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A mechanism of suppression of the antiferromagnetic long-range order in 
slightly doped copper oxides is proposed. This suppression is due to a decay of 
spin waves into particle-hole pair excitations. A self-consistent Born 
approximation is developed within the t-J model and the irreducible Green's 
function method. It is shown that the Neel temperature drops shurply with 
increasing hole concentration in accordance with experiment. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna, 1994 



I. Introduction 

Magnetic properties of layered copper oxides have been investi­
gated intensively by different m~thods [1-4] during the last years. It 
was found that the parent compounds are 3d long-range ordered anti­
ferromagnets (AFM) with a well defined spin wave excitation spectrum 
and a Neel temperature TN of a few hundred °K With increasing hole 
concentration 6 within the Cu02 planes the staggered magnetization 
and the spin wave velocity are strongly reduced and the AFM ordering 
vanishes at a critical concentration De of a few percent. However, strong 
AFM correlations still persist in the disordered state (T > TN) due to · 
the large in-plane superexchange interaction between copper magnetic 
moments. 

It is by now widely accepted that the t - J model provides an 
adequate basis for the discussion of the essential physics for layered 
copper oxide compounds. In the framework of this model there is a 
strong coupling between charge and spin degrees of freedom and hence 
a small amount of charges, which is controlled by. doping, is expected. 
to modify significantly the magnetic properties of the system. 

Along this direction, the results of several investigations were re­
ported [5-8]. In particular it was shown in [5,6] that the motion of the 
holes has a pronounced effect on the spin dynamics. More precisely in 
the framework of the slave fermion Schwinger boson representation for 
the t - J model and within the Born approximation in a perturbative 
approach, it was found a strong softening of the long wave length spin 
excitations due to their coupling to "electron~hole" _pair excitations. 
The spi.n wave velocity was shown to vanish at a critical hole concen­
tration 6* of a few percent in agreement with experiments [3,4]. These 
calculations imply also that even at zero temperature there is a finite 
number of spin wave excitations produced by the moving holes of the 
doped system that leads to a reduction of the AFM order parameter. 
Some arguments have been given in [6,8] that a complete suppression 
of the order parameter takes place at the critical hole concentration De 
for which the spin wave velocity vanishes i.e. De ::::::: 6*. However this 
point remains to be clarified. 

It should be noted also that being restricted to the case of zero 
temperature the calculations presented in [5-8] do not give a concen­
tration dependence of the Neel temperature TN = TN( 6). The present 
paper is motivated by this question. We extend the approach developed 
in [5,6] and consider the doped AFM state for finite temperatures. We 



assume that the d\iving interaction which establishes the 3d AFM or­
dering at finite temperatures is a weak interlayer exchange interaction 
J'. Starting with the t-J model in a spinless fermion pseudospin repre­
sentation we describe the magnetic subsystem in terms of two-time spin 
Green's functions. As it is well known [9], at zero doping these Gre~n's 
functions treated within the Tyablikov random phase approximation 
provide a spin wave excitation spectrum which is renormalized by the 
staggered magnetization <r • .In our self-consistent scheme the staggered 
magnetization depends not only on the temperature but on the hole 
concentration 8 as well, i.e. <r = a(T, 8). To obtain the renormalization 
of <r and the self-energy corrections to the spin excitation spectrum due 
to the interaction of spin waves with moving holes a standard decou­
pling procedure for higher order spin Green's functions is used. This 
decoupling procedure which is the second main approximation in our 
scheme is equivalent to the Born approximation in the usual diagram­
matic approach. 

Our paper is organized as follows.In Sec.II, the effective Hamilto­
nian in a slave-fermion pseudospin representation is derived. In Sec.III, 
the Dyson's equation for the spin two-time Green's function is intro­
duced in the framework of the irreducible Green's function method. 
The main approximations adopted to solve this equation are discussed 
in details there.In Sec.IV, the self-energy part for the spin Green's func­
tion is calculated with a particular choice for a hole spectral function 
which is valid near the phase transition to a disordered magnetic state. 
The equation for the magnetic order parameter is analyzed to calculate 
a doping dependence of the Neel temperature. 

