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1 Introduction 

The idea of using of functional integrals in classical statistical mechanics 

was introduced more then 30 years ago [1,2,3]. This method has been 

used for lattice gases awl spin systems. For continuum fluids the func­

tional representation of grant partition function was introduced in [4]. 

This functional integral was calculated in frame of perturbation theory 

when the zeroth approximation is connected with the interaction on short · 

distancies and is supposed to be known. The excess free energy is repre­

sented as a series over the interaction on large distances which is supposed 

to be weak. The main problem is to calculate the functional integral for 

the zeroth approximation. For this aim the Percus-Yevick (P-Y) approx­

imation has been used. This P-Y equation allows to calculate correlation 

functions for the zeroth approximation. It turned out [5] that solutions of 

this equation is good when the density is not too high and becomes quite 

unsutisfactory for dense states. In this case the numerical experiments 

by Monte-Carlo or Molecular Dynamics are used. 

Recently the method of calculation of functional integrals, called the 

Gaussian equivalent representation method, was worked out and applied 

to polaron problem [6, 7]. In this paper we want to use this method 

for calculation of the grant partition function for dense fluids. We shall 

consider systems of classical particles for which the two-body potential is 

positive and its Fourier transform is a well-defined function. As examples 

we obtain the explicit expressions for exponential and Yukawa potentials. 

An instructive mathematical example is presented too. 

We consider this paper as a preliminary version of our approach to 
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calculation of grand partition functions of the type: 

2 The grand partition function in the Gaus­

sian equivalent representation of func­

tional integrals 

Thermodynamics characteristics of a system of particles are determined 
by the grand partition function as a function of the temperature and 
chemical potential. This function is defined by 

Here (3 = k~' 

(
27l'm)d/2 PP 

z = ' (3h2 e . 

is activity, p. is the chemical potential, A is a large region (A <;;; Rd), real 
vectors Xj E Rd A two-body positive potential V(x- y) is supposed to 
be positive and to have the Fourier transform 

V(x) = J (~~ r V(p)e'P•. (2) 

where the function V (p) is positive too. 

The problem is to find the free energy 

F((3, z) =- lim -A
1 

ln::OA(f3, z). 
A-= 

(3) 
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According to these notation the pressure and the number density are 

defined like 

1 
P((3, z) = -{jF((3, z ), (4) 

((3 ) 
_ 8F(!3, z) 

p ,z - -z az . 

The connection between the density and pressure determines the equation 

of state. 

Our aim is to calculate this function by using the Gaussian equivalent 

representation method for computing of functional integrals [6]. Let us. 

use the following well-known Gaussian functional representation 

Nv j 8¢exp { -~(W-1¢) + i/73(A1>)} = exp {-~(AVA)}, (5) 

where the following notation are introduced 

(A¢)= 1 dxA(x)<f>(x), 

(AVA)= { { dxdyA(x)V(x- y)A(y), .!A .!A 
(¢V-1¢) = 11 dxdy¢(x)V- 1(x, y)<f>(y). 

The differential operator v-1(x, y) satisfies the equation 

1 dyV-1(x, y)V(y- x') = b(x- x') 

with appropriate boundary conditions which in the limiting case A-> Rd 

are not important . The Gaussian measure is defined in the standard way 

8¢ { 1 1 l} dl'v[¢] = v'det.Vexp --
2

(¢V- 1> , 
det V 
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j dJlv[t/>] = 1, 

1 A-R' { A! (dp)d - } 
v'det V --+ exp -2 21r In V(p) . 

Using the formula ( 5) for 

n 

A(x) = Lo(x- x;) 
j=l 

one can represent the grand partition function in the form 

(6) 

where 

z1 = z exp Uv(O)}. 
Our aim is to get the Gaussian equivalent representation of this fum:­

tional integral (6) which is suitable for any parametef' (J and z. Let us 

perform the displacement of the functional variable 

t/>(x)--+ tf>(x) + ib(x) 

and go over to the new Gaussian measure di'D[¢] where b(x) and D(x, y) 

are functions which should he determined. The functional integral (6) 

takes the form 



wlu-•re 

and for A ---> R" 

d/Ln[6) = ~exp {-~(<,W- 1 ¢)}, 
detD 2 

j dpv[¢) = I, 

,i dyD- 1(x, y)D(y- x') = 6(.r- .r') 

