ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ ИССАЕАОВАНИЙ
J.Czerwonko

THE SPIN SUSCEPTIBILITY
OF THE PSEUDOISOTROPIC (B) PHASE
OF SUPERFLUID He^{3}
IN THE ACOUSTIC LIMIT (SPIN WAVES)

1975

E17-9412

J.Czerwonko*

THE SPIN SUSCEPTIBILITY
 OF THE PSEUDOISOTROPIC (B) PHASE OF SUPERFLUID He^{3}
 IN THE ACOUSTIC LIMIT (SPIN WAVES)

Submitted to ЖЭТФ

[^0]The tensor of the spin susoeptibility is oalculated using the theory of the Larkin-Migdal type, at zero temperature, in the acoustic limit and collisionless regime. The theory of such a type for Balian-Werthamer pairing has been developed a few jears ago by the present author. Any restriotions on the effective quasiparticle interaotion in the particle-hole channel are not imposed. It is checked that the spin susoeptibility has always two poles, oorresponding to spin waves of different polarizations. Their frequenoies have been computed by Vdovin and Combescot, but under restricting assumptions. It is cheoked that these frequencies are dependent on exchange Landau amplitudes for $0 \leqslant \ell \leqslant 3$ and the form of dependenoe is found. At zero frequenoy and nonzero wave vector of the external magnetic field the susceptibility pass into the static value.

The purpose of the present paper is to consider the spin waves for the system with Balian-werthamer (BN) [1] pairing, without any assumption imposed on the effeotive quasipartiole interaction in the particle-hole ohannel, but in the collisionless 11mit and at zero temperature. This topic becomes now interesting, because of the identification of the B-phase of superfluid ${ }^{3} \mathrm{He}{ }^{[2,3]}$ as the B w state, performed preliminarily by Anderson and Brinkman [4]. This identification has been a matter of oontroversy, but the proposal of spin-singlet D-pairing $[5]$ is inconsistent with reoent measurements of the spin susceptibility $[6,7]$ whereas the spin-triplet F-pairing $[8]$ met serious arguments against it in paper ${ }^{[9]}$. So, the BW state ${ }^{[1]}$ remains till now the best oandidate to describe the B-phase of superfluld ${ }^{3}$ He.

The oollective excitations of the EN state were considered firstly (1963) by Vdovin [10], for a weak interaction. This last restriction was not imposed by us in papers $[11,12]$. There we have developed, for $B W$ pairing, analog of Larkin-Migdal [13] and Larkin himself ${ }^{[14]}$ theories; which were developed previously for systems with isotropic S-pairing. Fe have solved [11], the equations for vertex funotions describing the soalar and veotor vertioes in the acoustic limit $(|\omega|, k U \ll \Delta$, where ω, k dencte the frequenoy and the wave veotor respectively, \mathcal{V} is
the quasiparticle velocity on the Fermil sphere and Δ the energy gap). It was shown there that all the above vertex functions have one pole at the zero sound frequency, coinciding with the first sound frequenoy, obtained by means of the thermodynamic formula for Fermi liquids [15]. Our results were generalized recently by Maki [16], for nonzero temperatures. On the other hand, our paper $[11]$ oontains erroneous statement that the spin vertex, in the aooustic limit has no pole, i.e., that the propagation of spin waves is impossible for systems with $B H$ pairing.

The results of Vdorin $[10]$ for spin waves were generalized by Combesoot $[17]$, for a system with the angle independent effective quasiparticle interaotion. Moreover, our equations [11] for vertex functions were rederived recently by Gongadze, Gurgenishvili and Kharadze $[18]$ under the silent assumption that the spin-antisymmetric part of the effective quasipartiole interaction in the particle-particle (or hole-hole) ohannel vanishes. These authors have solved the equation for the spin vertex assuming, as Combescot $[17]$, that the effective quasipartiole interaction, in the partiole-hole ohannel, is angle-independent. Their expressions for the frequenoies of spin waves coinoide with those of Combesoot ${ }^{[17]}$ but, nevertheless, the solutions the vertex function obtained in $[18]_{\text {are incorreot. It }}$ will become olear for the reader from our further caloulations, but the incorreotness of the results ${ }^{[18]}$ oan be understood quite simply. The equations solved in $[18]$ form the system of inhomogeneous inear int egral equations with the degenerate matrix kernel. Such a system is equivalent to the algebraio system of inhomogeneous linear equations. Nevertheless, acoording to the
results of ${ }^{[18]}$, the solution of such a system, describing the response to the external magnetic field is not unique, which is a physical nonsense.

Aooording to Leggett ard Rice ${ }^{[19]}$, Leggett $[20]$ and Corruoind et al. ${ }^{[21]}$ the spin exohange Landau amplitude for $l=1$ is very small. This is the most physioal argument in favour of disregarding all exohange Landau amplitudes, exoept for $\ell=0$. Nevertheless, both experimental ${ }^{[6]}$ and theoretical estimations by 0stgaard $[22]$ shom that the situation is far from the above one. Moreover, the Landau amplitudes for ${ }^{3}$ He have to be such that the sum rule is fulfilled. On the other hand, only the general solution of the problem gives us the possibility to verify whether the stability conditions ${ }^{[23]}$ guarantee the existenoe of poles of the response funotion ($1 . e .$, suitable elementary exoitations). This is a topic of a particular interest since spin waves in the b-phase of superfluid ${ }^{3}$ He remain still undetected.

