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Summary

The tensor of the spin susoeptibility 1s oalculated using
the theory of the Larkin-Migdal type, at zero temperature, in
the acoustic limit and collisionless regime, The theory of such
a type for Balian-Werthamer pairing has been developed a few
years ago by the present author. Any restriotions on the effectl-
ve quasiparticle interaotion in the particle~hole channel
are not imposed. It is checked that the spin susoeptibllity has
always two poles, oorresponding to spin waves of different
polarizations. Their frequenoies have been computed by Vdovin
and Combescot, but under restricting assumptions, It 1s cheoked
that these frequencies are dependent on exchange Landau
amplitudes for 0 § z £ 3 and the form of dependenoce is found.
At zero frequenoy and nonzero wave vector of the external

magnetic field the susceptibllity pass into the static value.

The purpose of the present paper is to occnsider the spin
waves for the system with Ballan-Werthamer (EW)[IJpairing,
without any assumption imposed on the effeotive quasipartiole
interactionin the particle-hole channel, but in the collisionless
1imit and at zero temperature. This topic becomes now interes-
ting, because of the identification of the B-~phase of super-
fluid JHe [2’3] as the BN state, performed preliminarily by
Anderson and Brinkman[‘]. This identificatlon has been a matter
of oontroversy, but the proposal of spin~singlet D—pa;l.r:Lngb;l
18 inconsistent with reocent measurements of the spin susceptibi-
lity[6’7]whereas the spin-triplet F-pairing[é] met serious
arguments against it in paper[gl. Soy the BN state(l]remains
ti1l now the best candidate to degcribe the B-phase of super-
fluid “He.

The oollective excitations of the BN state were considered
firstly (1963) by Vdovin.ﬁ°], for a weak interaction. This lasat
restriction was not imposed by us in papers[ll’lé].

have developed, for BN pairing, analcg of Larkian1gdal[13}
and Laricin himself[i4ltheor1es, which were developed previously

There we

for systems withisotropic S-—pairing. We have solved[lq s the
equatlions for vertex funotions describing the scalar and veotor
vertioes in the acoustic limit ((wl,kU<< A , where o, k

dencte the frequency and the wave veotor respectively, '1/' is
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the quasiparticle velocity on the Ferml sphere and A the
energy gap). It was shown there that all the above vertex
functlons have one pole at the zero sound frequency, coinciding
with the first sound frequenoy, obtained hy means of the thermo-
dynamic formula for Ferml liquids[]'s]. Our results were genera—
lized recently by Makifls], for nonzero temperatures. On the
other hand, our ,paperl-u] oontains erronecus statement that the
spin vertex, in the aooustic 1limit has no poley, 1l.e., that the
propagation of spln waves 1s impossible for systems with BW

paliring.
The results of Vdovin ﬁ°] for spin waves were generalized

[1]

for vertex functions were rederived recently by Gongadze, Gurgeni-—

by Combesoot[”] s for a system with the angle independent

effective quasiparticle interaotion. Moreover, our equations

shvili and Kharadze[ls-] under the silent assumption that the
spin—antisymmetric part of the effective quasipartlole interaction
in the particle-particle ( or hole-hole) ochannel vanishes.

These authors have solved the equatlion for the spin vertex
assuming, as Combescot[”], that the effective quasipartiole
interaction, in the partiole-hole ohannel, is angle~independent.
Thelr expressions for the frequenoles of spin waves colnolde
with those of Combesoof (7 but, _nevertheless, the solutions

the vertex function obtained in l-:ls}ea,z'e incorreot. It will become
oclear for the reader from our further caloulations, but the
incorreotness of the resultsﬁs] oan be understood quite simply.
The equations solved 1n[18] form the system of inhomogeneous
linear integral equations with i:he degenerate matrix kernel.
Such a system 1s equivalent to the algebraio system of inhomo-

geneous linear equatlons. Nevertheless, acoording to the

results of [isl, the solution of such a system, describing the
response to the external magnetic field is not unique, which
18 a physical nonsense.