I A dp -
{ ( )

d } v'rlct1) = exp - 2 J 2rr In D(p) , 

D(.r- y) = / d/LD[¢)¢(x)<P(y). 

We want to stress that in th•· limit A---> R" th<' function D(.r. y)lwmmes 

translation invatiant, i.<'. D(:r, y) = D(.r- y). 

Now let us introdncP the concPpt.ion of the> uonnal product accordiu~ 

to the giv<•n Gaussian nu•rt..•mrC' dJtJJ[q>], nanw}y 

(8) 

<!J(:r:)</>(y) =: ¢(.r:)q>(y): +D(.r- y), 

in other words 

(9) 

The argument of the exponent in (7) can be rewritten in the form 

K = Z2.i d:re-.,f!Jb(r): [ci,(i1¢(r) -1- i.fJ</>(.r) + ~<l(.r)]: 

+ {~lndet ~- ~([V- 1 - D- 1]D) + ~(l!V- 1 b) + : 2 .£ dn·· VJI•(rl} 
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+i { z, .l clxe-.jj]b(x)y'7j¢(x)- (¢V- 1b)} 

-~: { z,1 clxe-.jj]b(x)(J¢2(x) + (c/>[V- 1
- D- 1]¢)} : 

where 

z2 = z exp { ~[V(O)- D(O)]}. 

Our basic idea is that the main contribution into the functional in-

tegral (7) is concentrated in the quadratic Gaussian measure dJLo[¢]. It 

means th'}t the linear and quadratic terms over the integration variable 

c/>(x) should be absent in the inegrand exponent. Thus we obtain two 

equations 

z21 dxe-.jj]b(xly'ij¢(x)- (¢V- 1b) = 0, (10) 

: { z,1 dxe-.jj]b(x)f3¢'(x) +(¢[V-I- D-1]¢)} := 0, 

which can be represcntf!d in an another form 

Jljb(x) = (3z,1 dyV(x- y)e-.jj3b(y), (11) 

D(x, x') = V(x- x')- (3z,1 dyV(x- y)e-.jj3b(y) D(y, x'). 

In the limit A -> Rd the functions b(x) and D(x, y) become translation 

invatiant, i.e. 

b(x) = b =canst, D(x, y) = D(x- y). 

These equations after son1c sirnple transforn1ations and substitution c = 

v'(1b can he rewritten for A -> Rd 

- - v(p) 
D(p) = V(O) · ( )' l+cvp 
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c = ,BzV(O) exp { -c + ,BR(c)}, (12) 

,BR(c) = ~[V(O)- D(O)J = ,BV(O) 1 (dp)d cv2(p) . 
2 2 21r 1 + cv(p) 

This equations determine the parameter c = ,jlJb and the modified "po­

tential" function D( x - y). As a result we get the Gaussian equvalent 

representation for the initial functional integral (3): 

3A(/3, z) = e-AFo 1 d!'n(rf>JeW[~J. 
Here the following notation are introduced 

W[rf>J = ,B;(O) 1 dx : e;yj1¢(x) :, 

where 

: e;yj1¢(x): = : [e;yj1¢(x)- 1- iJ!jrj>(x) + ~r/>2 (x)] : 

e;yj1¢(x)+~D(O)- 1- iJ!jrj>(x) + ~[r/>2(x)- D(O)J, 

(13) 

(14) . 

