# ОБbЕАИНЕННЫЙ ИНСТИТУТ <br> ЯАЕРНЫХ ИССАЕАОВАНИЙ 

АУБНА

$$
\begin{aligned}
& C-99 \\
& 1465 / 2-76 \\
& \text { J.Czerwonko }
\end{aligned}
$$

# THE COLLECTIVE EXCITATIONS WITH A SMALL GAP FOR SUPERFLUID FERMI LIQUID 

## E17-9492

## J.Czerwonko ${ }^{*}$

# THE COLLECTIVE EXCITATIONS <br> WITH A SMALL GAP <br> FOR SUPERFLUID FERMI LIQUID 

Submitted to ЖЭТФ

[^0]1. The equations for vertex functions of the LarkinHigdal /I/ approach to superfluid Fermi linuid were solved, in the acoustic limit (i.e., for $|\omega|, k v \ll \Delta$, where $\omega, \vec{k}$ denote the frequency and the wave vector of an external field, respectively, fur $\Delta$ and $v$ being the energy gap and the quasiparticle velocity on the Fermi sphere, respectively) for systems with isotropic S-pairing in paper /l/ . For the system with the Balian-iderthamer ${ }^{/ 2 /}$ pairing ${ }^{*}$ such equations for such a limit were solved by us for scalar and vector vertices $/ 4 /$ and for spin vertices $/ 5 /$. In papers $/ 1 /$ and $/ 4,5 /$ the effective interaction in the particle-hole channel, coinciding with the effective quasiparticle interaction for normal system,

* It is known to very few persons only that the main results of this paper were obtained independently by Vdovin 131 .
was of quite general form. On the other hand, the effective interaction in the particle-particle ( or hole-hole) channel was restricted only to pairing channel, i.e., to $\ell=0$ in $/ 1 /$ and to $\ell=1$ in $/ 4,5 /$. Note that according to papers $/ 1,4 /$ this interaction can be represented by two functions $f_{\varepsilon}^{5}(\hat{\vec{p}} \hat{\vec{p}})$, $\varepsilon \pm I$, such that

$$
\begin{equation*}
f_{\varepsilon}^{\xi}\left(\hat{\vec{p}} \hat{\vec{p}}^{\prime}\right)=\sum_{l=0}^{\infty}(2 l+1) \int_{C} P_{l}\left(\overrightarrow{\vec{p}} \vec{p}^{\prime}\right) \tag{I}
\end{equation*}
$$

with the summation over even $\ell$ for $\mathcal{E}=1$ and over odd $\ell$ for $\varepsilon-1$. Whe Legendre amplitudes of such an interaction, $f_{\ell}$, are equal, for dimensionless interaction, to $\left[\ln \left(2 \xi / r_{e}\right)\right]^{-1}$

$$
\text { , where } \xi \text { denotes the cut-off energy with } \gamma_{\ell}^{\sim}
$$

being some nonnegative constants (cf.paper /I/). In the pairing channel, 1.e., for $\ell=0$ for $S$-pairing and $\ell=1$ for pairing $/ 2,3 /, r_{\ell}=\Lambda, / 1,4 /$; we will denote hereafter $\ell$. for the pairing channel by $\ell_{c}$. It can be caslly verified for equations for vertex functions in papers $/ 1,4,5 /$ that if $\operatorname{lin}_{\left\langle\neq l_{0}\right.}\left|\ln \left(\Delta / r_{l}\right)\right|$, is at least, a number of order of unity, then the harmonics with $\ell \neq \ell_{n}$ could be neglected in the acoustic limit. On the other hand, if $\operatorname{Min}_{\ell \neq \ell_{0}}\left|\operatorname{Cn}\left(\Delta / r_{\ell}\right)\right| \ll 1$ and the hamonic fulfilling this inequality appears in the equations for the vertex functions, then the solutions obtained in papers $/ 1,4,5 \mid$ are not valid unless $|\omega|, k v \ll$ $\Delta\left[\operatorname{Min}_{\ell \neq \ell_{0}}\left|\ln \left(\Delta / r_{l}\right)\right|\right]^{1 / 2}$. Note that only in the equations for spin vertices for systems with Balian-iverthamerVdovin (Birv) pairing there appear together both functions $f \in \in$ $\varepsilon \pm I$ (cf.papers $/ 1,4 /$ ) Hence, only for BNV pairing
and spin vertices one can meet the Legendre amplitudes with $\Delta l=1$; in the remaining cases the minimal $\Delta l=2$. The fe amplitudes have to diminish beginning from some $\ell$, as a result of the centrifugal force $/ 1 /$.