1. The discussion of basic equations

Our equations for spin vertices as well as the expression for the spin susoeptibility obtained by us in [11], by the appl1cation of methods developed in ${ }^{[13]}$, w11l not be rederived here. The deduction of equivalent equations for spin vertices and the expression for the spin susoeptibility, by means of methods developed in ${ }^{[14]}$ can be found in Appendix. Choose the usual phase of the Δ-matrix of Bw , 1.e., $\hat{\Delta}=(\vec{\sigma} \vec{p})\left(i \sigma^{-}\right) \Delta$. Here a circumflex over a letter denotes a spin matrix, with the exoeption of letters with arrows on, where it denotes a unit veotor parallel to the vector under a ciroumflex. For the above ohotice of $\hat{\Delta}$, one oan express the anomalous vertioes $\hat{\tau}_{1,2}$
（ i．e．，with two inooming and outgoing particle lines，respecti－ vely），conjugate to normal spin vertex，as follows：

$$
\hat{\tau}_{1}=(\hat{\tau}+\lambda)\left(i \sigma^{y}\right), \hat{\tau}_{2}=\left(i \sigma^{y}\right)(\hat{\tau}-\lambda), \text { where } \hat{\tau} \quad \text { is a trace- }
$$ less matrix．The tem λ is equal to zero if the spin－anti－ symmetric part of the effective quasiparticle interaction in the particle－particle channel vanishes［11］．On the other hand， 1f zeroth Legendre amplitude of the spin－antisymmetric dimen－ sionless effective interaotion in the partiole－particle channel is not equal to $[\ln (2 \xi / \Delta)]^{-1}$ ，where ξ is the cut－off parameter，then it oan be proved that disregarding the λ term we obtain an error negligibly gmall in the acoustic limit． （cf．papers $[11]$ and $[13]$ ）．According to important but till now nonformulated prinoiple of theoretical physics any parameter is not equal to anything else if it does not have to．Hence，in the acoustio limit，the variable λ oan be put zero with simultaneous omitting the equation for λ ．The remaining equations，with λ put equal zero，have the form

$\hat{J}_{a}(\hat{p})=\hat{J}_{a}^{\omega}+\left\langle B\left(\hat{p}^{\prime}\right)\left\{L \hat{J_{a}}\left(\hat{p}^{\prime}\right)+O\left(\vec{\sigma} \hat{p}^{\prime}\right) \hat{J}_{a}\left(-\hat{p}^{\phi}\right)\left(\vec{\sigma}^{\prime} \hat{p}^{\prime}\right)-M\left[\hat{\tau}_{a}\left(\hat{p}^{\prime}\right)\left(\sigma \hat{p}^{\prime}\right)\right]_{-}\right\}\right\rangle_{\hat{p}^{3}}(1)$

Here $B\left(\hat{P} \hat{F}^{\prime}\right)$ denotes spin－exohange part of the dimensionless effeotive interaotion in the particle－hole channel $\boldsymbol{N}_{-1}^{\xi}\left(\vec{p} \tilde{f}^{\prime}\right)$－ 3）It coincides with the effective interaction for a normal system．
the spin antisymmetric part of the dimensionless effeotive interaotion in the particle－particle channel，consis－ ting of only odd Legendre harmonios，〈．．．〉㐱＇the average over solid angles oonnected with the veotor \hat{P}^{\prime} and $\vec{\sigma}$ the pseudovector of Pauli matrices．In the acoustio limit it is sufficient to put $-L=0=\frac{1}{2}, 2 M=-\omega-\left(\vec{k} \vec{v}^{\prime}\right)$ $N=-\frac{1}{2}+\omega^{2}-\left(\vec{k} \vec{v}^{\prime}\right)^{2} \quad$ where $\vec{v}^{\prime}=v \stackrel{\rightharpoonup}{p}^{\prime}$ and $\omega, K v$ are measured in the units 2Δ ；the definitions of the above functions were given $1 n^{[13,14]}$（cf．also $[11]$ ）．our vertex functions are chosen here such that $\hat{J}_{\alpha} \omega$ ，being the vertex \hat{J}_{a} for the system without pairing for $|\omega|>k v$ is equal to σ_{a} ．For such vertex functions the tensor of paramagnetio susceptibility is given by $[11]$
$\chi_{a b}=-\mu_{B}^{2} \nu \frac{1}{2} \operatorname{Tr}\left\langle\sigma_{a}\left\{L \hat{J}_{b}+U\left(\vec{\sigma} \vec{\sigma}_{0}\right) \hat{J}_{b}(\vec{\sigma} \hat{\vec{p}})-M\left[\hat{\tau}_{\sigma_{1}}(\vec{\sigma} \vec{p})\right]_{-}\right\}_{\hat{p}}\right.$,
where μ_{B} denotes the Bohr magneton，V the density of states on the Fermi sphere and the trace is taken over spin 1ndioes．The kernels $B\left(\hat{p}^{\prime} \hat{p}^{\prime}\right)$ and $f_{-1}^{\xi}\left(\hat{p} \hat{p}^{\prime}\right)$ will be determined here by its Legendre amplitudes（i．e．，Landau amplitudes）．They will be defined as follows

$$
\begin{equation*}
B\left(\hat{\bar{p}} \hat{P}^{\prime}\right)=\sum_{l=0}^{\infty}(2 l+1) E_{l} P_{(}(\hat{p} \dot{p}) \tag{4}
\end{equation*}
$$