· II. The Effective Hamiltonian 

The Hamiltonian of the t - J model can be written as 

"' ~+ ~ 1"' - -H = L.t ti;Ci,uCi,u + 2 L...t J;;S;.S; 
i,j,u i,j 

(1) 

using the following notations. In the kinetic term, ctu = ctu(I-n;,-u) 
are electron creation operators and the factor (I - n;,-u) enforces the 
constraint of no double occupancy. The hopping amplitude t;j is non 
zero only for nearest neighbor sites beloniing to the same layer which 
is a square lattice. In the magnetic term S; are electron spin operators. 
The exchange integral J;i is also non zero only for nearest neighbors 
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and is given by a large constant J ~ O.le V for the intralayer interaction 
and a small constant J' ~ 10-4 J for the interlayer coupling [3,4). The 
hopping parameter t is usually estimated such that 3 ~ t / J ~ 5. 

As it was first noted by Zhang and Rice [10] the t - J model 
describes the low energy properties of the more general p- d model for 
copper oxides. A proper reduction procedure from the p- d to the t - J 
Hamiltonians was developed later in several papers (see, for instance 
[11]). It is worth noting that one may incorporate in the t - J model 
a weak transverse interlayer exchange interaction ( ~ J'). This is quite 
natural and formally could be done in the same reduction procedure 
as in [11]. In' the present paper we also dropped some more involved 
structural peculiarities of copper oxides such as, for instance, the bilayer 
character of Y-Ba-Cu-0 compounds. That however would not change 
significantly our main conclusions. · 

In a previous paper [12] a kind of slave fermion representation was 
proposed for the t - J model that can be derived in a few steps. First 
to simplify the matter it is convenient to perform a 180° rotation of the 
spins on the B-sublattice which leads to the changes 

C; (T - C; ·-(T 
' ' 

s~ -sf 
I • I (2) 

St--+ -St 

when i E B. Hence from now on the spin background i~ effectively a 
ferromagnetic one and one should not distinguish between sublattices 
anymore. Secondly. we define the action of 'the operators G;,u' ct(T on 

an extended quantum space associated with spinless fermions f;, f; 
and pseudospin operators Si. To eliminate unphysical states one must 
introduce projection operators 1r; that is equivalent to the familiar con­
straint reducing the number of states at a given site in the widely used 
slave fermion Schwinger boson representation [13]. We then have 

G;r = f;1r; 

G;1 = ftst 
S; = s;(l - n;) 

(3a) 

(3b) 

(3c) 

where n; = f; f; denotes the hole number operator at site i. The 
projection operators 1r; act on the pseudospin system and are given by 
1r; = 1/2 + sf in the case of 1/2 spin. 

3 



In the above :representation, the t - J Hamiltonian H = Ht + HJ 
reads 

Ht= L ti;!! Jj(7risj + 7rist) (4) 
i,i 

H 1 '°' ( )( ) [ z z 1 + + 1 _ -J J = 2 ~ Jii 1 - n; 1 - ni -s; si + 2si si + 2si si 
,,, 

(5) 

As it is discussed in [12] this representation with 7ri = 1/2 + sf is 
rigorously equivalent to the t - J model and is well adapted to further 
approximatjon when considering an AFM spin background. The ad­
ditional factors (1 - n;) in HJ term take care of the loss of magnetic 
energy in the presence of holes. In mean-field approximation we may 
replace (1 - n;) by (1 - 8), where 8 is the concentration of holes, that 
leads to a renormalization of the exchange constants 

Jii -t Jij(l - 8)2 (6) 

For the sake of shortening the notations we omit for a while this renor­
malization to restore it at the final stage of calculations. 

It is possible to generalize the representation (3) for an arbitrary 
spin S in such a way that .the co~straint imposed by the operators 7ri 

is relaxed in the large S limit. Indeed, the essence of the projection 
operator 7r; is the following: because of the presence at a given site i of 
a fermion, one pseudospin sfate, say, the lowest one at that site mtist 
be forbidden. Then in the large S lirriit the operators 7ri relax to the 
identity operators so that finally the effective Hamiltonian is written as 

Ht= Ltiif! ]j[s-; + 4] (7) 
i,i 

1 '°' J [ z z 1 '+ + · 1 _ -] HJ= 2~ ii -s;si+ 2s;si + 2s;si 
',J . 

