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In 1972 the superfluidity of 3 He has been disco
vered by D.D.Osheroff, W.J.Gully, R.C.Richardson, and 
D.M.Lee (Phys. Rev .Lett., 28, 885 (1972)). From experi
mental and theoretical considerations (see recent review 
articles by A.J.Leggett, Rev.Modd.Phys., 47, 331 (1975) 
and J.C.Wheatley, ibid. 47, 415 (1975)) it foy.ows that at 
the temperatures of the order of 1 mK liquid He forms 
an anisotropic superfluid. For the first time the theory 
of an anisotropic Fermi superfluids has been described 
just in the Joint Institute for Nuclear Research (Dubna, 
1959) in the preprint which is now reedited. 

Later on a~ anisotropic Fermi superfluid, as a model 
of superfluid .I He, has been considered by P. W.Anderson 
and P.Morel, Phys.Rev., 123, 1911 (1961), by P.W.An
derson and W .F .Brinkman, Phys.Rev.Lett., 30, 1108 
(1973), R.Balian and N.R.Werthamer, Phys.Rev, 131,1553 
(1963), etc. (see rev. articles). 

So, in the case of supefluid 3Hc, it seems that it 
would be more proper to speak about the G-A-M state 
than, as it is used now, about the A-M state. 
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/. THEORY OF GROUND STATE * 

1. Introduction 

Consider a dynamical system of Fermi-particles with 
the Hamiltonian 

H= !,T(f,f')a;a£'+1--.l U(fl,f~f2.fi)a:a72 ar'2 ari , 
f, f 2 I t r2 I 

fi ,f2 
T(f ,f')= I( f, f')- A8(f- f'), 

(1) 

where I is the Hamiltonian of particle, U - the inter
action energy, A - the chemical potential, a r , a} - the 
Fermi-amplitudes and f is a set of indices characte
rizing one-particle states. In our case f=(p, a z>' where 
p is a wave vector and az - a spin index. 

Similarly as in 111 (and also in 12 •31 ) we transform 
the Hamiltonian (1) by means of the transformation 

a f = ! ( u L. a + v l a+ ) . (2) 
V IV V V V 

To secure the canonical character of the transforma
tion (2) the functions I u, vI must be connected by the 
orthonormality relations 

-------------------------
*Published in Acta Phys. Polon., 19, 467 (1960). 
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Ilur u*, +Vr vr*, l=8(f-f'), 
v v tv v v 

I I u r v r' + u r' v r I = o. v v v v v 
(3) 

We find the functions I u, vI from the additional equa
tions obtained from the compensation principle of dan
gerous graphs 121 

<a )/ a v a >o = 0 
I 2 

(4) 

(the expectation value corresponds to the vacuum state 
in the a -representation) which are equivalent to the 
equations for the functions F( f, f '),<I> (f, f ') 

I I '(f I , f) <I> (f, f 2) +' (f 2'f) <I> (f I ,f)+ s (f I ,f 2) -
{ 

- I I F (f , f 1 ) S ( f , f 2) + F (f, f 2 ) S (f 1, f) I = 0 , 
{ 

(5) 

where 

F(f,f')=Iv*v, ,<l>(f,f')=-<l>(f',f)==!.ur vr, 
v lv { v v v v (6) 

and 

s(f 1 ,f 2)= ,I, u(f 1 ,f~f2,f})<I>(f},f2L 
r l•r 2 

(7) 

'(f 
1
,f)=T(f 1,f)+ I I U(f 1 ,£:'f',f)-U(f 1 ,f~' f,f')lF(f",f')· 

r',r" 1 1 

In order to represent the functions F, <I> in the form 
(6) these functions must satisfy the additional subsidiary 
conditions 121 

F(f 1 ,f2) =I I F(f 1,f)F (f,f 2) +<l>(f,f 1 )<l>(f,£2)1, (8a) 
{ 

I I F(f
1 

,f)<l>*(f,f2)+F(f2 ,f) <l>*(f,f1) I= 0. (8b) 
{ 

4 

/2/ 
From formula (1) of paper we knew that 

T( f ,f') =( E(p)- A)8 (f-f') = ( (p) 8 (f-f'), 

U( f f f' f') 1 (~ ~ ~,~,) (~ ~ ~, ~,) 
1 • 2; 2 • 1 = ·v J P1 ,p2;p2,pl 8 Pt+P2-Pt-P2 x 

x8 (a 
1
-a{) 8 (a

2 
-a~), 

J( ~~~,~,) J(~ ~~,~') J( ~ ~ ~, ~') 
pl ,p2 ;p2,pl = p2,pl;pl ,p2 == -pl, -p2; -p2, -p •. 

