


1 Introduction

The idea of using of functional integrals in classical statistical mechanics
was introduced more then 30 years ago [1,2,3]. This method has been
used for lattice gases and spin systerns. For continuum fluids the func-
tional representation of grant partition function was introduced in [4].
This functional integral was calculated in frame of perturbation theory
when the zeroth approximation is connected with the interaction on short -
distancies and is supposed to be known. The excess free energy is repre-
sented as a series over the interaction on large distances which is supposed
to be weak. The main problem is to calculate the functional integral for
the zeroth approximation. For this aim the Percus-Yevick (P-Y) approx-
imation has been used. This P-Y equation allows to calculate correlation
functions for the zeroth approximation. It turned out 5] that solutions of
this equation is good when the density is not too high and becomes quite
unsutisfactory for dense states. In this case the numerical experiments
by Monte-Carlo or Molecular Dynamics are used.

Recently the method of calculation of functional integrals, called the
Gaussian equivalent representation method, was worked out and applied
to polaron problem [6,7]. In this paper we want to use this method
for calculation of the grant partition function for dense fluids. We shall
consider systems of classical particles for which the two-body potential is
positive and its Fourier transform is a well-defined function. As examples
we obtain the explicit expressions for exponential and Yukawa potentials.
An instructive mathematical example is presented too.

We consider this paper as a preliminary version of our approach to



calculation of grand partition functions of the type:

EA(ﬁ,z)-_-Z%;/Ad:cl...fAdmnexp{-[321/'(:5,-—3:1-)}.
a=0

2  The grand partition function in the Gaus-
sian equivalent representation of func-
tional integrals

Thermodynmnics characteristics of a system of particles are determined
by the grand partition function as a function of the temperature and

chemical potential. This function is defined by

E:EA(ﬂ,z)=;ﬂi—?/‘&dxl-.-[\dxnﬂp{-ﬁzwxi“%‘)} {1)

i<j
df2
z= g_:rr_m e’

Is activity, p is the chemical potential, A is a large region. (A € RY), real
vectors ; € R%. A two-body positive potential V(z — y) is supposed to

be positive and to have the Fourier transform

v = [ (2) Vo @)

where the function V(p) is positive too.

The problem is to find the free energy
1

InZ4(3, 2). (3)



According to these notation the pressure and the number density are
defined like

P(8,2) = —%F(ﬁ, 2), (4)
p(B3,2) = _2%5_)_

The connection between the density and pressure determines the equation
of state.

Our aim is to calculate this function by using the Gaussian equivalent
representation method for computing of functional integrals [6]. Let us.

use the following well-known Gaussian functional representation

Ny [esess {5V =0 41vBan | = e {-Saval.e

where the following notation are introduced

(A¢) = fA dzA(2)¢(z),

(ava) = [\ /A dzdyA(z)V (z — y) A(y),

0v=16) = [ [ dedys(a)v e, 0)000)
AJaA
The differential operator V~*(z,y) satisfies the equation
[ vy —=) = sz - o)
A

with appropriate boundary conditions which in the limiting case A — R®

are not important . The Gaussian measure is defined in the standard way

exp {36V},

duv[?] = ==



[awtar=1,

1 A—RY A d d _
— i exp{—E/(i) an(p)}.

Using the formula (5} for

n
A(z) =) 8z — x;)
j=1
one can represent the grand partition function in the form

EA(,B, Z) = fd”V[¢] exp {21 -/ dxe‘\/(ﬁqs(-'ﬂ)} (6)
A
where
- 8
Z] = Zexp -2—V(0) :
Qur aim is to get the Gaussian equivalent representation of this func-

tional integral (6) which is suitable for any parameters 3 and z. Let us

perform the displacement of the functional variable

$(z) — ¢(x) + 1b(z)

and go over to the new Gaussian measure dyp[¢] where b(z) and D{(z,y)
are functions which should be determined. The functional integral (6)
takes the form

=0(8,2) = j dppldle®, %
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where
0o20) 1 _
djp[d) = TtD exp {—§(¢D 1¢)} .

f@u[ﬁﬂ =1,

[\dyD—l(:r:, y)D(y — 2') = 8(z — 1)

