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1 Introduction 

The effect of sharp reduction of crystal-field (CF) linewidth for 4/-electrons 
at the superconducting transition temperature Tc in metallic alloys with rare­
earth (RE) impurities (e.g. Tb.,,La1_.,,A'2) is a well established phenomena 
[l). . • , . 

In order to get more information. about the spin dynamics in the CuO:z 
planes, temperature dependence of linewidth rc1(T) of CF transitions inRE. 
doped highTc superconductors has beeri also investigated [2, 3], But it wa,;;· 

- observed that the line~i<lth sharply d~creases at some temperature T. ~~ll 
above Tc. , • • 

The existence of antiferromagnetic (AF) correlations in high-Tc supercon­
ducting cuprates is widely accepted [4-8].Suggesting that spin fluctuations 
provide a primary mechanism for the relaxation of the excited /-electrons, 
in the present paper we consider the model Hamiltonian of the RE ions and 
the spins at the Cu2 sites with the indirect-exchange coupling [9]. Us­
ing the pseudospin formalism and the method of the two-time Green func­
tions (GF), we have derived the expression for fcF(T) (simil~r to that in 
Ref.I) of the first excited level ri1l RE ion Tm3+ in the superconducting 
Tmo.1Yo_98a2Cu3O6.9 (Tm-TBCO6.9)-compound [3}. Using the results of 
Rossat-Mignod et al. [5) of the temperature dependence of the imaginary 
part of the magnetic susceptibility of YBC_O6.92 near the AF wave vector 
QAF=(l/2 , 1/2 , 1.6) for the energy nw = 10 meV, we have made a conclu-

. sion that dynamic spin fluctuations in CtiO2 dominate in the line broadening.· 
For the nonsuperconducting compound Tm-YBCO6.1, using spin-wave 

approximation it has been shown that the main contribution to r cF(T) arises 
from a one-magnon process·, which means that the spin gap is small compared 
to the 4/ level splitting [10). , 

The paper is organized as follows. In the next Section, we present the 
model of s- f coupling. In Sec. III we introduce pseudos pin formalism, and 
derive the expression for linewidth fcF(T). In Sec. IV we discuss. the nu­
m~rical results and related wor_ks. In Sec. V we present our conclusions. 

2 Model of. s-f Interactions 

Adopting the model of the one-component AF Fermi-liquid [4), [11) , we 
can write the model of RE ions and spins S = 1/2 at the Cu2 sites in the 
following form: 

I f.Jl.i~h~tc~w~il:~ i 
,! ~,,e1.,sui r:tc,~J::>:'lJW~ \ 

~ Ji'>SftHO-i:ffl,\ --~ 

(1) 



-where the Hamiltonian of CF for Tm3+ ions into _the bilayers, Cu Or Tm3+ -
CuO2 (Fig. 1) can be presented in the following way: 

H " J'(i) cf = ~ Wn \nn (2) 
n,i 

where I(~~ = (lm)(nl); are the transitions operators for then, m levels of.the 
CF, cif Tm3+ ions at the site i, and Wn is the appropriate energy of the level 
n. H,_, is the spin Hamiltonian describing doped holes in the CuO2 plane 
and spin-spin interactions of the spins' S; at the co.pper sites. , We are not 
going to discuss the problem of caiculation the dynamical spin susceptibility 
x( q, w) for any explicit form of H,_, but adopt some models for x( q'. w) in 
our numerical calculations. 

The Hamiltonian of the s-f interactions describing coupling"between spins 
at Cu2 sites and 4f-electrons, we present in the following manner: 

H.-~ = - L 1;_,J;°' Sf, (3) 
i,j 

where J; is the operator of the total angular momentum of the Tm3+ ion at 
site i;'SJ is the.operatorof the spin at the copper sites j 1iearest to the site 
i and· Jr;_ 1, in the ge1~eral case, the anisotropic indir~ct-exchange coupling 
constant, a= (x,y,z), 

Due to a local character of 4f-electrons, we ignore the interaction between 
them and holes in the CuO2 planes. 