(9) 

The solution of the equation (5) with the subsidiary 
conditions (8a,b) has been put in the form 

F(f ,f')"'F@)8( f-f '), <l>(f,f' )= <l>(f}8(f+f'), 

<I> (p~ +) =-<I> (p), <I> (p, -) = <I> (p) . (10) 

The functions F(p) and <l>(p) are assumed to be reat'and 
invariant under the transformation of momentum reflec
tion and to satisfy the following equations 

2 !'( )m(~) l-2F(p'} "J (~-~._~,~')m(~')-0 '::, p '!.' p + " k p, p' p ,p 'I! p -- ' 
~, 

p 

~ 2 ~ 2 ~ 
F (p) = F (p) + <I> (p) , (11) 

where 

' (p) = ( (p) + ~ ~, [ 2 J (p~p', p ',p)-J (p,p',p,p ') 1 F (p' ). (12) 
p 

The solution of these equations leads to the usual for
mulae of the theory of superconductivity. 
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2. The Solution of the Compensation 
Relation in the Case ct>(p", az) is an 
Odd Function of p 

From the equations (11) we see that the solution of 
these equations exists also if <I>( p-: az ) is an odd function 
of p . So, instead of (10) we put 

F(f,f' )= F(p)8 (f-f'), <I> (f ,f') = ct>(f)8(p+p')8(a-a'), 

,_1 

F(p)= F(-p),ct>(p-->,a )=-<l>(p,-a )', <l>(p7a )=-<1>(-J},a ). z z z z 

The functions of the form (13) 

<I> (p', az) =ezaz ~ S az(sz hHp) '-: azcos O¢ (p), ¢ (p} =¢(-p) 
sz (13') 

satisfy the conditions, where (; =p/p) , Sa?. (sz 2 is a spin 
function ( Saz ( sz) = 1 , Saz (s:?) = 0 for az .;,. s z , azS =az S , 
az == ± 1). 0 is the angle between the wave vector 

and the quantization axis of electron spins. Substituting 
(13) in (5) and (8a,b) we get for the functions F(p) , 

<I> (p, az ) the equations (11) (further we shall denote 
the spin index by a ). We define 

--> --> --> --> --> -->, (14) C(p,a)=-1/V! J(p,-p. -p',p')<l>(p,a). p, J 

We see that C(p, a) is an odd function of p and a 

.... .... .... .... . 2 .... 2 .... 
C(p,a)""'-C(-p,a), C(p,a )=-C(p,-a),, C (p,a)=C (p ). 

(15) 

From the equations (11) we obtain 

.m(--> )- C(p,a) 
'~" p, a -

2 J c2<P>+ '2 (p) 

((p) 

F<P>~ ~ II- Jc "<ill+( "(p l (I&J 

6 

hence 

--> 1 ~ ( ' --> -->, -->,) C(p',a) 
C (p, a)==- - .:.. J p, -pi -p , P - · (17) 

2v -p- /c2(P)+(2(p) 
We take 

J(p,-p, -p',p')=:J(Ip-p' I>=~ }
0
(p,p')P

0
(cosy), (18) 

J n 

where y • --> ' is the angle between the vectors p and P 

cos y == cos ()cos () ' + cos¢ sin () sin () ' 
(19) 

---) ~· , 0, 0' are the angles between the vectors p and p and 
the polar axis, and ¢ is the angle round the polar 
axis. According to the addition theorem 

P0 (Cosy)=P0 (cosO) P0 (cosO')t-2I~~-m)! P:(cose) x (
2

0) 
m , m/1 (n+m)! 

xP
0 

(cosO )cosm¢. 

Substituting (20) into (17) and writing the result in the 
integral form we obtain 

""" C(p,a)=- {- L 2 ! P
0
(cosO)J f J (p,p')P (cosO)x 

L. (2 7T ) n 0 0 n n 

C (p ', cos() ', n-sin ()'dO '. 
X-

y'C 
2
(p ',cos()')+~') (21) 

We take the solution of (21) in the form 

C (p,a )= acosO'V(p). (22) 

Moreover we consider the case when the interaction 
is effective only for the momentum p near pF and 
take into account only J L(P ,p 'hd 1 (P_r) ( the contribution 
from j 0(p,p') vanishes). For the radialpartof C(p,a) we 
obtain the equation 
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I 

2 I P +~ 
1 P 2 F 'I' (p ' ) dp ' 

'I' (p) = -2 ~- J I .f X dx .f ------·-- . (23) 
(2rrf -I pF~ ;:; 2(p ')x 2 + '2(p') 

Looking for a solution which changes slowly with p near 
p F and taking '(p);; E '(p-pF) we get 

lTI 2 l/3 3/pl 2 1/3 -3/pl 
T = we e = we e 

'(24) 

where 

- d!! J 0 -p =- -- =p > ' 
1 dE I I 

p2 
dn F w=E'~ -=-~-, 

dE 2rr~E' 
(we have to replace the interaction of electrons with 
sound quanta by an effective electron-electron interac
tion, which is different from zero in a narrow layer near 
t_!le Fermi surface E F ± w ). In order that 'I' ... 0 for 
p

1 
... 0 the effective interaction must be attractive ( Jt(P~<O). 