1 A f(dp\Y, -
m:exp{—gf(%) lnD(p)},

D(r —y) = / dpp[6)o(x)o(y).

and for A —» R

We want to stress that in the limit A — R® the function D{r. y) becontes
translation invatiant, i.e. D{x,y) = DXa — y).
Now let us introduce the conception of the normal product according

to the given Gaussian measure dpp(¢], namely
CoiVBale) . VB B 0) (8)
plx)o(y) =: olr)dly) : +D(x — y).
in other words .
/d,fm[qﬁ] L VAR = (9)

The argument of the exponent in (7) can be rewritten in the form

. ' 3 .
K=2 /dme"ﬂb(r) : |:(”‘/B¢(I) -1- iﬁc-‘)(;r) + %C}‘!(.r):l :
JA
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+i { 2 [\ dze™ VP [Be(x) — (qbV“b)}
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where
29 = zexp {g[V(O) - D(U)]} .

Our basic idea is that the main contribution into the functional in-
tegral (7) is concentrated in the quadratic Gaussian measure dup[¢]. It
means that the linear and quadratic terms over the integration variable
¢(xz) should be absent in the inegrand exponent. Thus we obtain two

eqguations

9 f,\ dze VP2 [Be(x) — ($V ') = 0, (10)
: { [ dre V562 @) + 61y~ - D7) =0,

which can be represented in an another form
VBblz) = B [ dyV(z = e/, (1)
D(z,z') = V(z — 2') — Bz /,\ dyV (z — y)e VPO D(y, 2').
In the limit A — R? the functions b(z) and D(z,y) become translation
invatiant, i.e.
b(z) = b = const, D(z,y) = D(z — y).

These equations after some simple transformations and substitution ¢ =

VBb can be rewritten for A — R4

v(p) V(p)

b(p) - ‘}(O) 1 + cu(p)’



¢ = B2V (0)exp {—c+ BR(c)}, (12)

8R(e) = §Iv0) - Doy = 22 [ () 2

This equations determine the parameter ¢ = +/3b and the modified ”po-
tential” function D(z — y). As a result we get the Gaussian equvalent

representation for the initial functional integral (3):

=4(8,2) = <% [ dup{gle". (13)
Here the following notation are introduced
!\/305(2) .
= 370 .
where
LelPE) L o [e*‘/B‘b(“’) —1—iv/Be(z) + §¢2(w)] :
= BEIEDO 1 i /Bg(a) + D16(x) - D(O),
_ 1 f(d\"|, D) D) 2c+ ¢?
R = 3 [ (h) 7o) V(p)“]+2ﬁff(0) 1
_ 1 Ei_g ¢ N o a cv(p) 2c + 2
- -3/ () [0 4000 - 525 T Bv0)

and the parameter ¢ is determined by the equation (12).
We would like to stress that in the Gaussian equivalent representation
(13) the effective coupling constant is
¢
Geff = ——— (16)
BV (0)

If the potential has the form

Ve =of (5) =of) s=1



where f(s) is a dimensionless function and parameters g and ry defiue the
energy and space scale of this potential. Then the dimensionless coupling

constant is

Gur = —S—, f(0)=[ddh'f(8)- (17)

3 The modified perturbation theory and

the accuracy

Using the representation (13) we can calculate the highest perturbation

corrections to Fy:

N S
F =—- lim Kln:A(ﬁ,z)=Fu+F1+F2+F3+... (18)

A-—oo

where

F=— f dupla]Wel = 0,
Fo=—- lim ~ [ d W '
2= lim & [ dupleWlewio] (19)

and so on. The explicit form for the second correction is

Fy = ! ( ’ )2 [dd:r [e—f’”@) — 14 8D(z) — lﬁzDQ(I) (20)
2\3V(0)/ . 2

The accuracy of the zeroth approximation can be evaluated as

eneof)  w



4 The exponential potential

In this section we apply the Gaussian equivalent representation to the

exponential potential in the space R¥:

g _
Vir)= Ze 9. 29
(r) 87 (22)
Let us introduce the following dimensionless variables and parameters:
y=gf, s=ar, @=L i=aemy
-4

\ = 1 {2rmg 32
T ad h? ’

Then for the exponential potential one can got
V)= Lo AT =,
aV(0) =1,

dp\* cv?(p)
2r ) 14 ce(p)

1
v(p) = W,
B

sRe) = v -pon=1 [ (

T |4 2
16 14+ V14«

For function D we obtain

D(p) = !