3 Calculat'ion of the linewidth in 'th·e pseu­
dospin representation 

Let us recall that for po!Iycrystalline samples, in the. dipole approximation'. 
(for small scattering· vectors of neutrons K), the partial differential cross-· 
section of transversal magnetic inelastic'neutron scattering (INS) per ion of 
RE target can be written as [15]: 

( 
d2 a ) 1 · {/[g ] 2 · f3w• l · 

df'td£' .L = 6(ro,)2k 2F(R) 1: e/Jw ;Im((J;-JJt))""+i<> (4) 

. ' 2 

where r 0 = ~ is the electromagnetic radius of electron, 1 = -L!H_ is th~ 
1nec 

. . . eti 
magnetic moment of ueutron 111 um ts of the nuclear magneton PN = --, 

2mvc 
if,= k - k', where k and k' are incident and scattered neutron wave vectors, 
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.~ 

i, 

I" 

respectively, F( R)' is the free-ion form. factor, g is the Lande splitting factor 
and where Im( (J;-JJ/) )..,~;, is the Fourier tr'ausform of the two-time GF (16). 

The ground-state multiplet 3 H6 of Tm3+ in CF of orthorhombic symmetry 
D2h splits into'l3 singlets [l:J]: 4l\,3f2 ,3f3 and 3f4. The wave functions of 
the irreducible representations f; can be given by [14]: 

J 

In) = lf!il) :;:; L alf1>1M), 
M=-J• 

(5) 

where index j represents dimension of the f;, along with 

PIM)= MIM). (6) 

Since the first excited level ri1
> of CF is non-degenerate and its energy 

is much lower than the energy of the second one f~11, it is possible to ap­
proximate the local CF. scheme of Tm3+ ions in Tm-YBCO6.9 by two lev-
els (1), [3], [13]. :. ' 

Let us define the wave functions-of the ground state of Herby:··,·· ·i'.': '·'· 

1-) = 1ri1>) = ai~>l6) + ai;>l2), (7) 

and the first excited 011e as 

I+)= 1r1n) = a~~>l5) + a~~>l3) + ai;>11), (8) 

respectively. Then, it is possible to introduce an operator of pseudospin a 0 

whose components satisfy the following relations: 

a'I±) = ±~I±) and a±l=i=) = 1±); · (9) 

In this pseudospin representations He/ can be written as: 

Hcf = Wo Laf (10) 

where w0 = w+ - w_ = 11.8 meV is the energy of the first excited CF level. 
· By expanding the components of the total angular momentum J into the 

basical operators of the components of pseudospin, H,._, can be written as 

H,_1 = - ""'·.{!''[A· So+ B · a'!So]+ (11) ~1,J tJ . J · t J 
1 . 

+ 2I;i[C · (a; s; + a; St)+ D · (a; s; + a; Sf)}, 

where the coefficient are 

A= ~{6(ai~>)2 + 2(aii>)2 + 5(ai~>)2 + 3(ai~))2 + (a~;>)2
} ~. 1.05 

3' 



' 
B - 5(a(5

))2 :+.3(a13)) 2 +·(a(1>) 2 -' 6(a(6 ))2 - ?(a(2 ))2 ~ -0 3.8 
- 41 41 41 31 . - 31 c" .• 

C (6) (5) r;;:;2 (2) (1) r;;:; ~ , = a31 a41 v l,: + a31 a41 v40 ~ 2.44 

· D = 6a~~>ai~> ;:::: 1.69 

Keeping only the resonance terms, Hs-J becomes 

- I'°'- . 
H.-J = - 2 ~ l;j(a;Sf + o-;1"S;), 

i,j 

where i;; = l;;D and ltf ·;::::If/= _I;;. 

(12) 

The differential cross section ( 4) in terms of the pseudospin operators can 
be written as: 

( 
d2ci-i ) ef3wo 1 

dfldw .l oc 1 - ef3wo ,r Im( (u; lut} )wo+fr· (13) 

Using the technique of differentiating with respect to two times, t and t', 
in the equation-of-motion method for the two-time GF ((u;(t),u;(t'))), we 
find:. 