Having obtained the solution of (23) we get the function 
C(p,a) and so the functions F(p) and <l>(p~a). Moreover, 
as can be seen, we obtain another solution of (11) by 
putting <I>(P, a)= 0 and F(p) =1 for p<p F and F(p) = 0 
for p> pF. 

We examine now the special form the transformation 
(2) takes when the functions F and <I> have the form 
(13). Taking into account (6) we see that 

--> --> --> 
u

1
v = u(p) B(f-v), v fv=v(-p,a)B(p+OB (a-s), 

f --> --> =(p,a),v=(f,s), 

-> -> ) -> (-> ) (-> ) -> v(p, a)=-v(-p, a, v(p, a)=-V p,-a , v p,a =acosO w(p), 

w (p) =w(..:'p) 

and ... 2 ... 2 2 ~ -• ... 
F(p)=v (p,a)=cos-Ow (p,, <l>(p,a) =u(p)v(p,a). 

(25) 

(26) 

Therefore the transformation (2) has now the form 

-> ( ... ) + a ... = u (p) a ... - v p , a a ';):~• a ... = pa pa -pv -pa 

=Ulp)a... + v(p,a)a;a · 
-pa I'• 

(27) 
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If by means of (27) we transform the Hamiltonian 

'I(' ) + 1 'I(' (-> -> ->, ->,) H = ~ f(p a... a_, +- ~ J pi ,p ; P ,p x 
--> pa pa 2V p +p =Jf'+p' 2 2 I p,a I 2 I 2 

al ,a2 

x a+ a+ a a 
P ... a ->a _,,a 

I I p2 2 p 2 2 
... , 
pial (28) 

(see (1) and (9)), we can see that we must write the com
pensation equation for the dangerous diagrams for the 
pairs of fermions with parallel spins and antiparallel 
momenta. 

For the functions u(p) ,v(p,a) we get the first solution 
for the normal state 

1
1' 

u (p) = 0 G ( 1}) = 

0, 

E(p)> E F 

E(p}< EF 

(29) 
-> 

E(p)>E F 

E(p)<EF l 

0, 
-> -> 

v(p,a)= OF(p,a)= 

± 1' 

(where OJp,a)=-OF(-p,a), ... ), and, taking into account (26) 
and (11), the second solution 

2... 1 '(p) 2 -> 1 '(p) 
u (p) = -l1 + -------1. v (p, a)= -ll - ------- I 

2 I 2 '?."') 2,• v w2cos2e«2 (p) y'l' -cos-O+' tP) 

(30) 

This solution is of the type obtained by Bogolubov III 
but it depends on the direction of the vector p and for 
e =rr/2 it goes over into the solution for the normal 
state. 

9 

~-----------------------------



3. The Energy Difference for Two States. 
Energy GaP 

Now we find the mean energy in the vacuum state in 
a -representation and evaluate the difference for solu
tions (29) and (30). The general formula for mean value 
is 

E=<H:n = ..L I [T(f,f ')+((f,f')l F(f,f')+ 
2 C,( 

r--1 

+ l. I U(f 
1
,£ 2;£2 ,£'1 )<l>*(f 1,£ 2)<t>(f} ,£'2). 

2 f I ,f 2 

(31) 

r; ,r'2 , 

Taking into account (9) and (13) we obtain I 
:~····. 

1 
\ ; 

4 ...... -1>,-+, -+ --~~, -1', 
<H>= I [dp)+((p)lF(p}+- I J(p,-p;-p ,p )<l>(p,a)<ll(p,a~~· 

0 p v p-:p.... :,, 

C2(P> 
- 2 I ( (p) F ( p) - } ; J C ~j)) + ( 2(p) .... 

p (32) 

We find the energy difference for the two solutions 
with the help of the identity 

.... ) I 
2 .... 