Hence, it is rather unexpected to fulfil the condition $\left|\ln \left(\Delta / r_{\ell}\right)\right| \ll 1$ for $\ell=2,4,5 \ldots$ ( BCS pairing) or
$\ell=3,5,7 \ldots$ (BHV pairing). On the other hand, the condition $\left|\ln \left(\Delta / r_{0}\right)\right| \ll 1$ seems to be quite natural for the BWV pairing, since the tendency to diminish $f_{\ell}$ for increasing $\ell$ acts here against a tendency for greater $f_{C}$ in the pairing channel. Hence, it is interesting to solve the equations for the spin vertex for systems with the BiV pairing assuming that $\left|\ln \left(\Delta / r_{l}\right)\right| \ll 1$ only for $\mathcal{C}=0$. Our results can play a role for spin waves in the B-phase of superfluid ${ }^{3}$ He. Our previous results $/ 5 /$ can be obtained from the present ones by a limiting transition. Our present notation coincides with the previous one; the definitions of $/ 5 /$ will not be repeated, as a rule, here. Our paper $/ 5 /$ will be hereafter denoted as $I$; its formulae by ( $n, I$ ), where $n$ denotes the number of the formula in $I$.
2. The equations for the tensor describing the normal spin vertex, in the acoustic limit, will be now of the form (cf.I and $/ 3 /$ )

$$
\begin{align*}
J_{a b}=\hat{d}_{a b} & -\left\langleB \left\{\frac{1}{2}(1+\widetilde{P}) J_{a b}-\widetilde{P}_{p_{b}^{\prime}}^{\prime} J_{a c} \hat{p}_{c}^{\prime}-\right.\right. \\
& {\left.\left.\left[\omega+\left(\vec{k} \vec{v}^{\prime}\right)\right]\left[i \tau_{a c} \hat{p}_{d}^{\prime} \varepsilon_{c d b}+\lambda_{a} \hat{p}_{b}^{\prime}\right]\right\}\right\rangle_{\hat{p}^{\prime}}, } \tag{2}
\end{align*}
$$

The equations for $\tau_{a c}$ will coincide with those in $I$. The equation for the variable $\lambda_{a} / 4 /$, for $f_{1}^{f}$ consisting of only zeroth Legendre harmonic, in the acoustic limit, can be rewritten as follows

$$
\begin{equation*}
\lambda_{a}\left[\ln (\Delta / r)-\left\langle\omega^{2}-(\vec{k} \vec{v})^{2}\right\rangle_{\hat{\vec{p}}}\right]=-\left\langle[\omega+(\vec{k} \vec{v})] J_{a b} \hat{p}_{b}\right\rangle \hat{\hat{p}} \tag{3}
\end{equation*}
$$

where the label no" near $\gamma$ was omitted for simplicity. It is clear for the symmetry reasons that $\lambda_{a}=\lambda \hat{k}_{a}$ and, hence, eq. (3) can be rewritten as

$$
\begin{equation*}
\lambda\left[\ln (\Delta / r)+\frac{1}{3} k^{2} v^{2}-\omega^{2}\right]=-\left\langle[\omega+(\vec{k} \vec{u})] \hat{k}_{\alpha} J_{a b} \hat{p}_{b}\right\rangle_{\vec{p}} \tag{4}
\end{equation*}
$$

Let us define $J_{a b}=J_{a b}^{(1)}+J_{a b}^{(2)}$, where $J_{a b}^{(1)}$ is expressed by $\zeta_{a 6}$, as in I. Hence

$$
\begin{gather*}
J_{a b}^{(2)}=\lambda\left\langle B[\omega+(\vec{k} \vec{v})] \hat{k}_{a} \hat{p}_{b}^{\prime}\right\rangle_{\vec{p}^{\prime}}- \\
\left\langle B\left[\frac{1}{2}(1+\widetilde{P}) J_{a 6}^{(2)}-\widetilde{P} \hat{p}_{b}^{\prime} J_{a c}^{(2)} \stackrel{p}{c}_{c}^{\prime}\right]\right\rangle_{\vec{p}} \tag{5}
\end{gather*}
$$

Using formulae (19.I) one can find that the first term of the right-hand side of eq. (5) is given by

$$
\begin{equation*}
\lambda\left[\left(\omega b_{1}+k v b_{2} w\right) \hat{k}_{a} \hat{p}_{b}+\frac{1}{3} k v\left(b_{0}-b_{2}\right) \hat{k}_{a} \hat{k}_{b}\right] \tag{6}
\end{equation*}
$$

with $W \equiv(\hat{\vec{k}} \vec{p})$. Hence one can find that

$$
\begin{equation*}
J_{a b}^{(2)}=\left(C_{0}^{\prime}+C_{1}^{\prime} w\right)+E_{0}^{\prime} \hat{k}_{a} \hat{k}_{b} \tag{7}
\end{equation*}
$$