In order to avoid too compIicated denominators．The kernel $f_{-1}^{\xi}\left(\vec{p} \hat{p}^{\prime}\right)$ will be determined by $f \in$ in the manner（4）but with $f_{2 k}=C$ ． Note that the analog of the gap equation is given by $f_{1}=[\ln (2 \xi / C)]^{-1}[11,13]$ ．Note also that new t_{ℓ} are equal
to $b_{l} /(2 \ell+1)$ in our old notation $[11]$ and $Z_{l} / 4(2 \ell+1)$ in Leggett's notation [24]. In the further part of this paper we restrict ourselves to $f_{-1}^{\xi}\left(\hat{p} \hat{p}^{\prime}\right)=3\left(\hat{p}^{\prime}{ }^{\prime}\right)[\ln (2 \xi / \Delta)]^{-1}$,
1.e., negleot all remaining Legendre amplitudes of interaction in this channel. Note that all concrete caloulations up to now were performed under an analogous restriction. On the other hand, we will not impose any restriction on $B\left(\hat{P} \vec{p}^{\prime}\right)$. As follows from $(1,2) \hat{J}_{a}$ and $\hat{\tau}_{a}$ are a-th components of traceless pseudoveotor and vector respectively. As a result of the above restriction on $f_{-1}^{\xi}, \tilde{\tilde{c}}_{a}$ has to be a linear function of the reotor \hat{p}, 1.e., $\hat{\tau}_{a}=\tau_{a b c} \sigma_{b} \hat{p}_{c}$, where the pseudotensor $\tau_{a b c}$ of third rank is only ω, \vec{k} dependent. Note that hereafter the summation convention over repeated vector indioes is assumed. Analogously one can write $\hat{J}_{a}=J_{a b} \sigma_{b}$, where $J_{a b}$ is \hat{p}, \vec{k} and $\omega-$ dependent tensor. Its general form can be written as follows

$$
\begin{equation*}
J_{a b}=A \delta_{a b}+B \hat{p}_{a} \hat{p}_{b}+C \hat{k}_{a} \hat{p}_{b}+D \hat{p}_{a} \hat{k}_{b}+E \hat{k}_{a} \hat{k}_{b}, \tag{5}
\end{equation*}
$$

where the functions $A-E$ depend only on $(\hat{p} \hat{k}) \equiv W, K$ and ω. The most general $\frac{\hat{p}}{}$ - independent pseudotensor of third rank can be expressed by

$$
\begin{gather*}
\tau_{a b c}=i R \varepsilon_{a b c}+i(x-R) \varepsilon_{d b c} \hat{k}_{\alpha} \hat{k}_{a}+i Y \varepsilon_{a d c} \hat{k}_{\alpha} \hat{k}_{b}+ \tag{6}\\
i Z \varepsilon_{a b a} \hat{k}_{\alpha} \hat{k}_{c}
\end{gather*}
$$

where $\varepsilon_{a 6 c}$ denotes the Levi-cirlta pseudotensor. As a result of the following identity

$$
\begin{equation*}
\varepsilon_{a b c}=\hat{k}_{d}\left(\hat{k}_{a} \varepsilon_{d b c}+\hat{k}_{b} \varepsilon_{a d c}+\hat{k}_{c} \varepsilon_{a b d}\right) \tag{7}
\end{equation*}
$$

the pseudotensor $\tau_{a b c}$ depends, in fact, only on three oombinations of variables R, X, Y, Z and hence our choice $X=0$ can be made without any loss of generality. In order to prove
(7) let us remark that both sides of (7) are of the same tensor charaoter, and in the reference frame with $\widehat{\vec{k}}$ parallel to the Z-axis, (7) has the form

$$
\begin{equation*}
\varepsilon_{a b c}=\delta_{3 a} \varepsilon_{3 b c}+\delta_{36} \varepsilon_{a 3 c}+\delta_{3 c} \varepsilon_{a 63} . \tag{8}
\end{equation*}
$$

This relation oan be verified by inspection and, if we remark that (8) is equivalent to (7), then we complete our proof. Substituting \hat{J}_{a} and $\tilde{\tau}_{a}$ in the above form into (2) one pinds
$\left\langle\hat{p}_{f}\left\{u \hat{p}_{c}\left[R \varepsilon_{a b c}+(X-R) \varepsilon_{d b c} \hat{k}_{d} \hat{k}_{a}\right]+U Z \varepsilon_{a b d} \hat{k}_{d} w-20 Z \hat{p}_{6} W \varepsilon_{a c \alpha} \hat{p}_{c} \hat{k}_{d}\right\}\right\rangle_{\hat{p}}=$
$-2\left\langle\hat{p}_{f} M\left[A \varepsilon_{a d} b \hat{p}_{d}+D \varepsilon_{c d 6} \hat{p}_{a} \hat{p}_{d} \hat{k}_{c}+E \varepsilon_{c d b} \hat{k}_{a} \hat{k}_{c} \hat{p}_{d}\right]\right\rangle_{\hat{p}}$,
where $U=N+O$ and $W=(\hat{\vec{k}} \hat{p})$. Note that the equation (9) is not restricted to the acoustic limit and that the variables R, X, Z are \widehat{p}-independent. The analogous expression for the spin susceptibillty has the form
$X_{a b}=\mu_{B}^{2} \nu\left\langle(O-L) J_{b a}-20 \hat{p}_{a} \hat{p}_{c} J_{b c}-2 M\left[R\left(\delta_{a b}-\hat{p}_{a} \hat{p}_{b}\right)+\right.\right.$
$\left.(x-R) \hat{k}_{b}\left(\hat{k}_{a}-\hat{p}_{a} w\right)+Z w\left(w \delta_{a 6}-\hat{k}_{a} \hat{p}_{b}\right)\right\rangle_{\hat{p}}$.