0 c<P 11 - -
v

2 
(f, a)-() ~p) = 2 Jw 2cos 20+( 2(P) 

2(p) . ( (p_) I. 
~ 11 + j • 'o .,..z(p) - 2 lp \:OS -TS (33) 

10 

Finally we get 

2 .... 
- .... 2 _1 I C (p) 
~E= ~ I ( (p )[ v

2 
(p, a)- ()F(j)}]- 2'V p Jc~P>+f<P> v v p 

d 2/3 2( -2/pl) ~ 
=-2/3 d~ e w e 

(34) 

FroJil this it is clear that the solution (30) leads to the 
energy state which lies lower than the normal state. 
This is also the anomalous state connected with the pairs 
of fermions with parallel spin-moments. 

Let us compare the ground state for the case of pairs 
of fermions with antiparallel spins with the ground state 
for the case of pairs with parallel spins. We see that 
the binding energy for the pairs of electrons with paral
lel spin-moments is proportional to [exp(-2/p )J3while the 
binding energy for the pairs of electrons with kntiparallel 
spin-moments is proportional to exp(-2/p

0
). When the 

case )
1 
(p,p')>3J

0
(p,p ') is not realized the ground state of 

the system for pairs of fermions with antiparallel spin
moments has a lower energy than the state for pairs with 
parallel spin-moments. 

We shall now find the formula for the elementary 
excitation in the superconducting state. The general for
mula is given by l.'l/ 

<a,\H\a~> =I ((f,f')(u*r uf, -vr*vr, )+ 
v v 0 C,( II II II II 

+ .1. I U (fl ,f 2;£2' ,f I)[ II> (f2,f I )(u*r, v*r, 
2r~ ~~~ 2v 

1•'2 

_ v* u * )+ <1> *(f2 ,f 1)(u r' v
1

, -u
1

, v1, )]. 
l[v t2v 111 2 11 2 11 1

11 

(35) 

We remark, by the way, that (35) is identical with the 
formula for the energy of elementary excitations given 
by Landau/4/ 
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a if 
O(v) = -- · (36) 

onv 

Here E is the diagonal matrix element of the Hamilto
nian (1) transformed by means of the transformation (2) /3/ 
if the expectation value of at av is not zero but 
n v . In this case the mean energy is given by the formula 

of the form (31) but the functions F and lfl are now of 
the form/ 2/ 

ct>(f
1

,f
2
)=IIu·

1 
vr_ (1-n )+vf uf n \, w 

1 
v "2 v v 1 v 2v v 

F(f
1

,f
2

) = !.lv* v (1-nJ+u{ u 1 n \. 
v f 

1
v £

2
v 1 v 2 v v 

(37) 

For T = 0, that is nv =0, the formulae (37) pass over 
into (6). Taking also into account that in (31) F and lfl 
are functions of n 1/ we get 

12 

oE =..!:_I I o((f,!l_F(f,f')+[T(f,f')+((f ,f')]~F(f,f')l+ 
onv 2 f,f' onv . onv 

+.!_ I U(f f ·f' f')[ olfl*(fl,£2) "'(f' f') 
2 1' 2' 2' 1 <:: '¥ 1 ' 2 + 

fl ,£2 unv 

fi ,f'2 

+ lfl*(f r > o!fl(fi ,f' > 
1' 2 - 2 ] on . 

v 

Finding ~on v 

o<P 
onv 

from (37) we see that 

-
(_8~) ,~<a !Hia+ > =O(v). on n =0 v v 0 

I/ V 

Introducing (13) into (35) we obtain 

(! (p) =((p )[ u2 (p)- v2 {p-; a))~- -~ U (p')v(p, a) X 

(38) 

(39) 

(40) 

xI J(p,-p;-p',p')v(p ',a)u(p'). __., 
p 

Using (11) and (26) we get 

-> 2 2 J;2;;s--
n (p > = (J+ ' (p >. (41) 

On the Fermi-surface 

O(p ,cos 0) =I cos 0 l2w e l/3 e -3/pl:~. (42) 

Thus, the fermion excitations in the anomalous state 
are separated from the energy of the ground state by 
the gap which depends on the direction of the vector p . 
Since the energy gap can be equal to zero, there will not 
exist the current-carrying state of system state with 
respect to weak perturbations. This means that the ano
malous state considered by us is not superconducting. 

