ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

19/10-70

E17 - 9492

1465/2-76

C-99

J.Czerwonko

-----

THE COLLECTIVE EXCITATIONS WITH A SMALL GAP FOR SUPERFLUID FERMI LIQUID



E17 - 9492

J.Czerwonko\*

## THE COLLECTIVE EXCITATIONS WITH A SMALL GAP FOR SUPERFLUID FERMI LIQUID

Submitted to  $\mathcal{K} \ni T \Phi$ 

\* Permanent address: Institute of Physics, Technical University, 50-370 Wrocław, Poland

| Ń | Boberstanth Manay      |  |
|---|------------------------|--|
| l | SECONDAX INCROSOBORNES |  |
|   | BHS MOTE A             |  |

1. The equations for vertex functions of the Larkin-Migdal <sup>/1/</sup> approach to superfluid Fermi liquid were solved, in the acoustic limit ( i.e., for  $|\omega|$ ,  $k \upsilon < \Delta$ , where  $\omega, \vec{k}$ denote the frequency and the wave vector of an external field, respectively, for  $\Delta$  and  $\upsilon$  being the energy gap and the quasiparticle velocity on the Fermi sphere, respectively) for systems with isotropic S-pairing in paper <sup>/1/</sup>. For the system with the Balian-Werthamer <sup>/2/</sup> pairing \* such equations for such a limit were solved by us for scalar and vector vertices <sup>/4/</sup> and for spin vertices <sup>/5/</sup>. In papers <sup>/1/</sup> and <sup>/4,5/</sup> the effective interaction in the particle-hole channel, coinciding with the effective quasiparticle interaction for normal system,

<sup>\*</sup> It is known to very few persons only that the main results of this paper were obtained independently by Vdovin  $^{/3/}$ .

was of quite general form. On the other hand, the effective interaction in the particle-particle ( or hole-hole) channel was restricted only to pairing channel, i.e., to  $\ell = 0$  in  $^{/1/}$ and to  $\ell = 1$  in  $^{/4,5/}$ . Note that according to papers  $^{/1,4/}$ this interaction can be represented by two functions  $\int_{\ell}^{5} (\hat{\rho}, \hat{\rho})$ ,  $\ell = 1$ , such that

$$\int_{\mathcal{E}}^{\xi} (\hat{\vec{p}} \cdot \hat{\vec{p}}') = \sum_{\ell=0}^{\infty} (2\ell+1) \int_{\ell} P_{\ell}(\hat{\vec{p}} \cdot \hat{\vec{p}}') , \qquad (1)$$

.

with the summation over even  $\ell$  for  $\ell$  =1 and over odd  $\ell$ for  $\xi$  -1. The Legendre amplitudes of such an interaction,  $f_{\ell}$ , are equal, for dimensionless interaction, to  $\left[ ln\left( 27/\tau_{e}\right) \right]^{-1}$ , where  $\xi$  denotes the cut-off energy with  $\mathcal{T}_{\ell}$ being some nonnegative constants ( cf.paper  $^{/1/}$  ). In the pairing channel, i.e., for l = 0 for S-pairing and l = 1 for pairing /2,3/,  $r_{i}=\Delta$ , /1,4/; we will denote hereafter  $\ell$ . for the pairing channel by  $\ell_{a}$  . It can be easily verified for equations for vertex functions in papers  $^{/1,4,5/}$  that if  $\lim_{\substack{\ell \neq l_0}} |ln(\Delta/\tau_{\ell})|$ , is at least, a number of order of unity, then the harmonics with  $\ell \neq \ell_0$  could be neglected in the acoustic limit. On the other hand, if  $\min_{\substack{\ell \neq l_0}} |\ln(\Delta/r_{\ell})| << 1$ and the harmonic fulfilling this inequality appears in the equations for the vertex functions, then the solutions obtained in papers  $^{1,4,5/}$  are not valid unless  $|\omega|$ ,  $kv \ll$  $\Delta \left[ \underset{\substack{\ell \neq l_{0}}}{\text{Min}} \left| \ln \left( \frac{\delta}{\gamma_{\ell}} \right) \right| \right]^{\frac{1}{2}}$ Note that only in the equations for spin vertices for systems with Balian-Werthamer-Vdovin (EVV) pairing there appear together both functions  $\int_{e}^{5}$ 

and spin vertices one can meet the Legendre amplitudes with  $\Delta \ell$  =1; in the remaining cases the minimal  $\Delta \ell$ = 2. The  $f_\ell$  amplitudes have to diminish beginning from some  $\ell$ , as a result of the centrifugal force  $^{/1/}$ .

