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I. Introduction

Magnetic properties of layered copper oxides have been investi-
gated intensively by different methods [1-4] during the last years. It
was found that the parent compounds are 3d long-range ordered anti-
ferromagnets (AFM) with a well defined spin wave excitation spectrum
and a Neel temperature Ty of a few hundred °K. With increasing hole
concentration § within the CuO; planes the staggered magnetization
and the spin wave velocity are strongly reduced and the AFM ordering
vanishes at a critical concentration é,. of a few percent. However, strong

AFM correlations still persist in the disordered state (T' > Ty) due to =

the large in-plane superexchange interaction between copper magnetic
moments. , ] ‘

It is by now widely accepted that the ¢t —~ J model provides an
adequate basis for the discussion of the essential physics for layered
copper oxide compounds. In the framework of this model there is a
strong coupling between charge and spin degrees of freedom and hence
a small amount of charges, which is controlled by. doping, is expected-
to modify significantly the magnetic properties of the system.

Along this direction, the results of several investigations were re-
ported [5-8]. In particular it was shown in [5,6] that the motion of the
holes has a pronounced effect on the spin dynamics. More precisely in
the framework of the slave fermion Schwinger boson representation for
the ¢ — J model and within the Born approximation in a perturbative
approach, it was found a strong softening of the long wave length spin
excitations due to their coupling to "electron-hole” pair excitations..
The spin wave velocity was shown to vanish at a critical hole concen-
tration 6* of a few percent in agreement with experiments [3,4]. These
calculations imply also that even at zero temperature there is a finite
number of spin wave excitations produced by the moving holes of the
doped system that leads to a reduction of the AFM order parameter.
Some arguments have been given in [6,8] that a complete suppression
of the order parameter takes place at the critical hole concentration 4.
for which the spin wave velocity vanishes i.e. 6. ~ é*. However this
point remains to be clarified. oo ' e

It should be noted also that being restricted to the case of zero
temperature the calculations presented in [5-8] do not give a concen-
tration dependence of the Neel temperature Ty =Tn(6). The present
paper is motivated by this question. We extend the approach developed
in [5,6] and consider the doped -AFM state for finite temperatures. We
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assume that the driving interaction which establishes the 3d AFM or-
dering at finite temperatures is a weak interlayer exchange interaction
J'. Starting with the t—J model in a spinless fermion pseudospin repre-
sentation we describe the magnetic subsystem in terms of two-time spin
 Green’s functions. As it is well known [9], at zero doping these Green’s
functions treated within the Tyablikov random phase approximation
provide a spin wave excitation spectrum which is renormalized by the
staggered magnetization o. In our self-consistent scheme the staggered
magnetization depends not only on the temperature but on the hole
concentration § as well, i.e. ¢ = o(T, §). To obtain the renormalization
of o -and the self-energy corrections to the spin excitation spectrum due
to the interaction of spin waves with moving holes a standard decou-
pling procedure for higher order spin Green’s functions is used. This
-decoupling procedure which is the second main approximation in our
scheme is equivalent to the Born approximation in the usual diagram-

matic approach.
Our paper is organized as follows.In Sec.II, the effective Hamilto-

nian in a slave-fermion pseudospin representation is derived. In Sec.III,
the Dyson’s equation for the spin two-time Green’s function is intro-
duced in the framework of the irreducible Green’s function method.
The main approximations adopted to solve this equation are discussed
in details there.In Sec.IV, the self-energy part for the spin Green’s func-
tion is calculated with a particular choice for a hole spectral function
~ which is valid near the phase transition to a disordered magnetic state.
The equation for the magnetic order parameter is analyzed to calculate
a doping dependence of the Neel temperature.

'II The Effectlve Hamiltonian

The Hamlltonlan of the t — J model can be ‘written as

H= Ztu CJ, +3 Z‘]usl | @

1]1 )]

using the following notations. In the kinetic term, 5:"0 = C,’fa(l—n,-,_a)
are electron creation operators and the factor (1 — n; _,) enforces the
constraint of no double occupancy. The hopping amplitude ¢;; is non
zero only for nearest neighbor sites belonging to the same layer which
is a square lattice. In the magnetic term S; are electron spin operators.
The exchange integral J;; is also non zero only for nearest neighbors
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and is given by a large constant J ~ 0.1eV for the intralayer interaction
and a small constant J' ~ 107*J for the interlayer coupling [3,4]. The
hopping parameter ¢ is usually estimated such that 3 <t/J < 5.

As it was first noted by Zhang and Rice [10] the ¢ — J model
describes the low energy properties of the more general p — d model for
copper oxides. A proper reduction procedure from the p—d to the t — J
Hamiltonians was developed later in several papers (see, for instance
[11]). It is worth noting that one may incorporate in the ¢ — J model
a weak transverse interlayer exchange interaction (~ J'). This is quite
natural and formally could be done in the same reduction procedure
as in [11]. In the present paper we also dropped some more involved
structural peculiarities of copper oxides such as, for instance, the bilayer
character of Y-Ba-Cu-O compounds. That however would not change
significantly our main conclusions.