4. The Influence of the Electron-Electron 
Coulomb Repulsion 

Let us now examine the combined effect of the elect
ron-phonon interaction and the Coulomb interaction bet
ween the electrons/ 1 •5< Similarly as in the case of the 
electron-phonon interaction (which is essential only near 
the Fermi-surface, E F ± w ) we replace the Coulomb in-

teraction by a model interaction. Because of the screening 
of the Coulomb interaction, we rep1ace it by a constant 
repulsion of electrons ( essential only near the Fermi
surface E F± w1 , w 1 :> w ). Thus we put 

Jl((,(') = 
Jlph((,(')+ Jlc ((,('), 1(1,!('1 < W 

J
1
c((,('), 1(1 ori('l>w. (43) 

13 
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I 

I 

We obtain the equations analogous to (23), from which 
we can determine lJI ( ( ) in two intervals ( 1 ( 1 < w and 
w<!(i<wi) 

w lp(J'')d(' 
I 

2 
I . J'') --"'---- · 1 dn_ f x dx f J I ( (' "' - - 2 

lJI(() ='- 4 dE -I -WI J lJI2((')x2 +( 

We denote 

r--ll 'lb , 
\}1 ( t.:> = 

'I' I , 

I' I< w 

w<l(l<wi. 

From (43) we get 

-'Po= l_ [p \}II fn~ + '~'o<P- +p )en 2w + 
3 I c w I ph I c 'I' O 

1-lJIO(pi ph +pic)], 

1 w 2w 1 
-WI = 3 [pic \}II en-;- +'l'Opic fuW + 3\}10 Pic ) ' 

0 
where 

- J dn 0 -p =- -=p > , 
l ph lphdE I ph 

dn'-0. 
f1 =JI,.dE~ 
I·· 

Hence 

__ P LL--- ) = 1. 
1 ul I 

1+ -p fn-
3 Ic w 

L (fu ~.!L + .l)(p 
3 \}1 0 3 I ph 

(44) 

(45) 

(46) 

(47) 

Thus,the condition of appearing of an anomalous state has 
an analogous form as in paper III for the case of pairs of 
fermions with antiparallel spin-moments 

Pte ___ . 
p > ----

1 ph 1 + l_ fu ~j_ 
3 Pic W 

(48) 
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5. Total SPin of a System, Paramagnetic 
Suscepti bi li ty 

The spin moment for the unit volume is given by the 
formula 

- z 1 + + S = - I (a~ a .... -a .... a .... ) . v .... I'+ p+ p- p -
p 

(49) 

We pass over the operators a and find (49) for the state 
C0 (vacuum state in the a -representation) 

s~'-= _!_I I F(p,+)-F(p,-) I. (50) v .... p -· ) In the absence of the magnetic field F (p, +) =F(p,-) and 
therefore S z =0. 

Consider now a system of Fermi-particles in the 
presence of external, weak, constant magnetic field 
o }{ . applied along the z -axis. 

ln this case the term is added to the Hamiltonian (28), 
namely 

- !.... o }{ I ( a +, a ~ - a+.... a _, ), (51) 
m -~ p+ p+ p- p

P 
where + e is the charge of the electron and m is its mass. 

The compensation equations lead to the formulae 

((p)- ~ oJ< . -- --L 
F Bfl ( jl' +)- ~ [ 1- Jl((p)~ ~ 8!(]2 +c'(Pl 

1 ((p)+S-.oJ< 
F

8
Jfp,-)=- [1- m ·--1 

2 _{[,. e J(2 2-+ 
v ., <P > + m o 1 + c <P> 

C(i),+)=C(p,-) ~ C(j>) (52) 

15 



Hence 

UJ 1 (+~-8}( 
S z = ..!._ A!!_ f f ____ m _____ d( dx . (53) 

BJ( 2 dE -cu -1 r:---2-22 
y((+~BJ() +'~'X 

m 
On performing the integration, we get 

s"'ZJ(= E..!!. ~8J([l-exp(2/3-6/p )]. 
u dE m I 

(54) 

For the paramagnetic susceptibility we get 
~ 

2 
x =k E!!..[l-exp(2/3-6/p )]. (55) 

m2dE I 

From (54) we see that in the absence of the magnetic 
field the total spin of a system equals zero. In the pre
sence of the magnetic field the electron-electron inter
action cannot be taken into account by means of perturba
tion theory since we have obtained the non-analytical 
dependence of (54) and (55) for pI near p ~ 0. 

In this paper we have considered formally the solution 
of the compensation equations as an odd function of p . 
It is provided that from the point of view of the trans
formation (2) this leads to the state of the system with 
pairs of fermions with parallel spins. In order to explain 
the physical picture of this state one has to examine the 
thermodynamics of this anomalous state. 

II. THERMODYNAMICS * 

In paper 161 (referred to as part I) the possibility 
of an "anomalous" (non-superconducting) state of Fermi
system is studied. This state is connected with creation 
of pairs with parallel spins. The creation occurs if the 
electron-electron interaction is attractive; we find that 

*Published in Acta Phys. Polon., 19, 683 (1960). 