Taking into account the symmetry properties and (5) one can rewrite (10) in the form

$$
\begin{equation*}
x_{a b}=x_{\perp}\left(\delta_{a b}-\hat{k}_{a} \hat{k}_{b}\right)+x_{11} \hat{k}_{a} \hat{k}_{b} \tag{11}
\end{equation*}
$$

where $\chi_{1}=\mu_{B}^{2} v\left\langle A\left(-L+O w^{2}\right)-\frac{1}{2} B(O+L)\left(1-w^{2}\right)-D w\left(O+L-O w^{2}\right)-M\left[R\left(1+w^{2}\right)+2 Z w^{2}\right]\right\rangle_{(12)}$
$\left.\chi_{n}=\mu_{B}^{2}\right)\left\langle\left((A+D-\bar{W}+E)\left(0-L-20 W^{2}\right)-\left(B W^{2}+(W)(O+L)-2 M X\left(1-W^{2}\right)\right\rangle\right.\right.$
2. The transformation and solution of equations in the aooustic limit
In the acoustic IImit $O>|U|$ and, from the equation (9), $|X|,|R| \gg Z$. Hence the term proportional to $U Z$ in (9) and the terms proportional to $Z \quad \operatorname{in}(10)$ and (12) should be neglected, as well as in $\hat{\tau}_{a}$ substituted into (1). This equation, written in terms of $J_{a b}$ and R, X, passes in the acoustic limit

$$
\begin{aligned}
J_{a b}= & \delta_{a b}-\left\langle B\left[\omega+\left(k v^{\prime}\right)\right]\left[R\left(\delta_{a b}-\hat{p}_{a}^{\prime} \hat{p}_{b}^{\prime}\right)+(x-R) \hat{k}_{a}\left(\hat{k}_{6}-\hat{p}_{6}^{\prime} w^{\prime}\right)\right]_{(13)}\right\rangle_{p^{\prime}}- \\
& \left\langle B\left[\frac{1}{2}(1+\widetilde{P}) J_{a b}-\widetilde{P_{1}} \hat{p}_{6}^{\prime} J_{a c} \hat{p}_{c}^{\prime}\right]\right\rangle_{\hat{p}^{\prime}}
\end{aligned}
$$

with B depending on $\left(\hat{p} \hat{F}^{\prime}\right)$ and $\overline{J_{a 6}}$ depending on \hat{p}^{\prime} or $\underset{p_{p}}{\widetilde{P}}$
respeotively, under or out of symbol $\langle\ldots\rangle$; the operator respeotively, under or out of symbol $\langle\ldots\rangle \mathcal{p}^{\prime}$; the operator $\widetilde{\mathcal{P}}$ ohanges \hat{p}^{\prime} to $-\hat{p}^{\prime}$. Applying the following relations
$\langle B\rangle_{\hat{p}^{\prime}}=b_{0},\left\langle B \hat{p}_{a}^{\prime}\right\rangle_{\hat{p}^{\prime}}=b_{1} \hat{p}_{a},\left\langle B \hat{p}_{a}^{\prime} \hat{p}_{b}^{\prime}\right\rangle_{p^{\prime}}=\frac{1}{3}\left(b_{0}-b_{2}\right) \delta_{a b}+b_{2} \hat{p}_{a} \hat{p}_{b}$,
$\left\langle B \hat{p}_{a}^{\prime} \hat{p}_{b}^{\prime} \hat{p}_{c}^{\prime}\right\rangle_{\hat{p}^{\prime}}=\frac{1}{5}\left(b_{1}-b_{3}\right)\left(\hat{p}_{a} \delta_{b c}+\hat{p}_{b} \delta_{a c}+\hat{p}_{c} \delta_{a b}\right)+b_{3} \hat{p}_{a} \hat{p}_{b} \hat{p}_{c}$,
(Cf.(4)), one can rewrite the second term on the right-hand side of (13) as
$-\delta_{a b} R\left[\frac{\omega}{3}\left(2 b_{0}+b_{2}\right)+\frac{k v}{5}\left(4 b_{1}+b_{3}\right) w\right]+\hat{p}_{a} \hat{p}_{b} R\left(\omega b_{2}+k \cup b_{3} w\right)+$
$\hat{k}_{a} \hat{P}_{b}\left[x \frac{k v}{5}\left(b_{1}-b_{3}\right)+(x-R)\left(\omega b_{2} w+k v b_{3} w^{2}\right)\right]+$
$\hat{p}_{a} \hat{k}_{b} R \frac{k v}{5}\left(b_{1}-b_{3}\right)-\hat{k}_{a} \hat{k}_{b}(x-R)\left[\frac{\omega}{3}\left(2 b_{0}+b_{2}\right)+\frac{k v}{5}\left(3 b_{1}+2 b_{3}\right)\right]$.