(8) 

We fix this effective Hamiltonian as a basic one for our consideration 
without mapping the pseudospin operators onto bospn's ones as it done 
in [5-7]. 
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III. Two-time Green's function for the spin system and 
Dyson 's equation 

We wiH study the properties of the magnetic subsystem and its 
interaction with holes by using a matrix Green's function defined as 

« Bq(t)IBt(t') »= -i0(t - t')( [Bg(t), Bt(t')]) 

where [ , ] stands for the commutator and 

with 

Bg = ( s!), Bi= (s;-,s:q) 
s_q 

s; = ~ L e±iqjs7. 
vN . 

J ' 

(9) 

(10) 

(11) 

To obtain an equation of motion for the Green's function one may follow 
Refs.[15,16] differentiating« Bg(t)IBt(t') » with respect to both times 
t and t'. In this way, after performing some algebra one gets the Dyson 's 
equation for the Fourier transform of (9) in the following form 

w « BglBt ·»w= ([Bg,Bi]) + [nq + Ag(w)] « BqlBt »w (12) 

where the matrix i1g reads 

. . + + !1q = ([zBg,Bq ])/([Bg,Bq]) (13) 

and describes a free evolution of the system, while the matrix Aq(w) 
given by · 

Aq(w) =« iBql - iBi »~rr) /([Bg,Bi]) (14) 

is the self-energy part accounting for the interaction effects. Here 

iBq = [Bq, H] and « i.Bql · - iBi »~rr) is an irreducible Green's 
function defined as 

« iBql - iBJ »~rr)=« iBql - iBJ »w -

- « iBqlBi »w B I~+ « Bgl - i.Bi »w ' (15) « q q »w 

which is a higher order Green's function with respect to« BqlBi »w• 
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Noting also tqat 
([Bq, Bil) = 2ar3 (16) 

where a = (sf) is the staggered moment and r3 is the Pauli z-component 
matrix, it is useful to rewrite Eqn.(12) as 

~ BqlBi~w= 2a[w - !1q - Aq(w)]-1 r3 , (17) 

where according to the definition (9), w stands for w + iQ+. 
Let us now consider the equation of motion for 4(t) which reads 

is; = [st, H] = 2 L i;jSi Jt f; + L J;j(st sJ + sf s-;) (18) 
i i 

Let us first discuss a pure magnetic system without doping in which 
case the first term'. in (18) does not contribute. Then the equation (18) 
can be linearized by using the Tyablikov approximation [9]. This ap­
proximation applied to a magnetically ordered system consists in re­
placing the z-component of the spin operators by its expectation value, 
sf -. (sf) = a, which should be evaluated self-consistently as a func­
tion of temperature. As it is well known [9], -this approach leads to a 
fairly good extrapolation of the spin-wave dynamics at finite tempera­
tures and provides a reasonable estimate for the AFM ( or FM) phase 
transition temperature. 

In the work that follows, our main goal is to extend the Tyablikov 
• approximation to the case of a doped-AFM state and examine effects 

of moving holes on the staggered magnetic moment a. These effects 
which are expected to be mainly due to a coupling of spin waves to 
particle-hole pair excitations will be examined by calculation the self­
energy part in (12) to the lowest ( ~ t2) order. Of course, the particular 
character of the energy spectrum of holes in an AFM background [13, 14] 
will be taken into account in the calculations. Hence, after performing 
Tyablikov linearization the Fourier transformed equation (18) reads 

iSi = 2u { ~ ~t(q - k)fi;_,J, + ~J(O),t + ~J(q),=,} (19) 

where 

t(q) = ~ L e-iq(i-i)iij, J(q) = ~ L e-iq(i-i) J;j (20) 
i,j i,j 
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Using the definitions of i;i and J;i one gets 

t(q) = zi1q, 1q = 1/2[cos qx + cos qy] 

