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1. INTRODUCTION

The class of translation invariant two-
body potentials widely used in statistical
mechanics includes highly singular poten-
tials of the Lennard-Jones type

A B v
®(x)=4E(——— -——— ), E>0,A>0, x € R , (1.1)
Px 12 |x |6

or potentials containing a hard core ®(x) ,
i.e.,®(x) =0, (x)+®"(x), where ¥(x)cL”(R") or,
e.g., ?1x)=P(x-a)(see (1.1)) and

0 for |x|>a
P, (x) = (1.2)
o for |x|_<_a .

here v= dim RY. These potentials generate the

N -particle interactions UN(xp s eees xy )e
N
1
UN(xl”“'xN)=§2§j ¢(xi-—xj), (1.3)

which are far from being small in the usual
sense with respect to the kinetic energy
operator (see, e.g., Kato/!/ op Simon/23/ ),
Hence, for the definition of a self-adjoint
Hamiltonian corresponding to such an N-par-
ticle system the well—knogp perturbation
theory developed by Kato’ and Simon/%
/3 ) for the cases of

(see
also review in

2wel’(R”) + L™ RY) and @(x) <R (R )L™ (R)



is not directly applicable. In addition, to
ensure the existence of thermodynamics, the
N -particle Hamiltonian must bg at least
bounded from below (see Ruelle 45/)x

Thus, highly singular two-body potentials
without hard core which are used in statis-
tical mechanics should be strongly repul-
sive near the origin ("point" hard core
particles). Therefore these potentials are
bounded from below and, for example in three-
dlmen31onal space R3 behave as (see, e.g.
simon/2537);:

¢ (x) | >_-——é—-—,a>2,)&>0. (1.4)
|x|-»0 !x‘a
Highly singular potentials, attractive near
the origin A< 0, are not used in statistical
mechanics because the corresponding N-par-
ticle Hamiltonians are known to be unbounded
from below.

From the physical point of view it is
clear that a positive singularity in the two-
body interaction potential is an idealiza-
tion. This means that the physical properties
of an N-particle system enclosed in a boun-
ded region A CRY will change in some sense
negligibly if we cut off the singularity of
the two-body potentials ®(x) from above:

d(x) xe€fx:P(x)<L}
(D(x)—»(DL(x)= (1.5)

L x€{x: ®(x)>L}

*Moreover for thermodynamic behaviour it
must be stable (see Ruelle’5/ ).
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and then choose the cut-off parameter L. large
enough, e.g. L =109 ev! From the mathema-
tical point of view this means that the
partition function Z [H(A }] corresponding

to a HamiltonianH(A F with highly singular
interaﬁtion (1.3) can be approximated by
ZJIH (A)] which corresponds to a Hamiltonian
with cut-off (1.5). This is a background
for highly singular two-body potentials to
be a correct model for a real partlcle in-
teraction. Note thatdih)GL(R)+L (R”) thus
the self-adjoint Hamlltonlan HL(A ) and the
partition function Zéﬂi(A )] both exist and
are well defined.

In the present papers (see also part I11)
we prove a convergence theorem for the se-
quence of Z [HL(A }] when the cut-off is re-
moved to infinity, L » «.Our attention will
be limited to the case of "point" hard core
particles, i.e., to potentials which are
strongly repulsive near the origin and re-
gular out of it but not inevitably spheri-
cally symmetric. In the next section we
start with definition of a self-adjoint Ha-
miltonian H(AN ) for an N-particle system
enclosed in a bounded region A C RY with
a smooth boundary dA =A\A.For the highly sin-
gular two-body potentials bounded from be-
low ("point" hard core case) we prove the
coincidence of two canonical extensions for
the sum of kinetic-energy and potential-
energy operators: namely the Friedrichs ex-
tension and the form sum extension. This fact
is of practical use in the sequel. It allows
us to prove the convergence of the cut-off
Hamiltonians H (AN)to H (AY) in the generali-
zed strong sense (see part II). This result
is a background for the proof of the main



result of these papers, i.e., a convergence
theorem for partition functions ZglHL (A7)]
or c?rrespondi gly free energies K (8 A, N)=
== tn Zg[H; (A")]. This theorem means that

a highly singular two-body potentials d(x)
can be substituted by the regular one

O (x) €12(RY) + 1™ (RY) wWith an error which is
negligible in the thermodynamical sense
when the cut-off parameter L is removed to
infinity. In conclusion we discuss a ques-
tion abousttability of the cut-off interac-
tions U]!j'(xl,...,xN) :

L 1 N
UN(xl,o--,XN)=T2 (DL(X- -x-)o (1-6)
i#j ‘

These results are illustrated in detail for
the case of the Lennard-Jones pPotential
(12-6) inR” .For this potential we prove

that the regular cut-off interactions Uk
(1.6) are stable when the parameter L is lar-
ger than some fixed value Ly.