Comparing formulae (13) and (15) with (5) one can remark that in the solution $J_{a b}$ of eq. (13) the following terms, at least, should appear

1) the 1 -terms with $\ell=0,1$,
2) the B-terms with $\ell=0,1$,
3) the c-terms with $\ell=0,1,2$,
iv) the D-terms with $l=0$,
v) the E-terms with $\ell=0,1$,
where ℓ denotes the orders of Legendre polynomials $P_{\ell}(W)$ appearing in the functions A-E. Taking into account now the terms of $J_{a b}$ transform one into another in the procedure $\hat{p}_{G} J_{a c} \hat{p}_{c}$ appearing in (13) one can also remark that the terms 1)-v) of (5) are sufficient to solve eq. (13). Let us define

$$
\begin{equation*}
F(w)=\sum_{n=0}^{m(F)} F_{n} w^{n} \tag{16}
\end{equation*}
$$

where F is one of functions A-E. Substituting (5) into (13) one remarks that formulae (14) are sufficient to calculate all appearing integrals. Hence, comparing all linearly independent terms, we find immediately

$$
\begin{align*}
& A_{0}=[1-R \omega(S-1)] S^{-1} \tag{17}\\
& B_{0}=b_{2}(1+\omega R) S^{-1} \tag{18}\\
& C_{1}=\omega(X-R) b_{2} S^{-1} \tag{19}\\
& E_{0}=-\omega(X-R)(S-1) S^{-1} \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
S=1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2} \tag{21}
\end{equation*}
$$

Moreover,

$$
C_{2}+b_{3} G=(x-R) k \cup b_{3}, C_{2}-G\left[1+\frac{1}{5}\left(b_{1}-b_{3}\right)\right]=(x-R) \frac{k v}{5}\left(3 b_{1}+2 b_{3}\right)(22)
$$

with $G \equiv E_{1}+C_{2}, \quad$ and

$$
\begin{gather*}
A_{1}+\frac{1}{5}\left(b_{1}-b_{3}\right) F=-\frac{1}{5} \operatorname{Rkv}\left(4 b_{1}+b_{3}\right), B_{1}+b_{3} F=R k v b_{3} \tag{23}\\
A_{1}+B_{1}-F\left[1+\frac{1}{5}\left(b_{1}-b_{3}\right)\right]=-\frac{1}{5} \operatorname{Rkv}\left(b_{1}-b_{3}\right)
\end{gather*}
$$

$$
\begin{equation*}
C_{0}=\frac{1}{5}\left(b_{1}-b_{3}\right)(x k v-F-G) \tag{24}
\end{equation*}
$$

Solving the systems (22) and (23) and substituting the results into (24) one finds

$$
\begin{align*}
& A_{1}=-\frac{1}{5} R k v\left(b_{1}^{2}+4 b_{1} b_{3}+4 b_{1}+b_{3}\right) P^{-1} \tag{25}\\
& B_{1}=R k v b_{3}\left(1+b_{1}\right) P^{-1} \tag{26}\\
& C_{0}=\frac{1}{5} \times k v\left(b_{1}-b_{3}\right) P^{-1} \tag{27}\\
& C_{2}=(X-R) k v b_{3}\left(1+b_{1}\right) P^{-1} \tag{28}\\
& E_{1}=-(x-R) k v\left[\frac{3}{5}\left(b_{1}-b_{3}\right)+b_{3}\left(1+b_{1}\right)\right] P^{-1} \tag{29}\\
& D=\frac{1}{5} R k v\left(1+b_{1}\right)\left(b_{1}-b_{3}\right) P^{-1} \tag{30}
\end{align*}
$$

Where

$$
\begin{equation*}
P \equiv 1+\frac{2}{5} b_{1}+\frac{3}{5} b_{3} \tag{31}
\end{equation*}
$$

Let us come back to the equation (9) in the acoustic limit. Taking into account that

$$
\begin{equation*}
\left\langle\hat{p}_{\alpha} \hat{p}_{b} \hat{p}_{c} \hat{p}_{d}\right\rangle_{\hat{p}}=\frac{1}{15}\left(\delta_{a b} \delta_{c \alpha}+\delta_{a c} \delta_{b \alpha}+\delta_{a d} \delta_{b c}\right) \tag{32}
\end{equation*}
$$

one pan find

$$
\begin{align*}
& \left(\omega^{2}-\frac{1}{5} k^{2} v^{2}\right)\left[R \varepsilon_{a b c}+(x-R) \hat{k}_{a} \hat{k}_{d} \varepsilon_{d b c}\right]+\frac{1}{5} Z \hat{k}_{b} \hat{k}_{d} \varepsilon_{a d c}- \\
& \left(\frac{2}{5} k^{2} v^{2} R+\frac{1}{5} Z\right) \hat{k}_{c} \hat{k}_{d} \varepsilon_{a b d}=-\left(\omega A_{o}+\frac{1}{5} k v A_{1}\right) \varepsilon_{a b c}- \tag{33}\\
& {\left[\omega E_{0}+\frac{1}{5} k v\left(D+E_{1}\right)\right] \hat{k}_{a} \hat{k}_{d} \varepsilon_{d b c}+\frac{1}{5} k v\left(D-2 A_{1}\right) \hat{k}_{c} \hat{k}_{d} \varepsilon_{a b d}}
\end{align*}
$$