J(q) = zJ[,q + ( cos qz], ( = J' /2J 

where z=4. The equation for Bq(i) can be now written as 

. 
i!3q = 2a>.qBq + jq 

where >.q is 2 x 2 matrix 

1 ( J(O) 
>.q = 2 ·_ -J(q) 

J(q) ) 

-J(O) 

and jq is the current produced by the presence of holes. It reads 

jq = 2cr L ( t(k - q)f'Lqfk ) 

JN k -t(k + q)J: fk+q 

Taking into account that 

([jq,Bi]) = o 

we obtain for the frequency matrix !1q the result 

nq = 2cr >.q 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

leading to a usual zero-order AFM spin-wave spectrum renormalized 
with the magnetization er : wq = 2crwio), here we- use the definition 

W~O) = 1/2✓ J(Q)2 - J(q) 2 (28) 

To obtain the self-energy part Aq(w) from (14) and (15) one should 
notice, first, that in the equation (23) the line~r terms in Bq do not 
contribute to the irreducible Green's function (15) and, hence, Ag(w) is 
given by a simple substitution into (15) of jq, Eqn.(25), instead of the 
full derivative iBq. Secondly, the lowest order self-energy contribution 
is provided by the first term in the right hand side of the expression 
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(15), while the s~copd term gives rise to higher order corrections. Then, 
restricting ourselves to the lowest order we have 

A ( ). 1 . 1-+ q w = 
2

0' ~ ]q Jq ~w T3. (29) 

By substituting jq from (25) into (29) we obtain explicitly Aq(w) 
matrix as 

(
t(k - q)t(k' - q) t(k - q)t(k')) (30) 

Aq(w) = 2a ~ L Xq,k,k'(w) -t(k)t(k' _ q) -t(k)t(k') · ' 
kk' 

where 
Xq,k,k 1 (w) =~ rt-qfklf{,ik•-q ~w (31) 

Below we calculate the Green's function (31) with a proper de­
coupling procedure which is equivalent to the Born approximation in a 
usual diagrammatic approach [5,6]. 

Let us consider now a Green's function Xq,k,k'(t) which is the 
Fourier transform of (31). By definition Xq,k,k'(t) involves two time 
correlation functions of the form (Jt_g(t)fk(t)f{,fk•-q}, We decouple 
them in the following way 

ut-/t)fk(t)tt,Jk•-q) ~ ut-q(t)fk•-q)(fk(t)ft-q). (32) 

Then introducing a one-particle retarded Green's function for holes as 
Q(h)(k,w) = =~ fklf; ~wand applying the Fourier transform 

+oo 

(ft fk, )w = J dte-iwt(ft(t)fk,) (33) 

-oo 

one obtains 
(ft,fk,)w = 21f8kk'n(w)p(w + µ,k) (34) 

Here n(w) = 1/(1 + ef3w) is the Fermi distribution function and 

1 + p(w, k) =--Im~ fklfk ~w+iD+ (35) 
71' 
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is the spectral density of the hole Green's function. The chemical poten­
tial µ, which is a function of the hole concentration 8 and temperature 
T, satisfies the self-consistent equation 

+oo 

8 = ~ L J dwn(w - µ)p(w, k) 
k -oo 

(36) 

Finally, by making use of the spectral representation for Green's func­
tions one comes· to the result 

Xq,k,k 1 (w) = 8kk'Xq,k(w) 

The function Xq,k(w) is given by 

Xq,k(w) = 1+= dw11+= dw2 n(w1 - µ)- n(w2_- µ) x 
-oo -oo W + W1 - W2 + z0+ 

(37) 

xp(w1, k - q)p(w2, k) (38) 

and corresponds to a simple "bubble" diagram in the conventional ap­
proach [5, 7] developed for T = 0. It is worth noting that the factor 
2a entering in the self energy, Eqn. (30), may be regarded as a·hole­
spin vertex correction which is a function of temperature T and hole 
concentration 8 in our consideration. In the following it is convenient 
to indicate more transparently the explicit dependence of Aq(w) on the 

staggered moment a by introducing the notation Aq(w) = 2aAq(w). 
It is easy to derive some relations between the matrix ~lements of 

the self-energy (30). One gets 

A!2 (w) = -A~\(-w) 
A21(w) = -A12(w) 

q . q (39) 

Hence, the poles of the Green's function (17) are given by the 
equation · 

. . .. _ : [ Bq(w)+A!2 (w)l 
[w - 2aAq(w)]2- (2aw~)2 1 + ½[J(0) + J(q)] .x 

[ 
Bg(w)-A!