The repulsive highly singular Potentials
(see (1.4)) are widely discussed within the
framework of quantum mechanics for A = R®
by Kato Av,Schmincke'h/and Simon/&ﬂ These
authors were especially interested in the
no?—perturbative problem of essential self-
adjointness of one-particle Schrodinger ope-
rator. Recently Robinson/9/, Robinson et a1/10/
and Ginibre /11,12/ phave extended these results
in RVY+o N -particle systems interacting via
repulsive translation invariant two-body
po?e?tials of an arbitrary singularity at the
origin. The scattering theory for such Sys-

tems was also developed/gJo/*.But in these
papers we are interested in the significance
of highly singular two-body potentials (re-
pulsive near the origin) from the point of
view of statistical mechanics. .

In the following we restrict ourselves
to the case of "point" hard core particles,
the case of hard core particles with nonzero
radius a (1.2) will be considered in a sub-
sequent paper.

2. DEFINITION OF HAMILTONIAN

In this section we discuss the definition

of a self-adjoint Hamiltonian HWAN)for an

N -particle system enclosed in a bounded
region of an arbitrary shape and with a smooth
boundary which in the following will be
denoted by AC RY.The system is supposed to
consist of "point" hard core particles with
translation invariant highly singular two-
body potential of interaction ®(x), repulsive
near the origin and regular out of this re-
gion. Thus, ®() is semibounded from below.
The Hilbert space H(AM) appropriate for

a descr%Ption of the states of this system

is L2 (AM). 1n our discussion the statis-
tics of particles is not important, therefore
we will ignore the symmetry restrictions for
¢(ﬁ,.”,uN)CH(AN) and work on K (AN)=L2(AN),

*I am grateful to Dr. E.Christov for
bringing refs./%-!V to my attention. Our
method of proving ,of Theorem 2.1 is a modified
version of that of Robinson /9/ and Robin-
son et al. /1%/inspired by the Kato book /1/.

|7



For the definition of self-adjoint exten-
sions of the operators considered in this
paper we need a certain amount of quadratic
form technique (see, e.g., Kato 177y,

Proposition 2.1. (Kato/l/ VI, §2).Let T be
a symmetric operator bounded from below and
let us associate with T a quadratic form

tlyl=(y, Ty) VyeD(T), (2.1)
—~

thus, t -domain is equal to the domain of
the operator T:Q(t) = D(T). Such a form is
closable and let us denote its closure by
t{¢Y]l. Then this densely defined, closed, sym-
metric, and semibounded form determines
a unique operator Ty which is a self-adjoint
extension of T such that

tyl=(y , T 9 for V¢c D(T) (2.2)
and D(T; ) is a form-core for t[yl, i.e.,
(ttD(E)) = t.

According to Proposition 2.1 the self-
adjoint operator of kinetic energy HO(AN)
for the system under consideration can be de-
fined as a self-adjoint extension of a po-
sitive symmetric operator Ty with the dense
domain DHN):C?(AN)(consisting of infinitely
differentiable functions ¥(x,,..., xy) with com-
pact supports mmp¢(ﬁjn”xN)ch

m

Tn= 3 (-—2i), D(T)=Co (")

N=i.—.1 bl N’=% . (2.3)
This is the well-known Friedrichs extension:
(TN) F = HO(AN) which corresponds to the
"zero boundary condition" extension of Ty
This extension is very natural from physical

point of view, if one considers N-particle
systems enclosed in a bounded region (con-
tainer) A CRV.