If we take into account that the terms (7) form a closed set with respect to multiplication $\hat{p}_{6} J_{a c}^{(2)} \hat{p}_{C}$ appearing in (5). Substituting (7) into (5) one finds

$$
\begin{equation*}
C_{0}^{1}=\lambda \omega \frac{b_{1}}{1+b_{1}} ; E_{0}^{\prime}=\frac{1}{3} \lambda k v\left(b_{0}-b_{2}\right) S^{-1} ; C_{1}^{1}=\lambda k v b_{2}\left(1+b_{1}\right) S^{-1} \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
S=1+\frac{2}{3} \sigma_{0}+\frac{1}{3} \sigma_{2} \tag{9}
\end{equation*}
$$

Taking into account the expression of $J_{a 6}^{(1)}$ by the variables $X, R$ describing $\tau_{a b}$ (cf. I) and formula -(7) one can write

$$
\begin{align*}
& J_{a b}=\left(A_{0}+A_{1} w\right) \delta_{a b}+\left(B_{0}+B_{1} w\right) \hat{p}_{a} p_{b}+D \hat{p}_{a} \hat{k}_{b}+ \\
& {\left[C_{0}+C_{0}^{\prime}+\left(C_{1}+C_{1}^{\prime}\right) w+C_{2} W^{2}\right] \hat{k}_{a} \hat{p}_{b}+\left(E_{0}+E_{0}^{\prime}+E_{1} w\right) \hat{k}_{a} \hat{k}_{b}} \tag{10}
\end{align*}
$$

where the variables $A_{n}-E_{n}$ are expressed by $x, R$ by formula (17-20, I) and (25-30,I). Substituting (10) into (4) one finds

$$
\begin{align*}
& \lambda\left[\ln (\Delta / r)+\frac{1}{3} k^{2} v^{2}-\omega^{2}\right]=-\frac{1}{3} k v\left(A_{0}+B_{0}+C_{1}+C_{1}^{\prime}+E_{0}+E_{0}^{\prime}\right)- \\
& \omega\left(C_{0}+C_{0}^{\prime}\right)-\frac{1}{3} \omega\left(A_{1}+B_{1}+E_{1}+C_{2}+D\right) \tag{11}
\end{align*}
$$

Substituting here $C_{0}^{\prime}, C_{1}^{\prime}$ and $E_{0}^{\prime}$ from (8) and $A_{n}-E_{n}$ from (17-20,I) and (25-30,I) one obtains
$\lambda\left(a+k^{2} v_{2}^{2}-\omega^{2}\right)-\frac{2}{9} x k v \omega\left(b_{0}-b_{2}\right)\left(1+b_{1}\right) S^{-1}=-\frac{1}{3} k v\left(1+b_{1}\right)\left(1+b_{2}\right) S^{-1}$,
where

$$
\begin{equation*}
a \equiv\left(1+6_{1}\right) \ln (\Delta / r) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{2}^{2} \equiv \frac{1}{3} v^{-2}\left(1+b_{0}\right)\left(1+b_{1}\right)\left(1+b_{2}\right)\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)^{-1} \tag{1.4}
\end{equation*}
$$

In order to obtain the equations for $X$ and $R$, corresponding to the equation for $\tau_{a c}$ one should substitute $J_{a 6}$ instead of $J_{a b}^{(1)}$ into eqs. (34.I) and (36.1), i.e., substitute $E_{0}+E_{0}^{\prime}, C_{0}+C_{0}^{\prime}$ and $C_{1}+C_{1}^{\prime}$ instead of $E_{0}, C_{0}$ and $C_{1}$, respectively, with the remaining substitution unchanged. Hence one finds

$$
\begin{equation*}
X\left(\omega^{2}-\frac{1}{5} k^{2} v^{2}\right)=-\omega\left(A_{0}+E_{0}+E_{0}^{\prime}\right)-\frac{1}{5} k v\left(A_{1}+D+E_{1}\right) \tag{15}
\end{equation*}
$$