Aocording to Leggett ard Rice [19], Leggett [Zo]a.nd
Corruocini et al. [21] the spin exchange Landau amplitude for {=1
is very small, This is the most physioal argument in favour
of disregarding all exchange Landau amplitudes, exoept for ! =0,
Nevertheless, both experimental [6] and theoretical estimations
by Ostgaard [-22] show that the situation 13 far from the above one,
Moreover, the Landau amplitudes for 3He have o be such that the
sum rule is fulfilled. On the other hand, only the general
solution of the problem glves us the possibility to verify
whether the stability conditilons [23] guarantee the existence of
poles of the response funotion ( 1.e., suitable elementary
exoitatlons)., This 1s a topic of a particular interest since
spin waves in the B=phase of superfluid 3He remaln still undetec-

ted,
l. The discussion of basic equations

Our equations for spin veftices as well as the expression
Jor the spin susoeptibility obtained by us in ﬁ'ﬂ, by the
application of methods developed 1n[13], will not be rederived
heree The deduction of equivalent equations for spin vertices
and the expression for the spin susceptibility, by means of
methods developed :1.n[-14’:l can be found in Appendix, Choose the
usual phase of the A\ - matrix of B, L.e4, 8:‘- (&ﬁ?((&“y)ﬂ .
Here a clrcumflex over a letter denotes a spin matrix, with the
exception of letters with arrows on, where 1t denotes a unit
veotor parallel tc the vector under a circumflex. For the above

”n A~
cholce of A , one oan express the anomalous vertioes ‘ZA 2
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( i.e.y with two inooming and outgoing particle lines, respecti-

vely), conjugate to normal spin vertex, as follows:

(P— *’7\)(('0_)’) "((f()_y)(ﬁ ‘/\) where ’C’ is a trace-

less matrix. The term A is equal to zero if the spin-anti-
symmetric part of the effective quasiparticle interaction in
the particle~particle channel vanishes [11] e« On the other hand,
1f zeroth Legendre emplitude of the spin-antisymmetric dimen-
sionless effective interaotion in the partiole~particle channel
15 not equal to [fm. (Zg/A)]J s where E 1s the cut—off
parameter, then 1t oan be proved that disregarding the ;l_
term we obtaln an error negligibly small in the acoustic 1imit.
( cf. papers a1} and[-lj]). According to important but till now
nonformulated prinoiple of theoretical physics any parameter 1s
not equal to anything else 1f 1t does not have to, Hence, in
the acoustio limit, the variable A oan be put zero with
simultaneous omitting the equation for ’/\ « The remaining
equations, with 7\, put equal zero, have the fom

Tp)=T +(B(ff"){U(f7+0(o )T, 1H07-MC o) }>

T (D=L A s - 0PI P ﬁ»(ﬁﬁl}%@

Here B(?PJ) denotes spin-exohange part of the dimenslonless
effeotive interaotion in the particle—hole channel )ﬁ (?F)‘
®) Tt colncides with the effective interaction for a normal

system.
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the spin antisymmetric part of the dimensionless
effeotlive interaotion in the particle-particle channel, consis—
ting of only odd Legendre harmonios, (... >f‘- the average
over solid angles oonnected yvith the veotor ﬁ" and (-}v the
pseudovector of Paull matrices. In the acoustio limit 1t 1is
sufficient toput — L = (0= % ;) 2M =~ ~ (K7)

N = 42 Fw? —(kU')7' where U '= U’/i""
and (v, Ky are measured in the units 24 ; the definitlons
of the above functions were given 1n[13’14] ( cf. also[n]). our
vertex functions are chosen here such that :T w s belng the
vertex ,7_ for the system without palring for || >> %

is equal to 0& o« For such vertex functions the tensor of

paramagnetio susceptidbility is given by[ll]