Hence, it is rather unexpected to fulfil the condition  $|ln(\Delta/r_{\ell})| \ll 1$  for l = 2,4,5... (BCS pairing) or  $\ell$  = 3,5,7 ... (BWV pairing). On the other hand, the condition  $|\ln(\Delta/\tau_o)| \ll 1$  seems to be quite natural for the BWV pairing, since the tendency to diminish  $f_\ell$  for increasing  $\ell$  acts here against a tendency for greater  $f_{\ell}$  in the pairing channel. Hence, it is interesting to solve the equations for the spin vertex for systems with the BWV pairing assuming that  $|\ln(\alpha/r_{\ell})| \ll 1$  only for  $\ell = 0$ . Our results can play a role for spin waves in the B-phase of superfluid <sup>3</sup>He. Our previous results  $^{/5/}$  can be obtained from the present ones by a limiting transition. Our present notation coincides with the previous one; the definitions of  $\frac{5}{5}$  will not be repeated, as a rule, here. Our paper  $\frac{5}{5}$  will be hereafter denoted as I; its formulae by (n,I), where n denotes the number of the formula in I.

2. The equations for the tensor describing the normal spin vertex, in the acoustic limit, will be now of the form ( cf.I and  $^{/3/}$  )

$$J_{a6} = \hat{\delta}_{a6} - \langle B \{ \frac{1}{2} (1 + \tilde{P}) J_{a6} - \tilde{P} \hat{\rho}_{b}^{\prime} J_{ac} \hat{\rho}_{c}^{\prime} - [\omega + (\tilde{k} \tilde{J}^{\prime})] [i T_{ac} \hat{\rho}_{d}^{\prime} \mathcal{E}_{cd6} + \lambda_{a} \hat{\rho}_{b}^{\prime}] \} \geq_{\hat{P}} (2)$$

The equations for  $\gamma_{ac}$  will coincide with those in I. The equation for the variable  $\lambda_a^{/4/}$ , for  $\int_{-1}^{4}$  consisting of only zeroth Legendre harmonic, in the acoustic limit, can be rewritten as follows

$$\lambda_{a} \left[ \ln \left( \Delta/r \right) - \left\langle \omega^{2} - \left( \vec{k} \vec{v} \right)^{2} \right\rangle_{\hat{p}} \right] = - \left\langle \left[ \omega + \left( \vec{k} \vec{v} \right) \right] J_{ab} \hat{p}_{b} \right\rangle_{\hat{p}} , \qquad (3)$$

where the label "0" near  $\gamma$  was omitted for simplicity. It is clear for the symmetry reasons that  $\lambda_{\alpha} = \lambda \hat{k}_{\alpha}$  and, hence, eq. (3) can be rewritten as

$$\lambda \left[ \ln \left( \frac{4}{r} \right) + \frac{1}{3} k^2 v^2 - \omega^2 \right] = - \left\langle \left[ \omega + \left( \vec{k} \vec{v} \right) \right] \hat{k}_a \mathcal{J}_a \hat{\vec{p}}_b \right\rangle_{\vec{p}}$$
<sup>(4)</sup>

Let us define  $\mathcal{T}_{a\ell} = \mathcal{T}_{a\ell}^{(1)} + \mathcal{T}_{a\ell}^{(2)}$ , where  $\mathcal{T}_{a\ell}^{(1)}$  is expressed by  $\mathcal{C}_{a\ell}$ , as in I. Hence

$$\mathcal{J}_{a6}^{(2)} = \lambda \langle B[\omega + (\vec{k}\vec{v})]\hat{k}_{a}\hat{p}_{b}'\rangle_{\hat{p}'} - \langle B[\frac{4}{2}(1+\tilde{P})\mathcal{J}_{a6}^{(2)} - \tilde{P}\hat{p}_{b}'\mathcal{J}_{ac}^{(2)}\hat{p}_{c}']\rangle_{\hat{p}'}$$
(5)

