sites, it follows a {10, 11] - —ga1 > lgal ' (42)
decreasing of their values (in comparison with the ideal chain) with a factor 7 gt = gra— 9aL =

~around two. The on-site effective constant$ for the Cu0j; chain have been at exactly half-filling, or
estimated at the values U/, 2 3~ 4 ¢V » Up = 1 —3 ¢V [3]; the other cffective (43)

. . . _ — gy >
constants are less well known. It is reasonable to consider them as positive iy~ 2p =9z 20

and to assume an ordering U/ > V> X > W (U>X>V>W)foralong

8 9



if the Umklapp process does not occur. For the upper band of an’ alternatmg
chain, the condition (42) becomes :

(u 4fx)|u 4f2c|< Y . (44)'

w1th 8 the step functlon from Eq. (43) we get ‘
o U= 4\/_X+4V<O N O

The condltlon (44) cannot be fulfiled for any pos:twe V; the dommant
pha.se will be a charge density wave (CDW) if the quantity g1,y ~ go, + g2.L —
lgr,1] Goe., U — 42X + 4W) is less than zero or aspin densxty wave (SDW)
ctherwise. Ne‘v'eruhclcaa, let us 110t..lCt: that for a very smali inter-site attraction

‘and U < 4\/_ 2%, the occurence of a superconductor state becomes possible.

- If the, Unkla.pp term is neglected accordingly to Eq. (45) the supércon-

- ductor phase can appear {or a’'strong enough bond-site repulsion. For short -2
- Tange 1nter—eIectromc potentlals (when both -the inter-site and intra-bond in-
teractions can.be neglected), this happens when & /ZJ > 0.18; in-the case. of an
ideal chain and for a very effective screening, the ratio X/ has been est;ma.ted -

in the range 0.15 — 0.18 [12]. Such a value may be consequently considered as

reahstlc for un alternating chain teo, but this question depends of course onta
proper eva.luatxon of the model para.meters :

-

‘5' Conclus}i(ms -
" The results obta.med in thls paper can be summar;zed as foHows ‘the canon-
lca.I transformation diagonalizing the one-particle ha.rmltoman for an alternat--

.ing chain with'tWo non-equivalent sites per unit cell was explicitly derived; -

it has been used after that to find the. expressions of the Hubbard-type in-
teractlons, nitially introduced in the sxte—representatmn in the correspondmg
two-band model. A qualitative discussion in terms'of the g- -ology constants, us-
ing renorrnalization group results, indicate the range of the parameters where
different kind of instabilities can occur. For the hali-filled upper band of the
Cu0;3 chain, the dominant phases are SDW or CDW as for the Hubbard model
with an effectwe constant I —4/2.% +4W; if the band is not exactly ha.lf-ﬁlled,
a superconductor state can appear for I — 4/2X + 4V < 0.

The alternating chain considered in this paper.does not account for an

already dimerized system due to other degrees of freedom, as the interaction
with the lattice. A more realistic model for the CuQj chain should start with
a distorted alternating structure (a CDW ground state) [3]; in this casc the

10

it was discussed above. provic

" and the two-particle interactions in the giv

eft will be fom\ lcading to a four-
lled and the hlghcst one is ermpty.
ha modcl can bec a subj ]C(‘l of

number of the non- ~cquivalent sites per unit €
band model where Lhe first {hree bands are fi
The form of the llubbard-like interactions in suc

" future investigalions.

cvel, as
The evaluation of the inter-clec tronic potentials around the Fermi le

les ouly a qualitative information-about the role

: J¢ interactions in alternating chains. A decper anal-
Pla-) (‘d' D Hcl::::‘;;(dt:'\ [uouutlng for the k-dependence of both the cnergy
B I en band. A ground-state phase dia-
I-type approximation can be found by similar calculati 1(1);“
11} Hlubbard model with a bond-site interaction {13}
determined potentlals such a method
rability in the A- \anablea the

gram in a mean- field
as it was done for the
. In spite of the complicate form of the
be in principle applied; duc to their sepa

;I.;‘[I)l‘l(;;lmdt(‘ Bethe-Salpeter equation can be solv ed analytically.
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Figure 3. In the limit-ing case A — 0, the usual disp'ergion law for an ideal

7 chain e(k) = —2¢t cos(gk) is recovered. , , '
’ W Wy R IO S T IR
L] R J . ) [} . ] . -
'f.*.-' : : ) -
a) o Ced) T g
B PR R T . Figure 4. Hubbard-type interactions: a) on-site; b) inter-site; c) bond-site;

. . C  d) intra-bond - exchange hopping; e) intra-bond — pair hopping. -

Figure 2. The two-band model corresponding to the one-particle hamiltonian

in the tight binding approximation for an alternating chain with two non-
equivalent sites per unit cell. :
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