(w - wo}2((u;lut})w = -2(uz)(w - wo) + L i;;((utSTlut St})wiii'· (14) 
j,j' 

Since the s-f coupling is very weak, we consider only the second order 
terms which are allowing for by the decoupling: 

' . 

1 
(u:(t)ST(t)ut St)~ (ut(t)ut)(s;-(t)SJ;) ~ 4(s;-(t)SJ;). (15) 

In this approximation we neglect the longitudinal relaxation : 

( z ( t) z) ~ ( z z) _ ! U; U; - U; O"; -
4

. (16) 

It results in the following equation for the GF: 

--' + _ 2(uz) 
({u; jui ))w - - w -w

0 
- E;(w)/(-2(uz))' (17) 

where in the self~energy operator 

I'°'- - + -E;(w) = 4 6 l;;((S; ISi'))wlii'· 
j,j' 

(18) 

The summation runs over the j,j' copper sites in the neighbouring Cu02 
planes and 

l ( Wo ) (uz) ~ -2th 2kT . (19) 
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The line~vidth r,1 (T) is ddcrmirwd by tlw imagirrnry part of the . 
self-energy opei~tor. · · · 

. l'cJ("':'O) ~ coth(2~:;.),1r;,{~;( ... ·o + i~)}. (20) 
. ' ' 

Translatibnal invariance allo\\'s' tlw spatial Fourier transformati·~~: 

(( -;-:1-;+)) = _!__ '°' eiq(R1 ~R,,l((C,'-I','+))., 
'-- J '- 1 , w ;\' ~. . ..._ ._ q,w, ·(21) 

q ' 

and (19) becomes: 

fc1(wo) ex mt.I, c:;,) L IF(q)l21m{\-+(q,wo + ie)}. (22) 
() 

where the imaginary part oft Ill' dy11a111ical spi11 susceptibility in the C1102 

planes is given by : 

+ u lrn\- (q,wo) = -lm((s-1s+))q,w0 = \_+(q,"'-·o), (2:3) 

and 

, aq,. bq,1 • cr1= 
F(q) = tjrns(-)cos(-· )ms(-) 

2 2 6 

is the form factor reflecting the local .symmefry _of the Tm3+ i_on 
TmBa2 Cu3 0; unit cell with th<' lattice constants a, /1 and c ( Fig. 1 ).

0 

4 Numerical Results and Discussion 

(2:1) 

'in th~ 

At the present time, there is 110 well justified model for spin susceptibility. 
in the CuO2 planes. Therefore we have used some experimer\ta'I data and _a 
theoretical model for v''.( q, w) in our 111m1erical calculations to comparc·them · 
with the results of the cxperinw11t [;J] on I',.1(1') inan effort to elucidate spin 
dynamics in the Cu02 planes. 

4.1 Millis-Monien-Pines (MMP) model 

Letus consich~r first the pl;en~rnenological modd of AF Fermi .liquid propoSP<I 
by; ,Millis, Monien and Pines [,!], where the dynamical spin susceptibility 
x+-,(q,w) is given by the formula: 

\q • ( 
w) = )2 - i(__.::_) \..i,..q, I+l2(Q-q '-'-'SF 

(25) 
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where XQ is the ~tatic spin susceptibility at the ,\ F wav~ vector 
Q ·;,, (r./a, r./a),:((T) is the temperature dependent AF correlatior; length, 
and nwsF is a typical energy scale for the AF spin dynamics. · · 

Though the ;\[\IP model was introduced t.o describe the nuclear magnetic 
resonance (NMR) expc1'.ime11ts in the r~gion of a very low frequeucy of order 
of µell, we suggest that it can be used also in the range of r,,,._, '.::'. 12 rneY. 