In a previous paper [12] a kind of slave fermion representation was
proposed for the t — J model that can be derived in a few steps. First
to simplify the matter it is convenient to perform a 180° rotation of the
spins on the B-sublattice which leads to the changes

~
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when ¢ € B. Hence from. now on the spin baekg;round is ei’fectix)ely a
ferromagnetlc one and one should not distinguish between_ sublattlces

anymore. Secondly we define the action of the operators C, o C, o

an extended quantum space associated with spinless fermions f;, _fi+

and pseudospin operators sj. To eliminate unphysical states one must

introduce projection operators 7; that is equivalent to the familiar con-
straint reducing the number of states at a given site in the widely used
slave fermion Schwinger boson representation [13]. We then have

5:'1 = fitm ‘ (3a)
Co=ftst - (3)
Si=5(1-n) (3¢)

where n; = f,+ fi denotes the hole number operator at site ;. The
projection operators m; act on the pseudospin system and are given by
7; = 1/2 + s} in the case of 1/2 spin.
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In the above representation, the t — J Hamiltonian H =H,+ Hy

reads
=D _tiifi filmisy +ms)) (4)

o i
J—:?‘; IJ( '—nz)( '—'TLJ) —$; 8} +—S J _*_531

As it is discussed in [12] this representation with m; = 1/2 + s is
rigorously equivalent to the ¢t — J model and is well adapted to further
approximation when considering an AFM spin background. The ad-
ditional factors (1 — n;) in H; term take care of the loss of magnetic
energy in the presence of holes. In mean-field approximation we may
replace (1 — n;) by (1 — §), where § is the concentration of holes, that
leads to a renormalization of the exchange constants

B o Tl 6 )

For the sake of shortening the notations we omit for a while this renor-
malization to restore it at the final stage of calculations.

It is possible to generalize the representation (3) for an arbitrary
spin S in such a way that .the constraint imposed by the operators m;
is relaxed in the large S limit. Indeed, the essence of the prOJectlon
operator 7; is the following: because of the presence at a given site ¢ of
a fermion, one pseudospm state, say, the lowest one at that site must
be forbidden. Then in the large S limit the operators =; relax to the
identity operators so that finally the effective Hamiltonian is writtén as

Zt,,f fils5 +s+] - (1)

’J
1 1 1 '
=§ZJ,~J- [ s,sJ+vs+sj'+§s, s; (8)
L

We fix this effective Hamiltonian as a basic one for our consideration
without mapping the pseudospin operators onto boson’s ones as it done

in [5-7].

III. Two-time Green’s function for the spin system and
Dyson’s equation

We will study the properties of the magnetic subsystem and its
interaction with holes by using a matrix Green’s function defined as

< ByOIBF(t') = —i(t — ' ){[By(t), B (#)]) (9)

where [ , ] stands for the commutator and

-9

sq
Bq =v s~ ] B—q*- = (Sq—,stq) : (10)

with

— :/Lﬁ Ze:}:iqis;? . J , (11)

To obtain an equation of motion for the Green’s function one may follow
Refs.[15,16] differentiating < B ¢(®)|BF(t') > with respect to both times
t and t'. In this way, after performing some algebra one gets the Dyson s
equation for the’ Fourler transform of (9) in the followmg form

w < By|B} »>u=([By, B}]) + [Q + Aq(w)] < B |B+ >, 0 (12)
where the matrix 1, reads V
Q, = <[z'3q,B;J>/<[Bq,B;1> o)

and describes a free evolution of the system while the matrix Agy(w)
given by
Ay(w) =< iBy| ~ iB} ->>(’") /([Banﬂ) (14)

is the self-energy part accountmg for the interaction effects. Here

zB = (B, H] and < iB,| - zB+ >U™) is an irreducible Green’s
function defined as

< iBy| —iB} UM =< iBy| —iB} >, -

— CiBy|B} >, K By| —iB} >, ' (15)

1
L By|Bf >,
which is a higher order Green’s function with respect to K Bq|B;" >
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Noting also that -
(Bg, B =207 . - (16)

where o = (s?) is the staggered moment and 73 is the Pauli z-component
matrix, it is useful to rewrite Eqn.(12) as

K Bg|Bf o= 20w — Qy — Ag(w)] 7 73, (17)

where according to the definition (9), w stands for w + 0%,
Let us now consider the equation of motion for s; ¥(t) which reads

ist=[sT,H] =2 tisififi+ ) Jij(stsi+sisy (18)
J J

Let us first discuss a pure magnetic system without doping in which
case the first term in (18) does not contribute. Then the equation (18)
can be linearized by using the Tyablikov approximation [9]. This ap-
proximation applied to a magnetically ordered system consists in re-
placing the z-component of the spin operators by its expectation value,
sf — (sf) = o, which should be evaluated self-consistently as a func-
tion of temperature. As it is well known [9_],‘this approach leads to a
fairly good extrapolation of the spin-wave dynamics at finite tempera-
tures and provides a reasonable estimate for the AFM (or FM) phase
transition temperature.