(p® + a?)?2 4 ca?’

A 14 \/1__1_“‘(' sitl ("" ‘z(l+\7r 1+r))
(s,¢) =exp | —s 5 : T .

1
D{s) = 4—7;13(5, o).

The basic cquation looks like

A - o] 2
AN A 4 - |\
‘ ﬁ(‘xp{ «+7,u+16w[ TAT } (23)



The free energy in the zeroth and second approximation is defined as

3 l+e+(1—SW1+c¢ .
Fo(ﬁ)=”—- 1~ tetl 4)m—3—w(2f-+r2) . (24)

b \ﬁ(l +o(l+vVite) 7

3 ¢ 2 x ) -
F?(,.S’):_g;.(_ﬂ;_) /U dsszcx1)2{47r!\/,;;ﬁ(.s,c')}, (25)

2

expy{u) =¢" =1 —u - %
The numerical calculations are done for A = i = 1 and for the function
Fi(3) = —g—;Sj(",‘) and are given in the table 1.
Table 1
7| Solr) | Suly) =107 ¢
1 1.75] 6.8 1.13
A 12.74 | -8.1 93
1.0 2826 -79 1.00
20| 55.71|-74 1.35
5.0 107.03]-5.8 3.09
10.0 ] 162.81|-3.4 6.96
20.0 | 261.87|-1.0 15.89
30.0 | 549.87|-0.0 44.73
100.0 | 1024.00 | -0.0 94.28
1000.0 | 9428.00 | -0.0 1005.00
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5 The Yukawa potential

In this section we apply the Gaussian equivalent representation to the

Yukawa potential in the space R®.

g e - g
(=257 W) =mim 0
For function D we obtain

- g g e—arm
D(p) = — D(ry=2_—— (27
(p) p2+a3(1+c) (T) A7 r ( )

Let us introduce the following dimensionless variables and parameters:

_ gaB L
T 4x’ "~ ga’
e™ magay 3/2
2L A= ( S
z 4372 oh2

Then for the Yukawa potential one can get
BR(c) = 51V(0) - DO)] =7 [VTFe - 1].
The basic equation (12} looks like
4mA
c+lnc—vy [\/1+c—1]—7v—-—ln'y+1n(a ) (28)

or

e (ViFe-2) = (1= 1) 4w -y e ().

Let us intreduce the functions

F;(8) = ——-5;(8)- {29)

11



The free energy in the zeroth and second approximation is defined as

2
500) = =5 (1= (1= HviTe) + LS, (30)
: 1 2 oo
S2(83) = 2 (1—;:(:@/0 dss® expy {—E(s)]},
2 -5
expy(u) =e* -1 —u— %, E(s)=v/1+c¢- es .

In the limit 8 — oo (v — o0) we have ¢ — 4% and the free encrgy in

the zeroth and second approximation look like

()~ 5 (1+0 (). (31)

wo=(3) (wo(2)

(32)

so that in this limit

sin = w (100 () =@

Practically this asymptotic behavior begins from v 2 10

The numerical calculations are done for

and are given in the table 2.

12



Table 2

'“:‘ So(7) Sa(7) ¢
1 330.04 -.088 1.756
10 18.331 -.022 1.154
50 3.222 -.038 1.029
.80 2.380 -.055 1.147
1.00 2.222 -072 1.268
1.50 2,105 -.141 1.500
2.00 3.249 -.284 2475
5.00 48.960 -8.489 18.206
10.00 048.216 -101.857 80.470
20.00 1 5003.087 -938.135 | 385.123
50.00 | 82210.432 | -15420.111 J 2481.731