Next, we look at the operator of the N-par-
ticle interaction. It can be formally de-
fined as real function multjplicator Uplx,...xy
(1.3) with domain D(Uy) = Co(AN\Sy),i.e.,

1 N N '
.UN(XI,---,XN)=-2-.E¢:¢(xi —Xj), D(UN)=C0(A \SN).(2.‘+)
1¥)
N
Here Sy C A'denotes a singular set for "point"
hard core particles:

N
SN=l(xl,...,xN)CA X =g for some i #j} (2.5)

The measure of is obviously equal to zero
(mesSy=0)Hence the domain D(UN)='C0(AN\ Sy) is
dense in the space H(A").Therefore the ope-
rator (2.4) is symmetric and due to the se-
miboundedness of two-body potential ¢ (x)

(see section 1) is also semibounded from
below:UN(xp"”xN)z-m.Moreover, it is clear
that the operator Upj(2.4) is essentially
self-adjoint, hence the self-adjoint exten-
sion of Uy given by Proposition 2.1 coincides
with its closure {y:

~ N
(Up)p= Uy= UA) . (2.6)

Now for constructing a total self-adjoint
Hamiltonian H(A" ), we discuss the addition
of a highly singular particle interaction Uy
(or U(AN) ) to the kinetic-energy operator
}%(ANLThis may be done in general at least
in two canonical and distinct ways (Kato/“/,
VI, 52). Note at first that D(H)nD(Uy)>CA\SY
and mesSy =0 then D=D(Ho)"D(Uyx) 1is dense in
the space H(AN).So, the algebraic sum Hj;+ Uy



(or H, + U ) is densely defined, symmetric,
and semibounded from below. The extension

of these sums according to Proposition 2.1
gives us the Friedrichs extensions corres-
ponding to zero boundary condition on dA:
(Hyp+ Ugy)ps (Hy + Up .These extensions are gene-
rated by the densely defined, symmetric,
semibounded, and closed quadratic forms

(hy + u) [yd =0y, Hy ¥)+(% Uy ¥I17,
(2.7)

(hy +ug [91=l¥, B ¥+, U T,

Another way is the quadratic form extension
H + U Hy + U. (2.8)

These extensions are generated by the sums
of closed quadratic forms. These sums are
well-defined and satisfy all requirements of
Proposition 2.1:

(hy + u)lgl= (g Hy ¥)7 +(y,Uyyp )7

- - - - (2.9)
(B0+ uU)[¢l=(¢ , H, v) +(yp,U0y¢ ).
In general, addition and closure are not in-
terchangeable, hence these extensions are
distinct*® .0One can easily check that

(hy + u) C (Bo +u),
- (2.10)

%0 + u& E(h0+uUL

*The formsalyl=(y,Uyy )~ and gyl ¥1=(4,Uyp)"
clearly coincide, so the self-adjoint opera-
tor Hy %+ Uy coincides with Hy + U (2.8).

10

It will be shown, however, that for systems
of N "point" hard core particles enclosed
in a bounded region A CRY these two ways
coincide. This can be done in the manner of
Kato/V (see V , §5.2, VI, §4.3), similar
arguments were used by Simon/8/ and recently
by Robinson’/?/,

Theorem 2.1. Let the N -particle interaction
Un(x;,...,xy) associated with a two-body po-
tential, highly singular at the origin and
bounded from below (see (2. u),, is such that
UNCL (K) for each compact K c AN \ SN, where Sy
is the singularity set (2.5). Then for the
N-particle system enclosed in a bounded
region A CRY the Friedrichs extensions and
the form sum extensions of the operators
Hy + Uy and Hy+U are equal one to another if
v>3,i.e.,

“(hg + u)~=io ‘u =(hg + uy)

or

(H0+UN)F=H0+’UN=(H0+U)F' (2.11)
Pr oo f. Let us primarily prove the equa-
lity(h, +uf=h,+u corresponding to (Hy+ Uy)g=
=H, +U As “1+u) CE + u (see (2. 10)), to
establlsh the equallty, it suffices to prove
that D=D(Hy)nD(Uy ) _is a core not only for
(hy + u) but also for hg + w, i.e., [(h0+u)}D]=
=h +u .Therefore for every ¢ CQ(h +u ) one
should construct a sequencel¢anlD such that
tim{|g -y |l =0 and fim (h +u)ly-y 1=0 (2.12)
n-»o0 n - o0
If ¢GQ(E + u) has a compact support KCH\SN,
it is easy to construct a sequencel¢ €D
such that all ¢, 2 have suppy CK~ with

1



KCK'CAN\SN and -
fin [y~ vyl =0, Fimigly -y, 1-0.

Then from the estimate

T1Y - 9o < Uy Cxp i)l = ol =41

it follows thatghni[¢ ~Y,1=0.Therefore in

this case ycQ(hy+u ) is approximated in the
desired manner.