Using formulae (19.I) one can find that the first term of the right-hand side of eq. (5) is given by

$$\lambda \left[ (\omega b_1 + k \upsilon b_2 w) \hat{k}_a \hat{p}_b + \frac{1}{3} k \upsilon (b_0 - b_2) \hat{k}_a \hat{k}_b \right]_{(6)}$$

with  $W \equiv \left( \hat{\vec{k}} \hat{\vec{r}} \right)$  . Hence one can find that

$$\mathcal{T}_{a6}^{(2)} = (C_{o} + C_{i} w) + E_{o} \hat{k}_{a} \hat{k}_{b}, \qquad (7)$$

if we take into account that the terms (7) form a closed set with respect to multiplication  $\hat{\rho}_{6} \mathcal{J}_{\alpha c}^{(2)} \hat{\rho}_{c}$  appearing in (5). Substituting (7) into (5) one finds

$$C'_{o} = \lambda \omega \frac{b_{1}}{1+b_{1}}; E'_{o} = \frac{1}{3} \lambda k \upsilon (b_{o} - b_{2}) S^{-1}; C'_{1} = \lambda k \upsilon b_{2} (1+b_{1}) S^{-1},$$
<sup>(8)</sup>

with

$$S = 1 + \frac{2}{3} 6_0 + \frac{1}{3} 6_2 .$$
<sup>(9)</sup>

Taking into account the expression of  $\mathcal{J}_{\alpha 6}^{(4)}$  by the variables X,R describing  $\mathcal{T}_{\alpha 6}$  ( cf. I) and formula-(7) one can write

$$\mathcal{T}_{a6} = (A_{o} + A_{1}w)\hat{\delta}_{a6} + (B_{o} + B_{1}w)\hat{p}_{a}\hat{p}_{6} + D\hat{p}_{a}\hat{k}_{6} + [C_{o} + C_{o}' + (C_{1} + C_{1}')w + (C_{2}w^{2}]\hat{k}_{a}\hat{p}_{6} + (E_{o} + E_{o}' + E_{1}w)\hat{k}_{a}\hat{k}_{6},$$
<sup>(10)</sup>

where the variables  $A_n - E_n$  are expressed by X,R by formula (17-20, I) and (25-30,I). Substituting (10) into (4) one finds

$$\lambda \left[ l_n(\Delta/\tau) + \frac{1}{3}k^2 \sigma^2 - \omega^2 \right] = -\frac{1}{3}k \sigma \left( A_o + B_o + \zeta_1 + \zeta_1' + E_o + E_o' \right) - \omega \left( \zeta_o + \zeta_o' \right) - \frac{1}{3}\omega \left( A_1 + B_1 + E_1 + \zeta_2 + D \right).$$
<sup>(11)</sup>

Substituting here  $('_{o}, ('_{1})'$  and  $E'_{o}$  from (8) and  $A_{n} - E_{n}$  from (17-20, I) and (25-30, I) one obtains

$$\lambda \left(a + k^{2} \upsilon_{2}^{2} - \omega^{2}\right) - \frac{2}{9} X k \upsilon \omega \left(b_{0} - b_{2}\right) (1 + b_{1}) S^{-1} = -\frac{1}{3} k \upsilon (1 + b_{1}) (1 + b_{2}) S^{-1}, \quad (12)$$

where

$$a \equiv (1+b_1) \ln (a/r), \qquad (13)$$

and

$$U_{2}^{2} = \frac{1}{3} U^{2} (1+b_{0})(1+b_{1})(1+b_{2})(1+\frac{2}{3}b_{0}+\frac{1}{3}b_{2})^{-1}.$$
(14)

In order to obtain the equations for X and R, corresponding to the equation for  $\mathcal{T}_{\alpha \ell}$  one should substitute  $\mathcal{J}_{\alpha \ell}^{(1)}$ instead of  $\mathcal{J}_{\alpha \ell}^{(1)}$  into eqs. (34.I) and (36.1), i.e., substitute  $E_o + E_o'$ ,  $C_o + C_o'$  and  $C_1 + C_1'$  instead of  $E_o$ ,  $C_o$ and  $C_1$ , respectively, with the remaining substitution unchanged. Hence one finds

$$X(\omega^{2} - \frac{1}{5}k^{2}\upsilon^{2}) = -\omega(A_{o} + E_{o} + E_{o}') - \frac{1}{5}k\upsilon(A_{1} + D + E_{1}), \qquad (15)$$