According to the assumption about the form of anomalous vertex function made in $[18] X$ has to be equal R and $Z=0$. It is quite olear from (33) that this equation cannot be fulfilled under the above assumption. If we eliminate from (33) the term proportional to $\hat{k}_{b} \hat{k}_{d} \varepsilon_{a d c}$ using (7), then we obtain three equations for variables R, X, Z. The equivalent procedure consists in choosing \hat{k} along the third axis and substituting cyolic permutations of $1,2,3$ instead of a, b, c. Hence

$$
\begin{equation*}
\left(\omega^{2}-\frac{1}{5} k^{2} v^{2}\right) X=-\omega\left(A_{0}+E_{0}\right)-\frac{1}{5} k v\left(A_{1}+D+E_{1}\right) \tag{34}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\omega^{2}-\frac{3}{5} k^{2} v^{2}\right) R-\frac{1}{5} z=-\omega A_{0}-\frac{1}{5} k v\left(3 A_{1}-D\right) \tag{35}\\
& \left(\omega^{2}-\frac{1}{5} k^{2} v^{2}\right) R+\frac{1}{5} z=-\omega A_{0}-\frac{1}{5} k v A_{1}
\end{align*}
$$

From (35) one finds

$$
\begin{equation*}
\left(\omega^{2}-\frac{2}{5} k^{2} v^{2}\right) R=-\omega A_{0}-\frac{1}{10} k v\left(4 A_{1}-D\right) \tag{36}
\end{equation*}
$$

substituting, into eqs. (34) and (36), A_{0}, E_{0} and $A_{1}, D_{1} E_{1}$ expressed by the formulae $(17,20)$ and $(25,29,30)$ one obtains

$$
\begin{align*}
& R=-\omega\left[\omega^{2}-\frac{2}{5} k^{2} v^{2}\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)\left(1+b_{1}\right)\left(1+\frac{1}{4} b_{1}+\frac{3}{4} b_{3}\right)\left(1+\frac{2}{5} b_{1}+\frac{3}{5} b_{3}\right)^{-1}\right]^{-1} \tag{37}\\
& X=-\omega\left[\omega^{2}-\frac{1}{5} k^{2} v^{2}\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)\left(1+b_{1}\right)\left(1+b_{3}\right)\left(1+\frac{2}{5} b_{1}+\frac{3}{5} b_{3}\right)^{-1}\right]^{-1} \tag{38}
\end{align*}
$$

Now the formulae (17-20) and (25-30) together with $(5,6)$ and $(37,38)$ serve as the ooinoide form for the solution.
3. The discussion of solutions and conclusions

Let us obtain first the expression for the spin susceptibipity. Substituting our solutions into eq. (10) we find

$$
\begin{equation*}
x_{a b}=\chi_{\text {static }}\left[\delta_{a b}+\left(\delta_{a b}-\hat{k}_{a} \hat{k}_{b}\right) \omega R+\hat{k}_{a} \hat{k}_{b} \omega X\right] \tag{39}
\end{equation*}
$$

where the value $X_{\text {static }}$ is equal to $\left.2 \mu_{B}^{2}\right) / 3\left(1+\frac{2}{3} b_{0}+\frac{1}{3} b_{2}\right)$; this value was obtained in our paper ${ }^{[11]}$ for M (cf. $(1,2)$ put equal zero. Here we have the following property:

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} \chi_{a b}=\chi_{\text {static }} \delta_{a b} \tag{40}
\end{equation*}
$$

if $k \neq 0$. This property has a simple physical meaning, since the statio limit corresponds to the statio but slightly inhomogeneous field, as a result of, e.g., the finiteness of a sample. It should be noted that the tensor (39), is the homogencous funotion of variables $\omega, k v$ of zeroth degree and, hence, the formula (39) is valid in an arbitrary system of units. We have $\lim _{k \rightarrow 0} R=\lim _{k \rightarrow 0} X=-\omega^{-1} \quad$ for $\omega \neq 0$ and hence $\lim _{k \rightarrow 0} \chi_{a 6}=0 \quad{ }^{k \rightarrow 0} \quad$ for $\omega \neq 0$. This result is quite understandable in the aooustic limit; in the homogeneous time-periodic field this quantity has to be of order of $(\omega / 2 \Delta)^{2}$ for $\omega \ll 2 \Delta$ and this quantity lies beyond the accuraoy of the acoustic limit. This property has an analog in the theory of normal Fermi liquids. It is well-known faot that $\lim _{k \rightarrow 0} S(\omega, k)=0$ for $\omega \neq 0$ where S denotes an arbitrary response function for conserved quantities. Moreover, the usual accuraoy for these theories neglects $(\omega / \mu)^{2}$ where μ is the chemioal potential of the system.

According to (39) the pole of R corresponds to transversal spin waves whereas the pole of X-to longitudinal spin waves. It is olear that transversal waves are twice degenerated whereas the longitudinal waves are undergenerated ($c f_{0}^{[17]}$). All factors containing anp11tudes b in R and X can be represented by

$$
\frac{m}{n}\left(1+6_{l}\right)+\frac{n-m}{n}\left(1+6_{l}\right)
$$

where $0 \leqslant m \leqslant n$ and l, l denotes whether 0,2 or 1,3. Beoause the stability conditions for spin Landau amplitudes
defined as here are $1+b_{\ell}>0,[23]$, all these factors are positive. Hence we obtain that stability conditions guarantee that in (39) always two poles appear. Moreover, the stability conditions guarantee also that the transversal mode is at higher energies than the longitudtnal mode with the same k, i.e., that the transversal spin waves are faster than longitudinal ones. Note that the Landau amplitudes b_{0} and b_{2} appear in (39) only in the same combination as in the statio spin susceptibility.