(cf. (34.I) ) and the equation for $R$ remains unchanged. Thus, the solution for $R$ and the formulae for variables expressing by $R$ only (i.e., $A_{0}, A_{1}, B_{0}, B_{1}, D$ ) remain unchanged too. Substituting formulae (8), (17.I), (20.I), (25.I), (29.I) and (30.I) into (15) one gets

$$
\begin{equation*}
\frac{1}{3} \lambda \omega k v\left(b_{0}-6_{2}\right)+x\left(\omega^{2}-v_{1}^{2} k^{2}\right)=-\omega \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{1}^{2}=\frac{1}{5} v^{2}\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)\left(1+b_{1}\right)\left(1+b_{3}\right)\left(1+\frac{2}{5} b_{1}+\frac{3}{5} b_{3}\right)^{-1} \tag{17}
\end{equation*}
$$

denotes the squared velocity of longitudinal spin waves. Solving the system of equations (. 2,16 ) one finds

$$
\begin{equation*}
x=\omega\left(\omega^{2}-u_{1}\right)^{-1}\left(\omega^{2}-u_{2}\right)^{-1}\left[a+\frac{1}{3} k^{2} v^{2}\left(1+b_{1}\right)\left(1+b_{2}\right)-\omega^{2}\right] \tag{18}
\end{equation*}
$$

$\lambda=\frac{1}{3} k v\left(1+b_{1}\right)\left(\omega^{2}-u_{1}\right)^{-1}\left(\omega^{2}-u_{2}\right)^{-1}\left[\omega^{2}-\frac{1}{5} k^{2} v^{2}\left(1+b_{1}\right)\left(1+b_{2}\right)\left(1+b_{3}\right)\left(1+\frac{2}{5} b_{1}+\frac{3}{5} b_{3}\right)^{-1}\right],(19)$
where

$$
\begin{equation*}
u_{1,2}=\frac{1}{2}\left(a+k^{2} v_{0}^{2} \pm \operatorname{sign} a \sqrt{G}\right) \tag{20}
\end{equation*}
$$

with

$$
v_{0}^{2} \equiv v_{1}^{2}+v_{2}^{2}+U_{3}^{-2}, v_{3}^{2} \equiv \frac{2}{27} v^{2}\left(b_{0}-b_{2}\right)^{2}\left(1+b_{1}\right)\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)^{-1}
$$

$$
\begin{equation*}
G=\left(a+k^{2} v_{0}^{2}\right)^{2}-4 a k^{2} v_{1}^{2} \rightarrow C \tag{22}
\end{equation*}
$$

It can be proved that $U_{1,2}$ are increasing functions of $k^{2}$, $U_{2} \geqslant 0$ and, for $k^{2} \ll|a|, U_{2} \approx k^{2} l_{1}^{2}$.Moreover, the sign of $U_{1}$ coincides with the sign of a. Hence, we have here always the "acoustic" mode passing, for suitably small $k$, into the mode determined by us in I. If $a>C$ (i.e., if the efective interaction in the priring channel is greater than the one in the channel $l=0$ ), then also the "optical" mode appears. Since for $k^{2} \ll|a| \quad u_{1} \approx a+k^{2}\left(v_{2}^{2}+v_{3}^{2}\right)$ thus it corresponds to excitations with a gap $2 \Delta\left(1+b_{1}\right)^{1 / 2}[\ln (\Delta / r)]^{1 / 2} \ll 2 \Delta$. If $a<0$, then
the "optical" mode posses into the diffusive one. 阿te that in all our previous fommae $\omega$ and $K v$ are measured in units $2 \Delta$. Hence one should substitute $\omega / 2 \Delta$ and $k v / Z \Delta$ instead of $\omega$ and $k v$, respectively, in order to obtain the formulae without the above restriction. If $|\omega / 2 \Delta|$, $(k v / 2 \Delta) \ll|a|^{\frac{1}{2}}$ then $X$ passes into his previous value, $\lambda$ tends to zero, and we obtain our previous solution.
3. Let us pass to the tensor of the paramagnetic susceptibility. According to papers $/ 4 /$ and $I$, in the acoustic limit, it can be written as follows
$X_{a b}=, U_{B}^{2} \nu \div J_{b a}-\hat{p}_{a} J_{b c} \hat{p}_{c}+$

$$
\left.[\omega+(\vec{k} \vec{v})]\left[R\left(\hat{c}_{a b}-\hat{p}_{a} \hat{p}_{6}\right)+(X-R)\left(\hat{k}_{a}-\hat{p}_{a} w\right) \hat{k}_{6}+\lambda \hat{k}_{b} \hat{p}_{a}\right]\right)_{\hat{\vec{p}}}
$$