~Hov £ 1oL + OGP 0P -MIEL TP

where /uB denotes the Bohr magneton, Y the density of
states on the Ferml sphere and the trace 1s taken over spin
indioes, The kernels ﬁ' ' 5 F’ I

B( (;) and 7(7( ﬁ‘) will be
determined here by its Legendre amplitudes ( i.e., Landau
amplitudes), They will be defined as follows

B(PP) = Z(zm ¢, PP @
in order to avold too complicated denominators. The kernel 7[§(F/?

wlll be determined by [( in the manner (4) but withl =0 .
2k
Note that the analog of the gap equation 1s glven by

14:[@”(2%/4»)]_1 [11’13]- Note also that new 6( are equal



to E(/(Zgu) in our old nota.tion[ll]a.nd ZK/Q(Q(’ 41)
in Leggett'!s notatilon 24J. In the further part of this paper we
restrict ourselves to )[~§1(P‘F,)=3(P?')[CM[2§/O)J-1 )

l1.€., negleot all remaining Legendre amplitudes of interaction
in this channel. Note that all concrete caloulatlons up to now
were performed under an analogous restriction, On the other
hand, we will net impose any restriction on B(?F.) .

As follows from (1,2) j:A and éix are a-th components of
traceless pseudoveotor and vector respectively. As a result

of the above restriction on I ?1 ’ Qix has to be a linear
function of the veotor f?’ sy leee, %a = Taéc%//o\c ,.

where the pseudotensor T of third rank is only ¢,k =

abe
dependent. Note that hereafter the summation convention over
repeated vector indioes is assumed, Analogously one can write
A P A bar d

T :j;é 0“: y where g, is p, k and Cu — dependent

tensor., Its general form can be written as follows
_ A oA AR AL n A (5)
7;6 = ASM»LB/@/’; *C-/‘a/’é +Dpak, +E kyky

where the functlons A-E depend only on (ﬁf)-:- w , k and
N

¢ o The most general F’-— independent pseudotensor of third

rank can be expressed by

' . ANA ) A
(a6c=<’ K&aéc{’L(X'R)Edg( kdka L Y{adc /(d/(‘ + (8

A

‘ A
t ZEa&oL koﬁlccl

where C g4 denotes the Levi-Civita pseudotensor, As a result
of the following identity

Eatc = l‘d(kazdéc H‘égao(c bl Eaéd) (n

the pseudotensor ’Xa‘C depends, in fact, only on three
oombinations of variables RyX,Y,2 and hence our choice Y =0
can be made without any loss of generality, In order to prove
(7) let us remark that both sides of (7) are of the same tensor
charaotery,and in the reference frame with /E\’ parallel to the
Z -axisy (7) has the form

€ agc = 910 E36c Foy & *"gc Cags - ®

3{ “A3C

This relation oan be verified by inspection and, 1f we remark
that (8) 1s equivalent to (7), then we complete our proof,
Substituting fix and 'f;o_ in the above form into (2) one
finds

<f7‘¥ {u?c [Kgaéc ’L(X'K )E“CLO(ZJWZ EauﬁdW—ZOZﬁéW&mfcid}% =

‘1<F;M[Agad€fd f’Dgcaléf)af;d?(c ' Ecccdézaﬁc/aj% ) ”

where U=N4() ana w = (ﬁﬁ') . Note that the equation (9)
1s not restricted to the acoustic 1imit and that the varlables
RyX,Z are ?’—- independent. The analogous expression for the spin
susceptibllity has the form

Nae =H57<(0-L) 750 = 20pape Toc=ZM[RI, ~pufis) +

(x—n)ﬁ,, (Za~,?aw) + Zw(wi,, —lpf“f%))? | (10)



Taking into account the symmetry propertles and (5) one can rewri-
te (10) in the form

” ~ (11)
Xag =(XJ_(504 —ﬁal(é) +7u,‘o.£6 , '
where
fxl- U USA LW~ £ B(0+L)1-W) ~DW(0+L-0W)- M[K{4+wz}+ZZWJ>

! 2)
X =pgV{(A 1DW+E)p-L -20W%)-(Bwi(w)o+L) ~2Mx(4-w2/7ff .