2
(w)]-o 

x 1 + ½[J(0) _ J(q)] - (40) 

9 



with the following'notations 

Ag(w) = ~ [A~1(w) -A:\(-w)] 

( ) 1 [~n ~u ] Bg w = 2 Ag (w)+A_q(-w) (41) 

One can see that the solutions of Eqn. {40) scale with the factor 
2a, ther~fore, a notation wq = 2awg will be also used. 

IV. Staggered magnetization and Neel temperature 

Let us recall that the staggered magnetization a = (sf) should be 
obtained self- consistently through the following equation 

· 1 1 a= 2 - N L(s;-st) (42) 
q 

where 

(s-s+) - d. -;: m ~ BqlBq+ »11 . j
+oo lJ 

q q - w---___,~__,!_ w+10+ 
-oo e/J"' - 1 

(43) 

with the imaginary part of~ Bq IBt »~1 being defined from the equa­
tion (17). The equation ( 42) then becomes 

_!_ _ _!_ ~ ½J(O) + Bg(2awg) ~ 
2a - N ~ ~ coth( /3awg)+ 

q Wq 

+ _!_ L Ap(2awg) 
N wq 

q 
(44) 

with the spin excitation spectrum wq = 2awq being a solution of the 
Eqn.(40). Below we will solve the Eqn.(44) for the staggered magneti­
zation a in the vicinity of the phase transition to a disordered magnetic 
state when a -+ 0. Accordingly the quantity Xq,k(w) should be esti­
mated by taking into account a particular character of the hole spectral 
density p(k, w) in the AFM spin background near the phase transition. 

The Green's function G(h)(k,w) for a single hole moving in a 2d 
square lattice with a quantum Neel background was calculated [13,14] 
within the self-consistent Born approximation on the basis of the Hamil­
tonian (7),(8) with spin's operators mapped onto boson's ones. In this 
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consideration a hopping.of a hole is only possible by emitting (or ab­
sorbing) of a spin-wave excitation that leads to a strong renormaliza­
tion of the hole propagation properties. When the system approaches 
an AFM phase transition due to a strong anisotropy of copper oxides 
a 3d long-range order tends to be broken by losing the interlayer mag­
netic correlations while strong 2d intralayer spin-spin correlations still 
persist and survive even in a disordered· phase [3,4]. This makes rea­
sonable an assumption that the approach to a h,ole motion developed 
in [13,14] is also applicable near the phase transition. However, effects 
of a finite hole doping and of temperature should be taken into account 
and a strong renormalization of spin-wave excitation spectrum is one 
of _them.Below we first briefly sketch some results of calculation of the 
spectral density function p(k,w) for a single hole at zero temperature 
[13,14] and then estimate how p(k,w) varies with increasing hole con­
centration 8 and temperature T. In this way some insight is gained 
about the shape the spectral density p(k,w) tends to when the system 
approaches the AFM phase transition. 