16 

:' J} 

in the expansion of the interaction term in spherical har
monics only the coefficients with odd indices give a con
tribution. 

If in the expansion of the interaction in spherical har-
monics only terms with even indices j 2 are retained 

· · 17 I n (for mstance J 0 m paper ), then the compensation 
equation for the pairs with antiparallel spins has two 
solutions: a trivial one and a nontrivialone(giving the su
perconducting state). However the compensation equation 
for the pairs with parallel spins has the trivial solutions 
only. 

If in the expansion of the interaction in spherical 
harmonics only terms with odd indices J 2n+I are 
retained (paper 161 - JI ), then the compensation equation 
for · the pairs of particles with antiparallel spins 
has the trivial solution only. On the other hand, 
the compensation equation for pairs with parallel spins 
has two solutions: a trivial one and a nontrivial one 
(giving the "anomalous" state). 

The solutions of the compensation equation and of 
the secular equation .for the collective oscillations are 
in the case hu even functions of p 11 •21 (the super
conducting state, longitudinal oscillations) in the case 
J 2n+l odd functions of p /6 •

31 (the "anomalous" state, 
the oscillations of the type of the transversal oscilla-
tions). 12 31 

In papers ' it is proved that for the general form 
of the interaction term the collective oscillations split 
into two branches: for the pairs of particles with anti
parallel spins and for the pairs of particles with parallel 
spins. The terms of the type hn give contribution to 
the oscillations of the pairs with antiparallel spins only 
(the solution of the secular equation, the even function 

-> of p, therefore, the longitudinal oscillations), the terms 
of the type J 2n+l give a contribution to the oscillations 
of the pairs with parallel spins (the solution of the secu
lar equations, the odd functions of p, therefore, the os
cillations of the type of the transversal oscillations). 
In paper /6/ it is shown that if 3 h > Jo the energy of 
the "anomalous" state is lower than the energy of super-
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conducting state and certain properties of this state are 
studied (for T = 0 ). 

Now we want to examine the properties of this state 
for temperature T ;lO. 

1. The Compensation Equation 

The compensation equation has the form 161 

-~ 1-2 F(p) 
2((p)<l>( p, a)----- C (p,a)=O, 

',-.2 v 
where 

and 

C( -· ) 1 ~ (-> -> ->, ->,) (->' ) p,a =--..:.. J p,-p;-p ,p <11 p ,a v _., 
p 

<I>(p,a)=u(p)v(p,a)(l-2n_. ), 
pa 

:!\ 2-> 2-> F(PJ= v (p,a)(1-n _. )+u (p)n _. , 
pa pa 

1 ~_,_,_, .......... __. ..... 
((p)==f (p)+-! [ 2J(p,p;p',p)- J(p,p';p,p')] v _.,, 

p 

(1) 

(2) 

(3) 

(3a) 

since the expectation value of al a is not zero but 
, nP.a 121. The functions I u, v l are thepgoeft1cients of the Bo
golubov transformation for transition from the Fermi-
operators a..,_a , a;a to a_. , a~ these I u, vI sa-
tisfy the contlition pa pa 

2 -> 2 -> 
u(p)+v (p,a)=l. (4) 

Similarly as in paper 161 we put 

__, -+ _, -+ 
J(p,-p;-p',p')=! J (p,p' )P (cosy)~J 1 (p,p')cosy = 

0 
n n 

= J I (p F )(cos 0 cos 0' + cos cp sin 0 sin 0 ' ) , 

18 

C (i), a) = a cos 0'1' ( p) , (5) 

where 0 , 0' are the angles between the vectors p and ·-> 

p' and the polar a:ll:is, and cp is the angle round this 
axis. 

Equation (2) after taking into account (1), (3), (4) can 
be written in the integral form 

2 p +Ll 
1 PF F 

1 ·' - - --§ J I I 2 (211} p -Ll 
F 

11 
cos

2o 'sin 0 ao 'dp, [1 _ 2 n (p ',cosO')], 
j n (p ', cos o , > 

(6) 

where 

1 -~ /. 2 2 2 n -• =n =-----, O(p,= y'l' cos 0+ ( (p). 
pa P e!l(p')JT +1 (7) 

Hence we get finally for 'I' as the function of tempera
ture the equation 

I 2 
1=p I X dx I 

I 0 

r 2 
th .:1_'1' (T)x2 

+(2 

2T 
·----d(= 

/'1' 2( T) X 2 + '2 

n 
I w th --

2 2T 
=pi I X dx I -----dO, 

o 'I' x Jn2 _'I' 2x2 

where 

p = _ dn J 
I dEI>O, 

2 

~ = !.L 
dE 211E' 

(8) 

(9) 

this means we assume the interaction to be attractive. 