-Fo(/3) = ~ 1 (~:r [In g~i- g~; + 1] + ~;;(~; (15) 

= -~1 (dp)d [In 1 cv - cv(p) ] 2c+c2 
2 21r ( + (p)) 1 + cv(p) + 2,6V(O) 

and the parameter cis determined by the equation (12). 

We would like to stress that in the Gaussian equivalent representation 

(13) the effective coupling constant is 

If the potential has the form 

V(x) = gf (;J = gf(s), 
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where f( s) is a dirnensionless function and pararneters g and r0 define t lH' 

energy and space scale of this potential. Then the dimensionless con piing 

constant is 

G - c 
eff - {3g](O), 

- I d f(O) =, d sf(s). (17) 

3 The modified perturbation theory and 

the accuracy 

Using the repres<mt.at.ion (13) we can calculate the high<•st perturbation 

corrections to F o: 

F =- lim -
11
1

ln3A(f3, z) = F0 + F 1 + F2 + F:~ + ... (18) 
A~oo 

where 

F1 =-J dJ1n[¢JW[¢] =" 0, 

F2 =-~lim .!_fdJ1v[¢]W[¢JW[¢] 
2 A~oo A 

and so on. The explicit fonn for the second correction is 

(19) 

2 

F, = -~ (~. _~'-~) /ddx [e-~JJ(x) -1 + (3D(x)- ~(32D2 (x)] (20) 
2 m (o) . 2 

The accuracy of tlH' zeroth approxirnation can he evaluated as 

(21) 
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4 The exponential potential 

In this section we apply the Gaussian equivalent representation to the 

exponential potential in the space R3: 

V( ) = _!!___ -a' r e . 
81T 

(22) 

Let us introduce the following dimcnsionlPss variables and parameters: 

I= g(J, ,o; = ar, - Jl 
I'=-, 

g 

,\ = _!_ ( 21T'."9) 3/2 
a3 112 

Then for the expon<•ntihl potential one can g<•t 

{JV(1·) = le-', ;Jf'(p) = l"(JI). 
81T 

1 
v(p) = (p2 + 1)2' :Jf'(O) = /, 

(JR(c) ~[V(O)- D(O)] = l I (dp)" '"'2(p) 
2 2 . 21T 1 + ('1'(1') 

1~1T [ 
1 

- J 1+ ~1+ l 
For function D we obtain 

- 1 
D(p) = 2 4' (p + a2)2 + ca 

1 
D(B) =-~(,,c), 41T 

( .~ lJ.(B,c) = CXp -··v ~) sin (• J 2(I+JI+,)) 

B.,/(' 

The basic equation looks like 

"= ~exp{-c+1ii+_2__[1-J ~ ]}· (23) vI 161T 1 + 1 + <' 
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The free energy in the zeroth and ~econd approxi1nation is defined as 

a.
3 

[ l+c+(1-%J,;r:t:(. 37f '] Fo(f3J =- · 1- - -(2c+c) , (2•1) 
G1r )2(1 + c)(1 + ,;r:t:(.J T 

a" (2'")'[,00 

{ ~ } F,(3)=--· - dss2 cxp2 --'--;=L>(s.c) , 
67r 'i , o 47fyC 

(25) 

2 

( ) 
u " exp2 u = e - 1- u- -. 

2 

The numerical calculations arc done for A = tl, = 1 and for tlu' fuuctiou 

F;(f3) = -z:s;b) and are given in the table 1. 

Table 1 
,-- - ---

T Soh) S,{'t) * 107 c 

.1 1.75 -6.8 1.13 

.5 12.74 -8.1 .93 

1.0 28.26 -7.9 1.00 

2.0 55.71 -7.4 1.35 

5.0 107.03 -5.8 3.09 

10.0 162.81 -3.4 6.96 

20.0 261.87 -1.0 15.89 

50.0 549.87 -0.0 44.73 

100.0 1024.00 -0.0 94.28 

1000.0 9428.00 -0.0 1005.00 
[___ 
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5 The Yukawa potential 

In this section we apply the Gaussian equivalent representation to the 

Yukawa potential in the space R:J. 