Next consider the general case when
$<Qhy +u ). Let us introduce an auxiliary
sequence lwn(xH with the following proper-
ties:

a) wn(x)CC: A ngn(x)gl,AcAocAlcRV;

b) w,(x) =1 for GCAo:|x|'>%l;
wix) =0 leA°:|x|<-é-l—l;
n
c)ly wn(x)|.<ﬁ forlxcAy:|x|<L1;
x n
Jyvw, ()| <C {xe RV':xGAI\Aol.

Bounded regions A, and A, both are supposed
to be spherically symmetric and the origin
OcA.The region A, has radius r(Ag) =d(A)+38,
and Ay;: r(A))=d(A) +28. Here d(A) denotes the
diameter of the containerAcCRY, i.e.,d(A)=
=Sup€;\.|x—y], and 6>0 is a fixed number. Now if

X, b2 - -

Y€ Q(hg+u) theny =W ¢= 1 wx—x)¥is also

o . 1< i<j<N !

inQ(hy +u)moreover it has the compact support
'mmp%;CAN\SN. Thus, every ¢/ can be appro-
ximated in the desired manner by a sequence

of the functionsl¢£")lc D as it was stated

above. But

(hg + WY~y 1 =(hgra fu -vreu™= gy ],

12

(2.13)

therefore we have only to prove that

fim H¢—¢;H=mﬁmﬁ[¢-¢;]=mﬁmﬁ0[¢-¢;J==0.(2.14)
n-»o00 n-»o00 n-» o0

The first and the second limits easily fol-
low from the dominated convergence theor
rem/13/To prove the third limit we note first
that ¢y € Q (T:0+;) implies ¢y cQ(hy). So, 9, ¢ exists
in the sense of distributions (see'Kato/y

V, §5 and VI, §4), then the vector dy¥ GL(ANL
i.e.,

N ~
Roldl=si 3 (3, 4,0, ), ¥ Q (k) (2.15)

m y=)

and Supp ¢y C AN. Therefore, substituting
(¢-¢;)GQ(E)) into (2.15) we obtain:

~ N
hy Ly =y T L 2 01, W) v 1® +

i=1

(2.186)
NIISE RERRATEE Y

Now fim|[(I ~W))ad, y||«0 follows from the dominated
1

h 00 :

convergence theorem. The first term in the
right-hand side of (2.16) can be estimated
from above:

LY 6, RgI s e [ dig 10y oty 1P
- a,. |}" e [ d ) eed x W (x;=x; .
m i i ¥ m Iﬁi ! Nl$i<j§Nx‘ }

(2.17)

Note, that according to the conditions
(2.13)(b) and (c)hhiwnhﬁ-ﬁﬂ does not equal
zero only if _%1_<|xi __xj|<_l}_ or (xi_xj)CAl\ Ay

But for the latter caselxi—xj|>d(A), so

13



Yplxy,.. ,xﬁl‘ x> A =0 because if ¥<Q(h,) then
Supp ¢ C AN Hence from (2.17) we have

zn<a AL S LN SRR e L
l<i<]<N|A Ix -x |<—l’ (2.18)

Moreover, from (2.13) (c) it follows that

3 fdxl, de|c? walx; - X; )l Il/II
Kj<i<N {A Ix -% |<——l
2 2.1
2 , 161 (2.19)
SA 2 fdx1.-odXN 2 .
x; - x|

1

N . !
IKi<iKN {A :Ixi—le<Tl

For the evaluation of the right-hand side of
(2.19) we need the following lemmas.

Lemma 2.1. Let A CRY be a bounded Jegion
and operator T be defined on the set Co (A)
~as T=-A.Then for v23 the following inequality
is valid in the sense of quadratic forms:

Hy(A)=(T)p2— ¥)" . (2.20)

.i' e. (¢, Ty) >(-/:,
| xl2

Pr oo f. The proof is a straightforward
generalization of arguments given by Courant
and Hilbert in{‘ 4/ For lﬁGCo(A)(l/l,Tl/l) Vé,yy)
then for ¢=|x|

¢2 1 9
fa"xz (3,9 2> —fd - f &x ¢2.
TN o
If we take into account that Supp ¢ TA and

ye CO(A) then for;:>3

| x |2
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The closure gives us desirable inequality
(2.20).