2, The transformation and solution of equatlions in

the aooustlc limit

In the acoustic 1imit (O >> [l{] and, from the equation (9),
[X],JR)>> Z + Hence the term proportional to UZ in (9) and the
terms proportional to Z in (10) and (12) should be neglected,
as well as 1in ’8‘0. substituted into (1). This equation, written
in terms of j;é and R,X , Dasses in the acoustlic limit
into

T6=80g - <BLwt (kIR (Gg=Foft)+ (R, (k- ,pru-

<B[2(4+:P)~76 Pﬂ—ac c]>ﬁ' )

Ay -5 fa)
with BB depending on (?]’) and ~/a6 depending on or f:\s/
respeotively, under or out of symbol <... >P/ s the opera.tor l)
changes fJ to -f' « Applying the following relations
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<BIpr=bs , (Bfadp=bipa , (Bfofs 5= 4 (6-b)ae + b,
as)

Al al

<B f’a{’éfc 2 1(64-63)(?0-556 *ﬁb‘gac "ﬁj"‘) + éz f;\“f%/gc y

( Cf.(4) )y one can rewrite the second term on tke right-hand
side of (13) as

_5 R[9028,48)+ ELb 0]t ufuR (b, 1k b) +

/LQ?L [X %‘r(érés)‘L (X“R)(C"62W + kué3w2)] + (15)
AA ~

/[;allzé, R _Igs__ ) -k k 6()(-!3)[—%(26#62)4 —‘}"(34“263)}

Comparing formulae (13) and (15) with (5) one can remark that

in the solution ‘7;6 of eqe (13) the following terms, at
least, should appear

1) the A-terms with £ = 0,1,

11) the B~terms with { = 0,1,
111) the C~terms with [ = 0,1,2,
iv) the D-terms with = 0,

v) the E-terms with = 0,1,

where ,f denotes the orders of Legendre polynomials PC(W)
appearing in the functions A-E. Taking into account now the
terms of 7;6 transform one into another in the procedure
F‘j‘;c PC appearing in (13) one can also remark that the terms
1)=v) of (5) are sufficlent to solve eq. (13). Let us define

1



m (F)

F(w)=) Faw™ 6)
n=o 4

where F  1is one of functions A-E. Substituting (5) into (13)
one remarks that formulae (14) are sufficient to calculate all
appearing integrals. Henoe, ocomparing all linearly independent
terms, we find immediately

AL =[1- Ro(s-1)]s7" 7

By=b,(1+wR)S™, (18)

¢, =w(X-R) 4, S (19)

Eo=-c(X-RXS-DS! (20)
where

S=A+Lbo+3h,, (20
Moreover,

C, +b:G=(X-R)kvky , Co=C [1+ L16,-6)]= (xRSt 2t) 2

with G=E+(, | and

Ay e Hb-b)F =-LRkvlabpt,) Bt 4F<Rko by )
A+ B, _FU +%.(4,-63)]=—-}Rk0(44-63) ,
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with F—EA4+B4 +D « Ve have also

Co=Lll-t)xkv-F-C).

Solving the systems (22) and (23) and substituting the results
into (24) one finds

(24)

Ay == LRiev(b; +18,6,+48,+0,)27", (29

By = Rkv 65(146)27" (26)
Coz%xkv(érég)f"', (27)

(= (X-RIkv b;{1:6,)7" &
E,=-(X-RIkv[2(4-6) (67 @

= LRku(1+6,)4,-6)D 7, (30)

where

P=A+24,+ 245, G

Let us come back to the equation (9) in the acocustic
1imit. Taking into acoount that