Being first 'suggested by Schmitt-Rink, Varma and Ruckenstein 
[17] and then developed by Kane, Lee and Reed [13] and Martinez and 
Horsch [14] a perturbative approach within a slave fermion formalism 
and self-consistent Born approximation proved to be very successful in 
reproducing the spectral density function ·p( k, w) for a single hole ob­
tained by exact diagonalization of small clusters [18]. All of that led 
to the consensus tha~ the hole spectrum involves a narrow quasiparti­
cle band of coherent states at low energies and a broad continuum of 
incoherent states above. The corresponding spectral function is then 
represented as 

p(k,w) = pcoh(k,w) + /ncoh(k,w). (45) 

with 
pcoh(k,w) = Zkc(w - Ek). (46) 

The quasiparticle (QP) dispersion Ek possesses minima at 
k = (±1r /2,·±1r /2) with the value Emin( J) = -3.2t + 2.9J0

·
7 for the 

relevant values of the exchange constant 0.1 < J /t < l;the QP band 
width W is estimated to be of order of J, while the residue Zk ~ J /t. 
Kane et al.[13] estimated the incoherent part p( k, w) of the spectral 
density to be practically a constant, p(k,w) ~ 1/t in a wide energy 
interval above the QP band. Martinez and Horsch [14] calculated this 
interval to range from Emin + W up tor~ zt, where z = 4. 
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Igarashi and Fulde [5] applied the self-consistent Born approxima­
tion to calculate p( k, w) at finite low dopant concentration c5 < < 1 
and T = 0. They found that for any particular momentum k a hole 
spectral density is redistributed in such a way that a new incoherent 
extra structure appears quite below the QP band. This extra struc­
ture with a spectral weight of order of c5 provides a fulfilling of a sum 
rule (Eqn.(36) in our notations) with a chemical potential located in­
side the QP b.and. Along this way a four-pocket Fermi surface for 
non-interacting quasiholes was justified within that consideration and 
used to calculate a renormalization of spin-wave excitations due to their 
coupling to particle-hole excitations. As a result it was proved, h~w­
ever, that a broad incoher.ent part of the hole spectrum gives the main 
contribution to this renormalization. Similar results have been also ob­
tained by ·Khaliullin ~nd Horsch [6] who estimated the incoherent part 
of the hole spectral ~ensity as a constant p ~ 2~, where r ~ zt, within 
proper energy intervals below and above the QP band. They also em­
phasized that quasiholes produce a minor effect in a spin~wave velocity 
reduction. That is mainly due to the. fact that the QP band is rather 
narrow and the residue Zk of a quasihole pole is strongly reduced, i.e. 
Zk ~ {- << l, in the relevant range of J values. . 

The results outlined above with respect to a hole spectral density 
function p(k,w) and its evolution with hole doping were also examined 
in [19] and proved to be correct. However, as the system approaches 
the AFM phase transition a further transformation of p(k,w) takes 
place. Actually, as it was pointed out by Kane et al.[13] the existence 
of coherent quasihole states depends crucially on the density of states 
of low-lying spin-wave excitations. The number of such excitations 
increases dramatically due to a softening of the spin-wave spectrum near 
the phase transition [3,4]. In our approach this softening is governed by 
the stuggered magnetization a. As a result the processes of scattering 
of a quasihole by spin-wave excitations turn to be dominant, that lead 
to a broadening of the QP peaks. These peaks lose their identity and 

. the entire hole spectrum becomes incoherent. · 
Hence, to evaluate the function Xq,k(w), Eqn.(38), near the AFM 

phase transition we assume a purely incoherent k-independent hole 
spectral function 

1 
p(k,w) ~ p(w) ~ 2rB(r - lwl) (47) 

where r ~zt. 

12 

So taking into account the incoherent part only, it is easy to check. 
that the quantities Ag(w) and Bg(w) become q-independent. Moreover, 

note that 

Ag(2awq) ·= O 

Bg(2awq) = - ( ~t) 2 

x(;, c5) + 0[(2awq )2] · 

B?_(2uW) ± A\2 (2uW,) - - ( ~)' (1 ±
0 

,,)x(T, 8) + 0[(2uW, )
2

]( 48) 

when 2awq tends to zero, and we define x(T, c5) as 

· . -" 1= 1= n(w1 - µ) - n(w2 - µ) · 
x(T,c5) = - _

00 

dw1 _
00 

dw2 w
1 
-w

2 
p(w1)p(w2). (49) 