Expressing $T_{6} T_{\text {a }}$ by $R, X$ and $\lambda$, by means of formulae (3), (10) and (17-20,I), (25-30,I) after simple integration one finds

$$
x_{a b}=x_{\operatorname{static}}\left[\delta_{a b}+\left(\delta_{a b}-\hat{k}_{a} \hat{k}_{b}\right) \omega R+\hat{k}_{a} \hat{k}_{b} \omega x+\right.
$$

$$
\begin{equation*}
\left.\frac{1}{2} \hat{k}_{a} \hat{k}_{b}\left(1+\frac{4}{3} b_{0}-\frac{1}{3} b_{2}\right) k c \lambda\right] \tag{24}
\end{equation*}
$$

Note that if we put $4 \Delta^{2}\left(1+b_{1}\right) \ln (\Delta / \tau)$
instead of $a$, then we obtain $\chi_{a b}$ for $\omega$ and $k v$ not measured In units $2 \Delta$.

It can be easily ohecked that, as previously,

$$
\lim _{k \rightarrow 0} x=\lim _{k \rightarrow 0} R \rightarrow-\frac{1}{\omega} \text { for } \omega \neq 0 \text { and } \lim _{k \rightarrow 0} \lambda=C
$$

Hence, $\lim _{k \rightarrow 0} \chi_{a b}=C$ for $\omega \neq C$ and this fact has very simple interpretation ( cf.I). One can add that even the
appearance of the excitations with a gap much smaller than $2 \Delta$ does not lead to terms of order of $\omega^{2} / a$ in $x_{a \in}(\vec{k} \cdots, \omega)$ which are here not out of our accuracy. It means that $\lim _{k \rightarrow 0} X_{a b} \sim \omega^{2} / s^{2}$, i.e., it is determined by the energy
 but $\lim _{\lambda \rightarrow 0} \lambda=-k v\left(1+b_{2}\right) / 12 \Delta^{2} \ln (\Delta / r)\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)$.
Hence

$$
\begin{aligned}
& \lim _{w \rightarrow 0} x_{a b}=x_{\text {static }}\left\{d_{a b}-\right. \\
& \left.\hat{k}_{a} \hat{k}_{b}(k v)^{2}\left(1+\frac{4}{3} b_{0}-\frac{1}{3} b_{2}\right)\left[24 \Delta^{2} \ln (\Delta / \pi)\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)\right]^{-1}\right\}^{(25)}
\end{aligned}
$$

Note that for normal Femi liquids and for our previous $\chi_{a b}$ It was sufficient to make only one limiting transition, $\omega \rightarrow 0$ in order to obtain $X_{\text {static }} \delta_{\alpha 6}$. Now it is necessary to perform $\lim _{k \rightarrow 0} \lim _{\omega \rightarrow 0}$. It means that if $|a| \ll 4 \Delta^{2}$ then, in order to obtain the static response, it is unsufficient if the field varies weakly over the correlation length; the field has to vary weakly al so over the length $\hbar v /|a|^{1 / 2}$.

The collective excitations with a gap for superifluid (superconducting) Fermi Ilquids were oonsldered in the literature (cf., e.g.;papers $/ 6 /$ and $/ 3 /$ ). On the other hand, among them, the collective excitations with a gap much smaller than $2 \Delta$ were not considered. It should be noted that the appearance of such excitations is a feature of the LarkinHigdel approach /I/ if the ratio of the Legendre amplitudes of the effective interaction in the particle-particle channel for $\ell=l_{0}$ and $\ell=l^{\prime} \neq l_{0}$ is close to unity. It is clear that for consideration of such excitations for superconductors
it is necessary to Introduce the lona-ionre Coulorib part i:s the effective quasiparticle interaction.

Acknowledrements. Whe author 15 meatly indebted to i.I.Larkir anc L.P.Pitaevskif for helpful and valuable discussi nns.

## References:

I. A.I.Larkin, A.B.lijgdal, Zh.Eksperim.Teor. Fiz., 44, 1703 (1963).
2. R.Dalian, N.R. Ierthamer, Phys.Rev., 131, 1553 (1963).
?. Yu. A.Vdovin, in the book: "Applications of the Viethods of Tuantum Field Fheory to the Kany-Body Problems", Moscow, Gosatomizdat, 94 (1963) (in Russian).
4. T. Czemonko, Acta Phys.Polon., 32, 355 (1967).
5. J.Czerwonko, preprint JIIRR Dubna E47-9412 submitted for publication Zh. Eksperim. Teor.Fiz.
6. V.G.Vaks, V.M.Galitskil and A.I.Larkin, Zh.Eksperim.Tcor. Fiz., 41, 1956 (1961).

Received by Publishing Department os. 28 January, 1976.


[^0]:    * Permanent address: Institute of Physics, Technical University, 50-370 Wrockaw, Poland