- g 
V(p) = 2 2 · 

P +a 
(26) 

For function D we obtain 

or 

- g 
D(p) = p2+a2(1+c)' 

g e-ar..;I+C 

D(r) = 4" r . (27) 

Let us introduce the following dimensionless variables and parameters: · 

ga(3 
?=-, 

47r 

47rj.t 
1.1=-, 

ga 

>. = (mga)3/2. 
2h2 

Then for the Yukawa potential one can get 

(3R(c) = ~[V(O)- D(O)] = 'Y [~- 1]. 

The basic equation (12) looks like 

Let us introduce the functions 
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The free energy in the zeroth and second approximation is defined as 

1 ( c r;-c-) 2c + c2 
8o(l3) = -- 1 - (1 - - )v 1 + c + , 3 2 27 

(30) 

. 1 c2 roo 
82(13)= 272 · (1 +c)3/ 2 j

0 
dss

2
exp2{-E(s)]}, 

u2 e-s 
exp2(u) = e" -1-u- -, E(s) = 7,)1 +c· -·-. 2 • 

In the limit 13 -+ oo ( 7 -+ oo) we have c -+ i and the free energy in 
the zeroth and second approximation look like 

so that in this limit 

80(13) -+ ~73 
( 1 + 0 ( ~)) , 

82(13) = (-~) ( 1 + 0 ( ~)) ' 

Practically this asymptotic behavior begins from 7 ~ 10. 
The numerical calculations are done for 

and are given in the table 2. 

4rr.X 
-=v=1 

a3 
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Table 2 

·-··-··~·-, 

r 0~ 
So(!) Skr) c 

330.04 -.088 1.756 

.1 0 18.331 -.022 1.15·1 

.00 3.222 -.038 1.029 

.80 2.380 -.055 1.147 

1.00 2.222 -. 072 1.268 

1.50 2.105 -.141 1. 700 

2.00 3.249 -.284 2.175 

5.00 48.960 -8.489 18.206 

10.00 548.216 -101.857 89.470 
I 

20.00 5003.087 -938.135 385.123 1 

50.00 82210.432 -15.J20 1~ 2481 ~32.J 

6 The mathematical example 

In this s<~<'t.ion we wouhllikP to d('lllOBstraU· the Ptfici<'llC~-· of our UH't lHHl 

on a sirnple rnathenmt.ical PxmnplP and we• hope that this iun•stip;ation 

hdps us to darify tlw basic idea of our rndhod. L<'t us consid<'r tlH' 

function 

= -" ~·x• [ . { .1 } "' _f!. 11 2 ( .l .l - . .r 
.J(IJ) = L I" ' = -- <'XJ> ---;;- + zc'fi . 

n. . -= V2i[ -n=O 

(34) 

wlwn~ z = z0cf1. Let us apply t.hP Ga.nssiau cquivaknt rcpr<'SI'Htation to 

this int<'p;ral. Let us perfonn all transfonuatiotis lcadin).!; to t lw Gaussian 

cqnivalPnt repre:·wntation, nan1dy1 \V<' do tlu• llispla<'<'llli'Ht .r -----+ .r + ih 

and introdu('c a new paraul<'t-Pr w. <l<'fining tht• Gaussian IIH'astuc. \\'c 
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get 

J(f3) = J daweK(rN,w), (35) 

daw= ~exp{-;~}, 
1 x 2 1 b2 . K(x,f],b,w) = 21nw- 2 (1- ~)- ibx+ 2 +ze-v'i16e•v'i1•. 