Using the same transformati~n of the variable~ in tlie corresj)()11ding in­
tegrals like in Appendix C of Ref. [4], we find: 

where 

( wo ) xo(T) (2i1 - i3), fc1(wo) ex cot.h 2kT f(T) 

1/2 I/
2 

1 _ cos(2r.x) 

J J w ' - .d:1.: dy 
2 

2 2 + (--)2 
11 = 

4 
{ .r2 + Y + T/ } WsF 

0 0 

1/2 (1/2)-u 1 - cos( 4r.u) 

- j j dv . 2 2 ( w )2 I 
_ 8 du {') 2 + ?v2 + 11 } + · 

3 - -H - WSF 
0 0 

(26) 

(27) 

1 (a) /7Jv.o . ,t,.f . 
where T/ = -') c , \Q = -2-2, /J ::::C: r. 2 and WsF = ·a112T/ 2

, where xo(T) 
_,. ½ 4r. T/ . 

is the strong temperature <lepeudent static spin susceptibility at q = 0, and 
/if(T)is a weakly temperature dependent spin-fluctuation energy of the elec­
tronic system. 

As the value of the (2i1 - i3 ) changes only by 5% and the value of the 
itf(T)by 7% int.he considered temperature range 75 < .T < l 70!{, in this ap- . 
proximation the main contribution to the temperature dependence of fc1(wo) 
comes from xo(T). The latter one can be exctracted from the temperature_· 
dependent spin part of the Knight shifts ° Ks(T), a = (63, 89, 17). Using 
the result of xo(T) from Ref. (4] and experimental result of Knight shift 
- t:i..K(T) from Ref. [7], in this approximation, we get theoretical curves 
(short and large dashed line, respectively, in the Fig.3), which are not con­
sistent with experimental results [3] for linewidth fcF(T). 

By considering :another 1;nodel for dynamical spin susceptibility the au­
thors of Ref. [10] have concluded that the temperature dependence of the 
linewidth fcF(T)'is determined by the temperature dependence of the uni­
form static susceptibility xo(T). But this assumption has not permitted them 
to obtain a good agreement between their theoretical curve and experimental 
data [3]. 
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4.2 Models for x( q, w) based on experimental studies 

According to the experlinental results obtained by Rossat-Mignod et al. [5], 
[17], magnetic.scattering in metallic phase of YBCO -system remains concen­
trated around the AF-ro'd, and there is no sign of any incommensurability. 
The spin excitation spectrum is isotropic in the metallic.state (xzz = xxx) 
and the dynamical structure factor can be written as: 

S(Q,w) = 
2 

Iii /(k~)Imx(Q,nw). 
: r. 1 - e- w 

(28) 

By assuming that tlie line shape of magnetic intensity is of the Gaussian­
type and using the value of the full width at half maximum (FWHM) i.e. 
"q-width" t:i..q = 0.27 in 2r.../2/a units [5] in YBa2Cu30 6.92 at T = 150K at 
the energy nw = lOmeV , we can e.stimate a contribution to the line-width 
from AF spin fluctuations by the ratio: 

f d2 ijjF(q)l2x"(Q,w) 
"f = ------- '.::'. 0.16 

J c12qjF(q)J2 J d2qx"(Q,w) 
(29) 

where the q-integration is done over the first B.Z. Since the spin suscep­
tibility at q = Q is much larger than at q = 0 ( e.g. in the MMP model 
x"(Q,w)/x"(O,~) '.::'. /3((/a) 4 

'.::'. 300), we propose that the main contribution 
to the linewidth arises from the AF. spin fluctuations, estimated by (29). 

Berthier et al. [6] have recently measured the temperature dependence of 
the· NMR relaxation rates 

("'T1T)-1 (XL IC, A(q)J2x"(q,wn) 
q Wn 

(30) 

in YBa1.93Sro,01Cu306.92 wher~ Wn is the NMR frequency and I"' A( q)J2 is 
squared modulus of the Fourier-transfered hyperfine coupling constants for 
different nuclear sites a= (63,17,89). This dependence for 63Cu-can be 
approximated with good accuracy for T > 75K by: 

· (
63T1T)- 1 

'.::'. a(T - 75)b exp[c(T - 75)], (31) 

where the para~eters have the values a '.::'. 0.08 s-1,K-b-l , b '.::'. 1.27 , 
C ~ -0.02 K-l . 