19 
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2. The Dependence of 'I' on the Temperature and 
the Transition Temperature to the "Anomalous" State 

After a change of variables O='l'xch¢ we get similarly 
as in /S/ 

'1'(0) I 2 "" d¢ 
1 

2 "" m+I qtx 
Cn--=6fx dxf-----=6fx dxi(-1) K0 (-~. 

qt (T) o 0 'I'(T)xch¢/T 1 0 m/I T 
e + (10) 

Hence for T -0, making use of the asymptotic formulae 
for Bessel-functions with great argument, we obtain 

~ 

fu '1'(0) ~ j 1877T- I xl/2e x'¥(0)/T dx= 

'I' (T) 'I' (0) / 

- rn { '¥(0) T 3- T 3 
- 9v11/2 (p(\1---H--) = 10(--), 

T 'I' (0) qt (0) 
(11) 

'I'(T)= 'I'(O)e -IO(T/'1'(0))3 (11a) 

where (p (z) is the error function. 
Now we want to find the critical temperature T •. 

(for T > T c must be 'I' (T)=O ). Moreover we want to get 
'I' (T) for T - Tc . For this purpose we make use of 

a suitable representation of Bessel function K0(z) /s,r./ . 

We obtain 

'1'(0) ei/311 T I 2 "" 1 
en--=fn--- + 3fx dx!211I [----

'I'(T) Y 'I'(T) o e/I (2e-1)11 

- ___ _1_ ___ )1, 

ji~ 2/T2 +(2P-rf 112 

where fuy=0,577 , y= 1,8. 
Putting in (12) '1'=0, we find 

20 

'1'(0)=2wei/3 (e-I/pi)3=ei/3 :Tc . 
y 

(12) 

(13) 

Hence 

qt (0) - 2 45. ---' 
(13a) 

Tc 
For T- T c 

fn ..!_ = 2. '(3) ( 'l'(n )2 + .2_ '(5) ( 'I' (T)) 4 
T 2 11 2 T 16 11 4 T ' 

c 

(14) 

where '(n) is the zeta function. 

Therefore for T - T c 

'I'(T) Tc - T 
--·-- = 4,1 v . (15) 

Te T c 
From (13a) and (15) it results that the fUnction 'l'(n/Tc 

decreases from 2.45 to 0 in the temperature interval 
(0, T c). 

3. Entropy and Specific Heat 

Now we want to obtain the formulae for the temperatu
re dependence of the specific heat, especially for T- T c . 

Therefore we must first get the formula for the entropy. 
We start from the expression 

S=-2I [n__,fun__, +(1-n·__,)fn(1-n_, )]. (16) 
p p p p p 

Inserting (7) into (16) and passing to the integral form 
we obtain 

S dn 1 I "" {'2--2-2 dn 
s= -- =-·- 4--- f dx f v n -'I' x n -- dn. 

V dE T o 'l'x ,dn 
(17) 

After changing the variables similarly as for (10) we have 

d qt2 I 2 "" m+I 'l'xm 
S o~4_!l- f X dx I (-1) K2 (--). 

dE T o m/I T 
(18) 
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Hence for T -0, making use for the asymptotic formulae 
for Bessel-functions with great arguments, we get 

, --=---"' dn ('1' (0) T 2- dn T 2 
s =3 v 2rr --1>( v--) 'I' (0}{-----) =6,65 '1'(0) --(--). 

dE T '1'(0) dE 'I' (0) 

(19) 

Now we want to find s(T) for T -Te . Since for 
T ·T , 'P(T),() we write (17) in the form 

c 

~ 

s('l') =s(O)+ .!_'iQL 'I' + s "(0) '1'2 + s""(O) 'I' 3 + ~(OL_'P 4 = 
1! 2! 3! 4! 

=2/3~~~T[1- _!__(.!)2 +1.!_ t;U) (..!{1. (20) 
dE 2172 T 80 77 4 T 

Having found s (T ), we can obtain the temperature de
pendence of specific heat C(T) for T- 0 and T-T< .. We 
denote the specific heat in the normal state for T = Te 

C (T ) =2/3 17 2~0- T 
n e dE c 

For temperature heat T =0 we have 

C (T) 9 e l/3 T 2 T 2 
--A.:.-=--(----) = 4,95 (--), 
C

0
(Tc) y -../2 'I' (0) 11' (0) 

however, for temperatures T-Tc (T<Tc) we have 

(21) 

C (T) T-T c 
__ a __ = 1,83 + 2,5---. (22) 

. Cn(T c) T c 

From (22) we see that for T = T c the specific heat 
has a jump, since c (T ) I C (T ) = 1.83 . 