6 The mathematical example

In this section we would like to demonstrate the efficiency of our method
on a simple mathematical example and we liope that this investigation

helps us to clarify the basic idea of our method. Let us consider the

function
o n x 2
g dr o -
J{p) = E we e / cxXp {—,— + :f"‘ﬁr} .3
pard 71! Joso V2T 2
where = = zpe?. Let us apply the Ganssian equivalent representation to

this integral. Let us perform all transformations leading to the Gaussian
cquivalent representation, namely, we do the displacement v — o 4 0h

and introduce a new parameter w, defining the Gaussian wmeasure. We

13



get

J(3) = ]daweK(:'ﬁ’b'“), - (35)
4 dx ex { 1'2}
Ou = a5 . {>
. \/2179; p 2w
1 x? N Y
Klz,8,b,w)=-lnw—- (1= =) —ibr + — + ze eveT,
2 2 w 2
The conception of the normal product with respect to the measure do,,
means that
eVPr —. iVPr e_g“’, = 2% tw,
/daw o L I, /daw izt =0 Vn,

, 2
ceVBT e;ﬂz +1+4 i\/ﬁm - %E- Y

2
w 8

5 5 i
e, =e —1—-5—5,

L eV = VP 1 /B + g(mz —w).
Let us substitute these representations into K(z, 3, b,w) and require the

coefficients in front of the linear = and quadratic z? terms to be equal

zero. As a result one can obtain

J(3) = eSﬂ(ﬂ)/dau exp {% : eiﬂh 1} s (36)
1 w 1 o? .
Se(ﬂ)_ilnu—§(1—5)+%+ze =

where ¢ = /3b and parameters ¢ and w satisfies the equations

a
c= ﬂze‘“'g“’ = Bapel "5, (37)
1 —w w
—— = Fze " 2.
w

14



These equations lead to
1

W= .
l14¢
Finally the function ¢ = ¢(3) is defined by the equation

ﬁ—c—ﬁ—ln%+lnzoz0. (38)
The "free energy” in the zeroth and second approximations looks like
lnJ(8) = S(8)=So(B)+SeB)+Sx(B) + - (39)
Su8) =~y +e(B) + g+ L [T o)
¢ 2 21+c(B)) B 2 ’
Si(B) = "(g) f do,, - /P = 0,
1 2 iv/Bz 2
5:(B) = 3 (C&Tﬁ)) /dcrw (: 62‘/‘3 :)

() s~ 252,

where w(3) = ﬁﬁj
The numerical calculations are done for zp = 1 and are given in the
table 3.
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Table 3
S(8) | Su(B) | Sx(B)
1.003 1.002 | -.0006
1.054 1.057 | -.003
8 1.113 1.120 | -.006
1.0 1.159 1.170 | -.008
1.5 1.291 1.311|-.015
2.0 1.441 1.470 | -.021
2.0 2.616 2,619 -.041
10.0 5.010 4.811 | -.052
150 7.501| 7.121|-.056
20.0 1 10.000 9.483 | -.059
3.0 15.000 14.287 |-.061
50.0( 25.000| 24.036 |-.063
100.0 | 50.000 | 48.694 | -.064
1000.0 | 500.000 | 497.546 ; -.066

;o= |

7 Appendix

Here we list the integrals arising in our calculations with the exponential

potential:

oo dg _ T 1
ju (+1y+c 2 \/2(1+c)(1 +ﬁﬂ)’
/00 dq ™ 2+3vV1+¢

o I

FHDI+ T 4RI+ o+ TP
f“’ dq | LIt
o (@+D[(2+1)2+ " 2¢ 20 +e) |

17
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[ d“‘
Jo (@ +D)[{g?+ 1P +c]?
T _{1_ 1+V1+¢ 4+6(+(4+ar)\/1+(}_

2 2+ A+l ViTe

> dyq R 2
/n (¢ + D[+ 1)+ e {1 14+ 1 +('} ‘
/°° dgq’ LN P 1+('+(1—%)\/m
Jo @@+ 1+ 23 Jar+oa+viza |

1 [ if_)_ 3 | - ¢ B ¢ ]
9 . 2x . (g2 + 1)? (24 1)+ ¢

o [ ireraoporE
V2L + O+ VTF )

Lk = = [Vite-1).
Jo @+ +1+¢)  2¢

.Lm (¢* +1dq2q+1+,)z 2(.2'[1—( —%) \/E]
¢

'/"mdqq[ ( 211)_(12+1+,.]:% [1 (1__) 1+"]-
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