The function x(T, c5) depends on temperature T and dopant con­
centration c5 through the chemical potential µ = µ(T, c5) which satisfies 
the Eqn.(36). _The self-consistent equation ( 44) for the stuggered mag-

netization ([:_.then becomes 

. 21 = ~ L ½J(O) - (J-)
2 

x(T, c5) coth(,Bawq)- (50) 
<7 q Wq 

and to the lowest order in a the Eqn.( 40) leads to the following spin­

wave spectrum 

_ (o) · zt 
[ 

2 ] 2 
wq - 2awq 1 -

21 
x(T, c5) = 2awq, (51) 

Note that we approximated the factors J(0) ± J(q) in Eqn. (40) as the 
2d factors zJ(l±,q) while the quantity w~o) preserves its 3-dimensional 

nature, Eqn.(28). 
After substituting (51) into (50) we expand the right-hand side of 

Eqn.(50) in terms of a that leads to the result 

2 ( 4 [ zt2 ] )-l [ T [ zt
2 ]-li 

a = 3TJ l - 2Jx(T,c5) 1- TN(0) 1- 2Jx(T,c5) 

(52) 
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where the Neel temperature -TN(0) for the undoped case, 8 = 0, 1s 
expressed as follows · 

J 
TN(O) =Ce' 

l [ J2(q)]-1 
Ce = N L I - J2(0) 

q 

(53) 

When e -+ O the dominant contribution to the sum in Eqn.(53) origi­
nates from the neighborhood of if = 0 that leads to a singular depen­
dence as Ce ~ Zne- 1 • He~ce, the Neel temperature tends to zero with 
e -+ 0 and the correct thermodynamic behavior is restored in 2d limit 
[9]. 

From the Eqn.(53) one can see that at finite dopant concentration 
the stuggered magnetization vanishes at temperature TN( 8) which is 
determined by the equation · -

TN(8) zt2 
TN(0) = l - 2J x(TN(8), 8) (54) 

To simplify the matter let us first rewrite x(T, ¢) in the following way 

111 

X x(T, 8) = --r dx n[r(2x - 1) - µ] ln --
0 1- X 

(55) 

where the chemical potential µ = µ(T, 8) satisfies the Eqn.(36). To 
derive the formula (55) the spectral density function p(w) is taken in the 
approximate form (47) which is valid near the AFM phase transition. 
With this constant density the Eqn.(36) for the chemical potential µ 
can be easily solved to give the Fermi distribution function entering in 
(55) as follows 

n [r(2x - 1) _ µ] = [i + exp (2,Br(x - 8))]-
1 

1 - exp(-2,Br8) 

with /3 = T-1 . 

(56) 

One can see that x(T, 8) is a rather complicated function of T and 
8. Further we estimate x(T, 8) and solve the Eqn.(54) in two limiting 
cases. In both cases the Eqn.(54) leads to qualitatively close results and 
describes a sharp drop of the Neel temperature with increasing dopant 
concentration. 

14 

First we estimate the quantity x(T, 8) at extremely low hole con­
centration and high enough temperatures /3 ~ Ti/(0) such that 

2,Br8 << 1. (57) 

In this case one obtains from Eqn.(56) 

n [r(2x -1) - µ] ~ 2,Br~e-2/Jrx, (0 ~ x ~ l). (58) 

This Boltzmann-type form of the distribution function arises due to a 
stror:{g renormalization of the chemical potential µ, Eqn.(36). Such a 
behavior resembles a low-density Fermi gas in a strongly nondegenerate 
limit. However, it is only a formal analogy because there are no well­
defined quasiparticles in our consideration. Inserting (58) into (55) we 
obtain 

x(T, 8) = 2,B8F(2,Br) (59) 

with 

F(2,Br) = r1 dx e-2/JI'x ln 1 - X. 
fo x 

(60) 

Typical values for 2,Br ~ t/TN(0) are quite large. Therefore an asymp­
totic expression for. F(2/3r) can be used that yields the following esti-
mate 

F(2,Br) = 2;r [1n 2,Br + c + o ( 2;r)] (61) 

where C is Euler constant (C ~ 0.6). Hence Eqn. (54) reads 

Jr 1 - T 

8 = -2 1 2r 1 
2t C + n TN(o) - n T 

(62) 

where r(8) = TN(8)/TN(0) denotes the reduced Neel temperature. 
We have plotted the corresponding curve r( 8) in Fig. 1 with t = 
0.5eV, J/t = 0.2, r = 2v3t and with the Neel temperature 
TN(0) = J /3 ( ~ 300°K) which is typical for the undoped copper ox­
ides. 