(cf. (34.I)) and the equation for R remains unchanged. Thus, the solution for R and the formulae for variables expressing by R only ( i.e.,  $A_{o}, A_{1}, B_{o}, B_{4}, D$ ) remain unchanged too. Substituting formulae (8), (17.I), (20.I), (25.I), (29.I) and (30.I) into (15) one gets

$$\frac{1}{3}\lambda\omega k \upsilon (b_0 - b_2) + X (\omega^2 - \upsilon_1^2 k^2) = -\omega , \qquad (16)$$

8

where '

$$U_1^2 = \frac{1}{5} U^2 (1 + \frac{2}{3} b_0 + \frac{1}{3} b_2) (1 + b_1) (1 + b_3) (1 + \frac{2}{5} b_1 + \frac{3}{5} b_3)^{-1}$$
(17)

denotes the squared velocity of longitudinal spin waves. Solving the system of equations (.2,16) one finds

$$\chi = \omega \left( \omega^2 - u_1 \right)^{-1} \left( \omega^2 - u_2 \right)^{-1} \left[ a + \frac{1}{3} k^2 U^2 (1 + b_1) (1 + b_2) - \omega^2 \right]$$
(18)

$$\lambda = \frac{1}{3} k \upsilon (1+b_1) (\omega^2 - u_1)^{-1} (\omega^2 - u_2)^{-1} \left[ \omega^2 - \frac{1}{5} k^2 \upsilon^2 (1+b_1) (1+b_2) (1+b_3) (1+\frac{2}{5}b_1 + \frac{3}{5}b_3)^{-1} \right], (19)$$

where

$$\mathcal{U}_{1,2} = \frac{1}{2} \left( \alpha + k^2 \upsilon_0^2 \pm \operatorname{sign} \alpha \sqrt{G} \right), \qquad (20)$$

( 07 )

with

$$U_0^2 \equiv U_1^2 + U_2^2 + U_3^2, \quad U_3^2 \equiv \frac{2}{27} U^2 (b_0 - b_2)^2 (1 + b_1) (1 + \frac{2}{3} b_0 + \frac{1}{3} b_2)^{-1},$$
  
and (22)

$$G = (a + k^2 v_0^2)^2 - 4a k^2 v_1^2 > C.$$

It can be proved that  $U_{1,2}$  are increasing functions of  $k^2$ ,  $U_2 \ge 0$  and, for  $k^2 << |\alpha|, U_2 \approx k^2 U_1^2$ . Moreover, the sign of  $U_1$  coincides with the sign of  $\alpha$ . Hence, we have here always the "acoustic" mode passing, for suitably small k, into the mode determined by us in I. If  $\alpha > 0$  (i.e., if the effective interaction in the pairing channel is greater than the one in the channel  $\ell = 0$ ), then also the "optical" mode appears. Since for  $k^2 << |\alpha|$   $U_1 \approx \alpha + k^2 (U_2^2 + U_3^2)$ thus it corresponds to excitations with a gap  $2 \Delta (1+\theta_1)^{M_2} [ln(\Delta/r)]^{M_2} \leq 2 \Delta$ . If  $\alpha < 0$ , then

the "optical" mode posses into the diffusive one. Note that in all our previous formulae  $\omega$  and  $k \sigma$  are measured in units  $2 \Delta$ . Hence one should substitute  $\omega/2\Delta$  and  $k\sigma/2\Delta$ instead of  $\omega$  and  $k\sigma$ , respectively, in order to obtain the formulae without the above restriction. If  $|\omega/2\Delta|$ ,  $(k\sigma/2\Delta) \ll |\alpha|^{\frac{4}{2}}$  then X passes into his previous value,  $\lambda$  tends to zero, and we obtain our previous solution.