Our oalculations demonstrate a property characteristic for theories based on sufficiently general phenomenological approach. It could be oalled ma prinoiple of maximal freedom of physical systems". Let us demonstrate the action of this principle using the spin susoeptibility of ${ }^{3} \mathrm{He}$. The static susceptibility for the normal system determines b_{0}, whereas In the B-phase also $b_{2}[11]$. Moreover, the deteotion of transversal and longitudinal spin waves gives us b_{1} and b_{3}. From this point of view here is not any cross check for the theory; the independent measurements of $b_{1}[19-21]$ could be treated as the exception confirming a general rule.

In all our calculations the temperature effects and those of spin-unconserving weak dipole-dipole interaction were
disregerded. The first of them could be taken into acoount by means of methods devoloped by Leggett $[25]$; the second ones lead to rather serious difficulties in a similar formulation of the theory (of. [26]).

The author is greatly indebted to Prof.A.J.Leggett for sending the review article [24] prior to publioation.

APPENDIX

We are going to reduce equations for spin vertioes and the spin susceptibility so that only int egrations over Fermi surface are important, analogously to transformations made in [14]. Note that only the transformation of the equation for the normal vertex will be a subject of our interest. Applying the procedure of Larkin $[14] \stackrel{\text { to }}{ }$ the equation for normal vertex we find

$$
\begin{align*}
& \hat{J}_{a}(\hat{\vec{p}})=\hat{J}_{a}^{k}+\left\langleg (\hat { p } \vec { p } ^ { \prime }) \left\{\int_{a} \hat{J}_{a}\left(\hat{p}^{\prime}\right)+O\left(\vec{\sigma} \hat{\bar{p}}^{\prime}\right) \hat{T}_{a}\left(-\hat{p}^{\prime}\right)\left(\vec{\sigma} \hat{p}^{\prime}\right)-\right.\right. \\
& \left.\left.M\left[\hat{\tau}_{a}\left(\hat{\rho}^{\prime}\right)_{1}\left(\vec{\sigma} \hat{p}^{\prime}\right)\right]_{-}-2 M \lambda_{a}\left(\hat{p}^{\prime}\right)\left(\vec{\sigma}^{\prime} \hat{\vec{p}}^{\prime}\right)\right\}\right\rangle_{\hat{p}^{\prime}}, \tag{41}
\end{align*}
$$

where \hat{J}_{a}^{k} denotes the spin vertex for the normal system taken in the $k-11 m 1 t, 1 . e .$, for $\lim _{k \rightarrow 0} \lim _{\omega \rightarrow 0}$ and $g\left(\hat{p} \hat{p}^{\prime}\right)$ is the spin-exchange part of dimensionless scattering amplitude of quasiparticles, $g_{l}=b_{l} /\left(1+b_{l}\right), S=L+1$. The equations for λ_{a} and $\hat{\tau}_{a}$ will be the same as in ${ }^{[11]}$. According to ${ }^{[27]}$ (cf.also ${ }^{[28]}$) if the spin vertex is chosen such that $\hat{J}_{a}^{\omega}=\sigma_{a}$, then $\hat{J}_{a}^{k}=\sigma_{a}\left(1-g_{0}\right)=\sigma_{a} /\left(1+b_{0}\right)$. Let us pass now to the transformation of the expression for the spin susceptibility. According to ${ }^{[11]}$ one can write the spin susceptibility as

$$
\begin{align*}
x_{a b}=-\left(\frac{\mu_{B}}{z}\right)^{2} \int \frac{d^{4} p}{(2 \pi)^{4} i} \operatorname{Tr} & \left\{\hat { J } _ { a } ^ { 0 } \left[G \hat{J}_{b} G-F \hat{D} \hat{J}_{b}^{-} \hat{D}^{+} F-\right.\right. \\
& \left.G \hat{\tau}_{16} \hat{D}^{+} F+F \hat{D} \hat{\tau}_{2 b} G\right] \tag{42}
\end{align*}
$$

where $\hat{J}_{a}^{0}=Z \sigma_{a}$ so that $\hat{J}_{a} \omega$ at the Fermi sphere is equal to $\sigma_{a} ; Z$ denotes the discontinuity of the occupation number at the Fermi sphere for a normal system,$\hat{D}=\hat{\Delta} / \Delta=(\vec{\sigma} \hat{p})\left(\sigma^{y}\right.$, and normal (G) and anomalous (F) Green's functions before the vertex are taken at $\vec{p}+\vec{k} / 2, \varepsilon+\omega / 2 \quad$ whereas after the vertex at

$$
\begin{aligned}
& \vec{p}+k / 2, \varepsilon+\omega / 2 \\
& \vec{p}-\vec{k} / 2, \varepsilon-\omega / 2, \quad d^{4} p=d^{3} p d \varepsilon, ~
\end{aligned}
$$

$$
\begin{aligned}
& \hat{J}^{-}(p) \equiv \hat{J}^{\top}(-p) \quad \text { Performing in } \\
& \text { formation originally proposed by Larking }[14]
\end{aligned}
$$