<?°‘?"ﬁ/§°‘>ﬁ.=ﬁ4‘g(é;s£a“£c);¢ +,§;d56c )’ (32)

one oan find

13



(w'- 151<2U ){ a,,c+(x -K) k kolgdéc] +:{§Zk4kdgo~d6 -

~oA 1 SN ¢E)
(%kZUzR{JS_Z)l(c Laéd_’(wA°+5kVA1)6“5C »

TANEA

[ o+ £ko{DE: )]k e Mw(u 28k k(€. py -

According to the alssumption about the form of anomalous vertex
funotion made 1n l18) X has to be equal R and Z = 0., It

1s quite olear from (33) that this equation cannot be fulfllled
under the above assumption. If we eliminate from (33) the

term proportional to T‘Lﬁd &Qdc using (7), then we obtaln
three equations for variables RyX,Z. The equivalent procedure
conslsts 1n choosing i’ along the third axis and substituting
cyolic permutations of 1,2,3 instead of a,4,c . Hence

(wi= 1k?)X =00 (Ao+E)-Lko(aenst,), 2
and

3R -17 = - 21
(- 3K)R-17 = - A, - Tkv(34,-D), -

(o= LkIRAT = —0 Ao kv Ay

14

From (35) one finds

(w’*_%kzﬁ)ﬁ = WA, =L kv (4A4-D)
Substituting, into eqs. (34) and (36), AO,EO and A“ D, t1
expressed by the formulae (17,20) and (25,29,30) one obtalns

——w[@l 21y {1+26 t3 52)(4+64>(+ fl]z 4*25 ty ) ] 1(37)

-1

T T TG TS T (LY (TR TA N

Now the formulae (17-20) and (25-30) together with (5,6) and

(36)

(37,38) serve as the ocoinocide form for the solution.

3, The discussion of solutions and conclusions

Let us obtain first the expressiocn for the spin susceptibi-
1ity. Substituting our solutions into eq. (10) we find

~ A n N
(X/qé :(Xo,ewc[gaé +(5a(’kak6)wR +l<ot’<6wX] ) 39

2 2 1 .
where the value rX statio 18 equal to Z/MBV/?)“*géo "367)
this value was obtalned in our pa.per[]']'j for M ( of. (1,2) put
equal zero, Here we have the followlng property:

aLflwo Xoap = ,Xoéauﬁ;; Sat ) (40)
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1f k # O « Thls property has a simple physical meaning, since
the statio 1limit corresponds to the statio but slightly
inhomogeneous field, as a result of,e.ge,the finlteness of

a sample. It should be noted that the tensor (39), 1s the
homogeneous funotion of variables v, kv of zeroth degree

and, hence, the formula (39) 1s velid in an arbitrary system

of units, We have (A m K = éVM X= —00'1 for W#F O
and hence Ui 7(06 = 0 for w # o e This result 1s

quite undersi—:’agdable in the aooustic 1limit; in the homogeneous
time-perlodic flield this quantity has to be of order of (w/24)2
for (W <<24 and this quantity lies beyond the accuraoy of
the acoustic 1limit. This property has an analog in the theory
of normal Fermi 1liquids. It 1s well-known faot that (A.'m S(w,k)=0
for w;é Q where S denotes an arbitrary respon::gmction
for conserved quantities. Moreover, the usual acocuraoy for
these theories neglects (coéu)z where /l,( is the chemioal
potential of the system.

According to (39) the pole of R corresponds to transversal
spin waves whereas the pole of X -to longitudinal spin waves.
It 1s olear that transversal waves are twice degenerated whereas
the longitudinal waves are undergenerated ( cf, [17]). All
factors containing amplitudes bL in R ana X can be represen=
ted by

%(hél) + “/;Lm(hé(/) :

1
where D<M <N and z(;,f denotes whether 0,2 or
1,3, Beoause the stablility conditions for spin Landau amplitudes

16

defined as here are 7 +6( >0 , [-23}, all these factors are
positive. Hence we obtain that stability conditions guarantee
that in (39) always two poles appear. Moreover, the stabllity
conditions guarantee also that the transversal mode 1s at higher
energles than the longltudinal mode with the same k y le€ay
that the transversal spin waves are faster than longitudinal
ones, Note that the Landau amplitudes éo and éz appear in
(39) only in the same comblnation as in the statlo spin suscep—
tibility.