The conception of the normal product with respect to the measure daw 

means that 

J daw: x" := 0 lin, 

i m, i m, 1 . 175{3 f3x2 : e v~ :=: e2vP + + zy fJX- -- :, 
2 

2 
s s -'.i s e2 = e - 1 - s- 2 , 

i m, · "' +!!>< · 175 f3 2 : e2v" := e'v''' ' - 1- •v f3x + -(x - w). 
2 

Let us substitute these representationsinto K(x,/3, b,w) and require the 

coefficients in front of the linear x and quadratic x 2 terms to be equal 

zero. As a result one can obtain 

where c = v'lJb and pararnctcrs c and w satisfies the equations 

c = (Jze-c-~w = f3zoef3-c-~w' 
1-w "' -- = (3zf~-c-2. 

w 
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These equations lead to 
1 

w=--. 
1+c 

Finally the function c = c(,B) is defined by the equation 

,8 c 
,8- c- -In-+ In zo = 0. 

2(1+ c) ,8 
(38) 

The "free energy" in the zeroth and second approximations looks like 

In J(,B) S(,B) = So(,/3) + S2(,8) + S3(,8) + ... , (39) 

1 c(,B) 1 [c
2
(,8) ] 

S0(,8) - 2ln(l+ c(,B)) + 2(1+ c(,B)) + /3 - 2- + c(,B) , 

S] (,B) c(,B) j d · ;-./i), ·- 0 T C!w. e2 .- ' 

S2(,8) = H c~) Y j daw (: e;-./ii• Y 
= ~ ( c~)) 2 [e-{Jw(~)- 1 + ,Bw(,B)- ,82w;(,B)], 

where w(,B) = !+!(~). 
The numerical calculations are done for zo = 1 and are given in the 

table 3. 
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Table 3 

(3 S((3) So(f3) S2(f3) 

.1 1.003 1.002 -.0006 

.5 1.054 1.057 -.003 

.8 1.113 1.120 -.006 

1.0 1.159 1.170 -.008 

1.5 1.291 1.311 -.015 

2.0 1.441 1.470 -.021 

5.0 2.616 2.619 -,041 

10.0 5.010 4.811 -.052 

15.0 7.501 7.121 -.056 

20.0 10.000 9.483 -.059 

30.0 15.000 14.287 -.061 

50.0 25.000 24.036 -.063 

100.0 50.000 48.694 -.064 

1000.0 500.000 497.546 -.066 

7 Appendix 

Here we li~t the integrals .arisir!g_ in our calculations with the exponential 

potential: 

roo dq 1r 1 

Jo (q2 + 1)2 + c = 2. V2(1 + c)(1 + v'f+C), 

r dq 1r 2 + 3vT+C 
} 0 [(q2 + 1)2 +c)' = 4. [2(1 + c)(1 + v'f+C)j3/2' 

roo dq 1r [ 1 + v"f+'(:] 
} 0 (q2 +1)[(q2 +1)2+c]=2c. 

1
- 2(1+c) ' 

17 
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roo dq 

,, 0 (t/ + 1)[(q2 + 1)2 + cJ2 

= ~. { 1
- ,1-+-~-1 +-c. 4+6c+(4+5c)~}. 

2c2 2(1 +c) 4(1 + ,.)(1 + ~) 

.r (t/ + 1)[r'~;'~ 1)2 + cF = 2,. { 1 - J 1 + ~1 + c} · 
roo dqq' "f 1+c+(1-~)~l 

.fo (q2 + 1)[(q2 + 1)2 + cJ2 = 2c2 ·11- V2(1 + c)(1 + ~) . 

1 I (dp)'1 

[ ( '" ) ,. J 2. 27r In 1+(<P+1)2 -(,/+1)2+,· 

a'1 f 1+c+(1-~)~ l 
= 6" ·11- J2(1 + f"}(l + ~) . 

l oo dq q2 7r 

=-·[~-!] 
• 0 (</+ 1)(</+ 1 +c) 2c · 

roo dq q' = -" . [1 - (1 - ~) ~] 
./0 (q2 + 1)(q2 + 1 + c)2 2c2 2 · 

.Cdq q' ['n(1+ q2 ~ 1 )- ,p+,~+c] = i. [1- (1- ~) ~]. 
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