3. Let us pass to the tensor of the paramagnetic susceptibility. According to papers  $^{/4/}$  and I, in the acoustic limit, it can be written as follows

 $\chi_{ab} = \left[ u_{B}^{2} \mathcal{V} \langle \mathcal{J}_{ba} - \hat{p}_{a} \mathcal{J}_{bc} \hat{p}_{c} + \left[ \omega + (\vec{k} \cdot \vec{v}) \right] \left[ R(\hat{c}_{ab} - \hat{p}_{a} \hat{p}_{b}) + (X - R)(\hat{k}_{a} - \hat{p}_{a} w) \hat{k}_{b} + \lambda \hat{k}_{b} \hat{p}_{a} \right] \right]$ <sup>(23)</sup>

Expressing  $\mathcal{J}_{6\alpha}$  by R,X and  $\lambda$ , by means of formulae (3), (10) and (17-20,I), (25-30,I) after simple integration one finds

$$\chi_{ab} = \chi_{static} \left[ \delta_{ab} + (\delta_{ab} - k_a k_b) \omega R + k_a k_b \omega \chi + \frac{1}{2} \hat{k}_a \hat{k}_b (1 + \frac{4}{3} \delta_0 - \frac{1}{3} \delta_2) k \upsilon \lambda \right].$$
Note that if we put  $4\Delta^2(1 + \delta_1) \ln(\Delta/\tau)$ 
(24)

instead of a, then we obtain  $\chi_{ab}$  for  $\omega$  and kv not measured in units  $2\Delta$  .

It can be easily ohecked that, as previously,

$$\lim_{k \to 0} X = \lim_{k \to 0} R = -\frac{1}{\omega} \text{ for } \omega \neq 0 \text{ and } \lim_{k \to 0} \lambda = 0$$

Hence,  $\lim_{k \to 0} \lambda_{ab} = C$  for  $\omega \neq C$  and this fact has very simple interpretation ( cf.I). One can add that even the

appearance of the excitations with a gap much smaller than  $2\Delta$ does not lead to terms of order of  $\omega^2/\alpha$  in  $\chi_{\alpha\beta}(\vec{k}=0,\omega)$ which are here not out of our accuracy. It means that  $\lim_{k \to 0} \chi_{\alpha\beta} \sim \omega^2/\beta^2$ , i.e., it is determined by the energy of a pair dissociation. On the other hand,  $\lim_{k \to 0} R = \lim_{k \to 0} X = 0$ but  $\lim_{\lambda \to 0} \chi = -k \upsilon (1+b_2)/12 \Delta^2 \ln (s/r)(1+\frac{2}{3},b_0+\frac{1}{3},b_2)$ , Hence

$$\begin{split} &\lim_{\omega \to 0} \chi_{ab} = \chi_{static} \left[ \int_{ab} - \frac{1}{3} \int_{ab} \frac{1}$$

The collective excitations with a gap for superfluid (superconducting) Fermi liquids were considered in the literature ( cf.,e.g.,papers  $^{/6/}$  and  $^{/3/}$  ). On the other hand, among them, the collective excitations with a gap much smaller than  $2\Delta$  were not considered. It should be noted that the appearance of such excitations is a feature of the Larkin--Wigdal approach  $^{/1/}$  if the ratio of the Legendre amplitudes of the effective interaction in the particle-particle channel for  $\ell = \ell_o$  and  $\ell = \ell' \neq \ell_o$  is close to unity. It is clear that for consideration of such excitations for superconductors it is necessary to introduce the long-range Coulomb part in the effective quasiparticle interaction.

Acknowledgements. The author is greatly indebted to A.I.Larkin and L.P.Pitaevskii for helpful and valuable discussi ons.

References:

- A.I.Larkin, A.B.Ligdal, Zh.Eksperim.Teor.Fiz., 44, 1703 (1963).
- 2. R.Balian, N.R.Werthamer, Phys.Rev., 131, 1553 (1963).
- 3. Yu.A.Vdovin, in the book " Applications of the Methods of Quantum Field Theory to the Many-Body Problems", Moscow, Gosatomizdat, 94 (1963) ( in Russian).
- 4. J.Czerwonko, Acta Phys.Polon., 32, 355 (1967).
- J.Czerwonko, preprint JINR Dubna E47-9412 submitted for publication Zh.Eksperim.Teor.Fiz.
- V.G.Vaks, V.M.Galitskil and A.I.Larkin, Zh.Eksperim.Teor. Fiz., 41, 1956 (1961).

Received by Publishing Department or. 28 January, 1976.

52

12