Our oslculations demonstrate a property characteristic for
theorles based on sufficiently general phenomenologlcal
approach. It could be oalled "a prinoiple of maximal freedom of
physlcal systems®, Let us demonstrate the actlon of this

3He. The static

principle using the spin susoeptibility of
susceptibility for the normal system determines Ao s Whereas
in the B-phase also gz D'ﬂ. Moreover, the deteotion of trans—
versal and longitudinal spin waves gives us 44 and ‘-3 + From
this point of view here 1s not any cross check for the theory;

[19-21] could be treated as

the independent measurements of é4
the exception confirming a general rule.

In all our calculations the temperature effects and those
of spin-unconserving weak dipole-dipole interaction were
disregarded. The first of them could be taken into
acoount by means cf methods developed by Leggett [25J; the
second ones lead to rather serious difficulties in a similar

formulation of the theory ( of. [26]).

The author 1s greatly indebted to Prof.A.J.Leggett for
sending the review article 24] prior to publloation.
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APPENDIX

We are going to reduce equations for spin vertioes and the
spin susceptibility so that only integrations over Fermi surface
are important, analogously to transfoxmations made in [141. Note
that only the transformation of the equation for the normal
vertex will be a subject of our interest. Applying the procedure
of larkin [14] to the equation for normal vertex we find

L= T 5 <P STIF)+ Op) T A)ah) -
M[f’o(ﬁ'),(ﬁﬁ')]_—ZMla(ﬁ(ﬁﬁ)})?, , -

A
where 7; denotes the spin vertex for the normal system

taken in the k-limit, i.e., for Lom bomn and 7'
» deeey for Lom Lo 9(pp)
is the spln-exchange part of dimensionless scattering amplitude

of quasiparticles, ge = é /(4+6 ) =L +1,
The equations for 7\0 and T@ will be the same as 1nr11]

According to l--27]( cf.also 28] ) 1f the spin vertex is chosen
~
(&) k
such that J,®=0o 4 then T ‘= 0}(4-%): 077«/(“60) .
Let us pass now to the transformation of the expression for
the spin susceptibility. According to D']‘] one can write the spin
sugsceptibllity as

X, =) iif__Tfr{ ol T6 -FOR'F -

18

~ ~

where .T;= Z 0, so that 7;(‘) at the Ferml sphere is equal to
.5 Z denotes the discontinuity of the occupation number

at the Fermi sphere for a nomal system , D=A/A = G‘F ,
and normal (6) and ancmalous (F) Green's functions before

the vertex are taken at f;+ k/2, € +wo/2 whegreas

— rd q _
after the vertex at p - K/2, € —w/2 , ol F= d de ,
j"{P)E fT(«F) . Performing in (42) the trans—

formaticn originally proposed by Larkin[14] one finds using the

A
equation (41) and expressing by T@ and /)4

%46'%14
Yot =X - B2 Tr (T, 1007 07) -
M[ T, ,@p)]. - 2M2, 0P} %

(43)

- (44)

X :‘ - —(&) J(zar)"c l G(’) ]

with (Gc)k-: Lo lum @ww GG , Dﬂ'

k=0 w-=vo a0 R
(27] Tk
Taking into aocount the results of paper for ¢
( of.also LZB]) we find that 'Xt‘ denotes the statlo susceptibi-
2
11ty of a normal system, i.e., q‘/“BV/(4 + o )

Moreover, jk in the second term of the formula (43), 1.2+

o
on the Fermi surfaoe, is equal to Go_/(4+éo) » It 1s clear

19



that the formula (43) is equivalent to (10) and can be also
written in form (11,12). Note that acoording to eq. (42) }/a ¢
and 1V  correspond in Appendix to quantities per unit

volume,
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