Remarr k 2.1. In the same manner it is
easy to prove that (2.20) is valid in the
case of many variables: if A CRY is.a boun-
ded region and if operators T,(i=1,2,..,N)

are defined on the set of functlons _
Y(xpee,xy)€CT(AN) by Ti=-4;, then for vy3

H(Ol)(A) (T)F>_4|__Tf l’l e. ,(‘/” ‘Ab) >(¢,Vl/l) -
(2.21)
forvi=12..N

Lemma 2.2, Let ACR' be a region as in

Lemma 2.1 and oper'ators’l‘n §re defined on

the set C(AN) by Tn=0, =P, » wlhere pk=_iLaxk

Let operator Vn T then
4ix, -x|

for v>3 and vk #nc(1,2,..,N):

1
Py =9

Xp

(T )p> 4V, or T, ¥) 24(y, V ¥). (2.22)

Pr oo f. Let us introduce, in the configu-
rational space AN cRYN new variables

(xpreer Ggyoeees gy o xy)e (xppe x, ("XN)”‘N) So=x —Xp

Mg = X+ X, - Then forvz,bGC we have
; - = 4(4d , 0 s .
(¥, (py-py) %) ( E? quﬁ) (2.23)
here ¢(xl, ,xk‘x ,Xk+x 9 & ‘/I(xli 1xN)
SO, ¢(X, (k),' ,7’ )’ ,X )G CN(A ) USlng
Remark 2 l %
d , d ) > — ,————— . .
(9 ®2 %, %) > (¢ L ¢ ) (2.24)
Then substituting (2.24) into (2.23) and
turning to the old variables(xlﬂu,xN) we

obtain (2.22).
15



L emma 2.3. Let AC RY be a bounded

region.fnd let the operator Ty be defined
1 2 . o0 N 1

by Ty =2 = th Ty)= her =

y N kfl znpk w1l D( N) CO (A ),W e ePk i—axka

then the following inequality is valid in the

sense of quadratic forms for v23:

1

N
HA ) =(Ty)g> 2 . 2.25
NF Ki<igN 2m(N-1D)|x; —x; * ( )

e

~ ~ N
Pr oo f. For ycCy (A ) we rewrite the form
tlyl=(y , Ty )as

2 2
[yl=(y, = e P Y, 3 e ~Pu)
tlyl= —_— g RN )
v v 2m{(N -1) v+, '2m'(N—1)¢)' (2.26)
1<k<ngN 1<k <a< N

The arguments given in Lemma 2.2 show that
the first quadratic form in the right-hand
side of (2.26) is positive. The second form
can be estimated from below as was shown in
Lemma 2.2:

(p —p)2
(¢, 3 —Lotosy) (s (2.
Y 2m(N_1)'/’)Z SN =T) lﬁzlxk-xnlz ¥). (2.27)
ISk<ngN 1<k<ngN

The substitution (2.27) into (2.26) and the
closure give us the inequality (2.25).

Corollary 2.1l. From Lemma 2.3 it follows

1
that Q(1)cQ(X if v> 3. But
Q ) Q( 2m(N—1)|Xi _lelz) 1 v 2 u
~ ~ | IKES . ~ 1
QD - QI8 ifye Ry, then veD(—)
for Vi#£je(1,2...,N) and v2>3. S

Thus, if we take into account that in
inequality (2.19) ¢ ¢Q(h)nQ(u), then Co-
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rollary 2.1 gives
2
|yl

1 N
—cL (A1) (2.28)
i< %5 "‘j|

Note that for noelim mes{AN‘:lxi—x-'|<—1- for
i4j€(1,2,...,N)]= O,hence (2.28) shows that the
right-hand side of (2.19) tends to zero for
Vl/lCQ(ho)ﬁQ(u) as n»w,i.e.,eimio[l/l—l,[’,;]=0

n-—->o

so (2.14) is proved. Therefore (see (2.11))
(h0+-u) = h0+ u ,
or

(H0+ UN)FE H0-+ UN' (2.29)
Now from Uy cuAN)(2.6), we obtain
(hy + ug) 2 (hg + u)o (2.30)

On the other hand, it is well-known (see
(2.10) and Proposition 2.1) that

(h0+ UU) C}:0+;U=E0+l:- (2-31)

So the comparison of (2.28) with (2.31) gi-
ves (2.11):

(ho+ u) = hg+ u = (hg+ uy) .

This completes the proof of Theorem 2.1.

3. CONCLUSION REMARKS

The coincidences of two canonical ways
for definition of self-adjoint extension for
N -particle Hamiltonian in container;\c#’wam
is of practical use in a subsequent paper
(part II). It allows up to prove the conver-
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gence theorems for the cut-off Hamlltonlans
HL(AY) and partition functlonsZﬁiHL(A )1
when the cut-off parameter is removed to in-

finity.
L
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