According to Horvatic et al. [6], the temperature dependence of (63T1T)-1 

and x"(QAF,liw '.::'. 10 meV) are quite similar in the considered temperature 
range. Therefore we can assume that the temperature dependence of the 
sum over q in (22) due to our estimation (29) corresponds to (31 ), i.e. 

L IF(q)Jx"(q,w) ex (63T1T)- 1
• 

q 

7. 

(32) ' 
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Temperature dependence of the linewidth for CF excitation r11l • -+ r11> 

{c = 11.SmeV) of the Tm3+ ion in Tm-YBCO6 _9 : points - experimental 
data [3], curves - theoretical results for some models of x( q, w) (see text). 
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Fig, 3. 
Comparison of theoretica.l results for I'cF(T): based on Ml'vlP model [·l] with 
different xo(T) (large [4] and short dashed line [7]), and experiments for' 
NMR relaxation rate l/(11T) for 63Cu [6] (full line). 
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By introducing a c~nstant component f 0 of lim;width which is not caused 
by dynamic spin fluctuations, we find the following exp1'cssion for the linewidth: 

fc1(T) = fo + Acoth c::;.) (''31'1T)-
1
, (33) 

The best agreement with the ·experiment.al data [:3] can he obtain~•d for the 
parameter values r0 = 0.189 ± 0.008 meV and A= 0.019 ± 0.002 a.u. 

In Fig.2 the full line represents our theoretical results ( 33} for temperature 
dependence of the linewidth fc1(T}. If we adopt that 
I:q jF(q)l2x"(q,w} cx:89 (T1T)- 1, we get the result which is represented by 
long-dashed line. For the temperature independent x"( q, w) one can get 
the result represented by the sltort-dashed line. Experiment.al data [:3] are 
shown by points ( different symbols means different energy of incident neu­
trons): One. can see that only the full line is in agreement with experimental 
data.· . ,, .. 

Fig. 3 compai·~~s our tlteorct.irnl results for l'cdT) by using the experi­
mentil model of x(q;w) (full liue - the same as in Fig.2) and by using the 
l\1MP'. model ( dashed lines · see above given discussion). · 

Fiom our analysis one can conclude that dynamic spin fluctmitions in 
CuO/dominate the line broade~ing. Excited !-electrons can relax through 
the s~J interaction with the Cu- spin system. Opening of a pseudo-gap E9 

in the spectrum of spin excitations observed in neutron experiments [5], [17] 
result~ in a reduction of the low-energy spin fluctuations and corresponding 
sharp'_decrease in the linewidth for CF excitation with energy liwo < E9 at 
the temperature of tl1e onset of the gap. If the energy of CF liw0 > E9 , there 
is no sharp decrease iu the linewidt that permits one, in principle, to measure 
the value of 'E9 by using compounds with different RE doped ions. 

5 Conclusions 

In the present paper we have proposed a model describing the relaxation of 
CF excitations for 4f-electrons in cuprates due to spin fluctuations on Cu­
sites . A general expression (22) for Tm3+ in (Y-Tm)BCO-cornpound has 
been derived and estimations for I'cp(T) has been done for soine models of 
dynamical spin susceptibility x( q, w ). · ' 

We cannot explain a shai·1"> ~lecrcase of l',;1(T) ·observed experimenta.lly 
for Y-TmBa2Cu3 0 6 .9 [:3] by employing the MMP-model [4] for x(q,w) as 
well as considering the temperature-dependent NMR relaxation rate 1/(T1T} 
for 89 Y [6]. To fit the experimental data [3] one has to adopt that AF spin 
fluctuations measured by inelastic neutron scattering [5] at /i~0 '.'.:::'. lOmeV [9] 
or by NMR relaxation rate l/(T1T) for 63Cu [6] give an essential contribution 
to fc1(T} , as justified by our estimation (29). Unfortunately , we cannot 

10 

present at this time a full self-consistent c~lculation for the line,vidth f c1(T} 
(22) , since now there is no reliable theory of the dynamical spin susceptibility 
in strongly correlated electronic systems which cuprates belongs to . . . 
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