a c n c 
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4. The Total Momentum of Elementary Excitations 

-> 
Let us consider the total momentum P of elementa-

ry excitations in the case of macroscopic motion with 
constant velocity 

-> ... 
P = I k (n.... + n.... ). 

k-> k,l/2 k,-1 /2 

Now n=n(O-ku). For small velocities 

-> -> ........ an 
P = - 2 I k ( k u) --- . an (I{) 
In the integral form we have finally 

-> I too 
p 2 dn f [ ··• (1 2) --> 2 2] d f an d)' p = - = - p - u1 -x + ull x x --- .,. , 
V F dE 0 -oo aO(x,Q 

(23) 

(24) 

(25) 

where -~ l is the component of vector u perpendicular 
to the quantization axis, of electron spin and u

11 
the 

parallel component of u . We see from (25) that the 
vectors p and ti are not parallel and we cannot 
write the dependence p =Nn m ii and define the number 
Nn of normal electrons in "anomalous" state. 

Consider p .for T- 0 and for T- Tc. After changing 
variables C: ='I' x sh¢ we get 

-> 2 dn 2'1' I -> 2. -• 2 
P=P~',dE T~[u.L(1-x J+ull2x Jxdx 

(26) 

X f ch¢ d¢ 

(e 'I' x ch¢/T + l)(e -'Pxch¢/\
1

) 

Hence for T -0 

-+ -+ ..... --+ 
p = p .L + PI! = p .L ' (27) 
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where 

.... 2 do T l/2.... 3 T 1/2 .... 
P.J.=PF dE "'"\P(O)) U..L=N2y17('1'(0)) mul' 

.... 2 dn - T 3/2 .... - T 3/2 .... 
p II = 3/4 p F dE v 11 ( w (o)> u II = N 9/2 './11 ( w(O)) m u II 

(28) 

m is the mass of the electron, N is the number of elect
rons in unit volume, 

2,_1 dn 8 2 
N =2/3 PF --= 

17
p F (29) 

m dE 3(277) 3 

since in formula (9) E '- PF /m. 
From (28) we see that the perpendicular component 

of p dominates for T -0. it is by three orders of mag
nitude smaller than the parallel component. 

In order to obtain (26) for T-Tc we must use the 
following identities 

and 

..! /x 3
dxJ"" -~~~ . ·~=~ 

T 0 'l'x ch¢/T -'1' x ch¢/T 6 
( e + 1)( e t-1} 

] _ _a_!_ 
T aT 
a 'P -- (-) , 
aT T (29) 

a f(T) 
I oo 

A= fx dx f -'1'-x-ch-¢/T 
ch¢ d¢ aT 

o 0 (e 1)( 
-'P xch¢/T )=-; a (-1{1 )' 

+ e +1 aT 'F 

where f(T) 
(30) 

I oo d¢ __ . 
f (T) = 2 f dx f Wx ch¢ + 1 

o 0 e 
(31) 

For T -Tc 

f(T)=fn(~ J.)-1_~3)(.!_)2 + 93 ill2.(.!_)4 
Y r 24 11 T 7)40 11 T . (32) 
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Hence A for T - T 
c 

A (T) = L.!. + .]_ ,(3) (.!.) - _22_ ,(5) ( \{1 )3 
2 'I' 24 712 T 320 --;;-4 T · (33) 

Finally p for T- Tc ( T < T c) 

.... .... .... .... Tc -T ) 
p=Nm[u+l/4(1lu..L -Bull) Tc ]. (34 

We see that even for T - T c the paralle 1 component 
of p is smaller than the perpendicular one. 

5. Paramagnetic SuscePtibility 

From paper 161 we have for the paramagnetic sus
ceptibility X 

2 

X ( T) = 
2
: 2 :~ [ 1- ( ~ ~T))2 ], (35) 

where 'I' (T) we get from (10). 
For the temperature T- 0 we obtain from (lla) 

2 x(T)~~- ~[l-196e -6/pi -20(T/IJI(0))3 
m2 dE ' e l · (36) 

For the temperatures T-Tc we get from (15) 

2e2dn -6/pVTc-T 
x(T),_"-- [1-3,25e --- ]. 

m2 dE Tc 
(37) 

With the elementary excitations considered here 
(type ) 20 +I ) we could explain the Reif experiment 191 

which gives the dependence of paramagnetic susceptibility, 
if we put pi -3,5 ·. 

It is a pleasant duty to thank Prof. N.N.Bogolubov 
for suggesting the problem and helpful advice and Drs. 
D.V.Shirkov and V.V.Tolmachev for valuable discussions. 
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