From Fig.I one can see that being valid at extremely low hole 
concentration, 8 < 0.01 and temperatures r ~ l, .the Eqn.(62) describes 
a sharp decrease of TN( 8) in the upper part of the magnetic phase 
diagram. Being formally extended to lower temperatures and higher 
concentrations 8 the curve r( 8) crosses the temperature axis at 8* ~ 
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0.04, i.e. r(5*) = O., that is in a good agreement with an experimental 
value De ~ 0.03 [3,4]. 

An extrapolation of the Eqn.(62) to the region of higher values of 
5 and more lower temperature still remains questionable. Therefore, let 
us return to the basic equation (54) and examine the other limit 

2/3I'5 >> 1, (63) 

in which case the Eqn.(54) can also be treated analytically. The Fermi 
distribution function (56) then becomes 

n[r(2x .- 1) - µ] '.::::'. [ 1 + e2Jff(x-6) ]-l (64) 

In comparison with the case we considered above, Eqns.(57) and 
(58), the values of the parameter 2/3I' ~ t/TN( 5) is now strongly en­
hanced due to a strong reduction of the Neel temperature TN( 5) at 
finite hole concentration 5. This allows us to approximate further the 
Eqn.( 64) with a familiar step function. Then a straightforward. alge­
braic calculation of x(T, 5) leads to the following result 

zt2 

r(5) = 1- 2r J(l - 8)2 l8ln8 - (1 - 8)ln(l - 8)1 (65) 

where a mean-field renormalization of the exchange constant J -+ J(l-
8)2 is also taken into account in accordance with (6). With the same 
values for the parameters as above we found th~t r(8*) = 0 at 8* ::= 0.08. 

Finally,"we solved the Eqn.(54) in two limiting cases. First solution 
(62) is applicable at extremely low hole concentration and the second 
one (65) is for somewhat higher values of 8. Both solutions reveal a 
strong decrease of the Neel temperature at very small doping level that 
is consistent with experimentally observed behavior of TN( 8) in copper 
oxides. 

V. Conclusion 

Based ·on the t-J model in a slave fermion pseudospin representa­
tion we have studied a mechanism of magnetic phase transition for a 
doped antiferromagnet. Not only thermally excited spin fluctuations, 
but also processes of decay of spin waves into particle-hole pair excita­
tions lead together to a strong suppression of AFM long-range order. 
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The self-energy corrections to the spin Green's function are calculatecl 
in the self-consistent Born approximation with a particular form for a 
hole spectral function p( k, w) which is valid near the phase transition to 
a magnetically disordered phase. By usirig the results of previous stud­
ies as a background we argued in favour ofa broad structureless shape 
for p(k,w). In this approximation an equation for the magnetic order 
parameter is analyzed to obtain the Neel temperature dependence on 
hole concentration. Analytical estimations carried out in the final stage 
shown clearly a sharp decrease of the Neel temperature with doping. 
Just this behavior was observed in copper oxides. 

The scheme developed in the present paper could be considered as 
a preliminary step to start accomplishing a more tendentious program. 
Actually, more accurate description could be done within complete self­
consistent calculations when both systems, holes and magnetic excita­
tions, are treated on an ·equal footing. This program is clearly for­
mulated by using the Born approximation both for the spin Green's 
function and for the hole Green's function [20]. That leads to a set of 
self-consistent equations for these Green's functions which should be 
solved numerically. This work is in progress now and the results of 
numerical computations will be presented elsewhere. 

1 . 0 .----.---r--"T---,---,.---,--..-----r--r---i 
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Fig. 1 The reduced Neel temperature dependence on hole concentra­
tion as following from Eqn.(62). The parameters are defined in the 
text. 
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