(42) the transformation originally proposed by Larking $[14]$ one finds using the equation (41) and expressing $\hat{\tau}_{16}, \hat{\tau}_{26}$ by $\hat{\tau}_{6}$ and λ_{b}

$$
\begin{align*}
x_{a b}=\chi_{a b}^{k}-\frac{\mu_{B}^{2} \nu}{2} & \operatorname{Tr} \tag{43}
\end{align*}\left\langle_ { a } ^ { k } \left\{ S \hat{J}_{b}+O(\vec{\sigma} \hat{p}) \hat{J}_{b}(\vec{\sigma} \hat{\vec{p}})-\quad .\right.\right.
$$

Here

$$
\begin{equation*}
\chi_{a b}^{k}=-\left(\frac{\mu_{B}}{2}\right)^{2} \int_{(2 \pi)^{4} i}^{\left(2 d^{4}\right.} \operatorname{Tr}\left[\hat{J}_{a}^{0}(G G)^{k} \hat{J}_{b}^{k}\right] \tag{44}
\end{equation*}
$$

With $(G G)^{k} \equiv \lim _{k \rightarrow 0} \lim _{\omega \rightarrow 0} \lim _{\Delta \rightarrow 0} G G, \quad[14]$
raking into account the results of paper ${ }^{[27]}$ for \hat{J}_{b}^{k} (of.also ${ }^{[28]}$) we find that $\chi_{a b}^{k}$ denotes the station susceptibipity of a normal system, ie., $\delta_{a b} \mu_{B}^{2} \nu /\left(1+b_{0}\right)$. Moreover, \hat{J}_{a}^{k} in the second term of the formula (43), 1.e., on the Fermi surface, is equal to $\sigma_{a} /\left(1+6_{0}\right)$. It is clear
that the formula (43) is equivalent to (10) and can be also written in form (21,12). Note that acoording to eq. (42) $\chi_{a 6}$ and \mathcal{V} correspond in Appendix to quantities per unit volume.

References:

[1.] R.Balian, N. R.Nerthamer, Phys.Rev. 131 (1963) 1553. [2.] D.D.Osheroff, R_{1} C. Pichardson and D.M.Lee, Phys.Rev.Lett. 28 (1972) 885.
[3.] D.D.Osheroff, W.J.Gully, R.C.Richardson and D.M.Lee, Phys.Rev.Lett. 29 (1972) 920.
[4.] P.W.Anderson, F.Brinkman, Phys.Rev.Lett. 30 (1973) 1108.
[5.] T.Soda, K. Yamazaki, Progr.Theor.Phys. 51 (1974) 327.
[6.] A.I.Ahonen, M.T. Haikala, M.Krusius and O. V.Lounasmaa, Phys.Rev.Lett. 33 (1974) 1595.
[7.] A.I.Ahonen, T.A.Alvesalo, M.T. Halkala, M.Krusius and M.A.Paalanen, Phys.Lett. 51A (1975) 279.
[8.] G.Barton, M.A.Moore, J.Phys. C., 8 (1975) 970.
[9.] N.D.Mermin, Phys.Rev.Lett. 34 (1975) 1651.
[10] Yu. A.Vdovin, in the book MApplications of the Methods of Quantum Field Theory to the Many-Body Problems", Mosoow, Gosatomizdat (1963) 94. (in Russian).
[11] J.Czerwonko, Acta Phys.Polon. 32 (1967) 335.
[12] J.Czerwonko, Acta Phys.Polon. 34 (1968) 11.
[13] A.I.Larkin, A. B.Migdel, Zh. Eksperim. Teor.Fiz. 44 (1963) 1703. [14.] A.I.Larkin, Zh.Eksperim.Teor.Fiz., 46 (1964) 2188.
[15.] A. A.Abrikosov, I.M.Khalatnikov, Rept.Progr.Phys. 22 (1959) 329.
[16.] K.Maki, J.Low Temp. Phys. 16 (1974) 465.
[17.] R. Combescot. Phys.Rev. Al0 (1974) 1700.
[18.] A.D. Gongadze, G.E.Gurgenishvili and G. A. Kharadze, Proceedings of LTl4 Conference, V.1, p. 21, North HollandAmerican Ell sevier, Amsterdam-Oxford-New York (1975).
[19] A.J.Leggett, M.J.R1ce, Phys.Rev.Lett. 20 (1968) 586.
[20] A.J.Leggett, J.Phys. C 12 (1970) 447.
[21d L.R.Corrucint, D.D.Osheroff, D.M.Lee and R.C.Richardson, Phys.Rev.Lett. 27 (1971) 650.
[22] E.0stgaard.Phys.Lett. 54A (1975) 39.
[23] I.Ya.Pomeranchuk, Zh. Eksper1m. Teor.F1z. 35 (1958) 524.
[24] A.J.Leggett, Rev.Mod.Phys. 47 (1975) 331.
[25] A.J.Leggett, Phys.Rev, Al40 (1965) 1869.
[26] A.J.Leggett, Ann.Phys. 85 (1974) 11.
[27.] P.S.Kondratenko, Zh. Eksperim. Teor.Fiz. 46 (1964) 1438. [23.] J.Czerwonko, Acta Phys.Polon. 36 (1969) 763.

Received by Publishing Department on December 24, 1975.

[^0]: * Permanent address: Institute of Physics, Technical University, 50-370 Wroclaw, Poland.