‘In the work that follows, our main goal is to extend the Tyablikov
approximation to the case of a doped-AFM state and examine effects
of moving holes on the staggered magnetic moment o. These effects
which are expected to be mainly due to a coupling of spin waves to
particle-hole pair excitations will be examined by calculation the self-
energy part in (12) to the lowest (~ t2) order. Of course, the particular
character of the energy spectrum of holes in an AFM background [13,14]
will be taken into account in the calculations. Hence, after performing
Tyablikov linearization the Fourier transformed equation (18) reads

is} = {\/_Z - k)i oJet 5 J(O)s + = J(q)s_q}: (19)

—iq(i—j 1 ~ig(i—j
t(‘])='ﬁ e~Hl=0y, J(Q)=NZC W=D 35 (20)

ij 1,7

.{,

Using the definitions of #;; and Jij one gets
tg) = 2179, 7g = 1/2[cos g; + cos g (21)
J(q) = 2Jyg +&cos ¢, E=J"/2J (22)
where z=4. The equation for By(t) c;m be now written as
iBy = 20X,B, + i, (23)

where A; is 2 x 2 matrix

\ =l< J(0)  J(q) : o
T2\-ug -J0) -

and j, is the current produced by the presence of holes. It reads
— O fi_ .
- S (e ) 25
(k+ Q)f},- Srtq ,

Taking into account that
(ig, B =0 (26)
we obtain for the frequency matrix 2, the result
Qg =20, , (27)

leading to a usual zero-order AFM spin-wave spectrum renormalized
with the magnetization 0 : w, = 2aw( ) , here we use the definition

wi® =1/2/7(0)2 = J(q)? (28)

_ To obtain the self-energy part Ay(w) from (14) and (15) one should
notice, first, that in the equation (23) the linear terms in By do not
contribute to the irreducible Green’s function (15) and, hence, A g(w)is
given by a simple substitution into (15) of j,, Eqn. (25) instead of the
full derivative zB Secondly, the lowest order self-energy contribution
is provided by the first term in the right hand side of the expression .
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(15), while the secopd term gives rise to higher order corrections. Then,
restricting ourselves to the lowest order we have :

Ag(w)= << ]ql]q > T3. (29)

By substituting j, from (25) into (29) we obtain explicitly Ag(w)
matrix as

Ag(w) =20+ Z Xq,k,k (W

kk'

t(k —q)t(k' —q) t(k— q)t(k')) = (30)
—t(k)t(k' —q)  —t(k)(K') |

where .
Xq,k k(W) =K fk_qfklf fri—g > (31)

Below we calculate _the Green’s function (31) with a proper de-
coupling procedure which is equivalent to the Born approximation in a
usual diagrammatic approach [5,6]. .

Let us consider now a Green’s function xg i (t) which is the
Fourier transform of (31). By definition xg¢,x k:(t) involves two time
correlation functions of the form (f7_ (t)fk(t)fk,fkr_q) We decouple
them in the following way

O frg) = g Of - e®f ) (32)

Then introducing a one-particle retarded Green’s function for holes as
GW (k,w) = =< fi|fif >. and applying the Fourier transform

+o0 : :
(U feda= [ dtem ! OF) (33)

one obtains :
(fif fr)w = 2mbppn(w)p(w + p, k) (34)

Here n(w) = 1/(1 + €#) is the Fermi distribution function and

1
pw, k) = ——Im < flff >oriot : (35)

8

b2t g

is the spectral density of the hole Green’s function. The chemical poten-
tial g, which is a function of the hole concentration § and temperature
T, satisfies the self-consistent equation

+oo
1
= — dwn(w — w, k 36
w2/ / K)o, k) (36)

Finally, by makmg use of the spectral representatlon for Green’s func-
tions one comes to the result '

Xakb(0) = Oxgr(w) ()
The function x, r(w) is given by |

Xo k(@) = /_:o duo, [:’o "(0;’1 p) — n(wy — P) N

w4+ w; —wq 420t
xp(wr, k ~ q)p(wa, k) (38)

and corresponds to a simple ”bubble” diagram in the conventional ap-
proach [5,7] developed for 7' = 0. It is worth noting that the factor
20 entering in the self energy, Eqn. (30), may be regarded as a'hole-
spin vertex correction which is a function of temperature T' and hole
concentration § in our consideration. In the following it is convenient
to indicate more transparently the explicit dependence of A,(w) on the
staggered moment o by introducing the notation Ag(w) = QUKq(w).

It is easy to derive some relations between the matrix elements of-
the self-energy (30). One gets

AgZ(w)___ llq(_w)
A W) = -Afw) (3

Hence, the poles of the Green s function (17) are glven by the
equation :

[w — A (u.:)]2 _ (2mu0)2

By(w) + Au(w)} .
S0+ (o)

oy Ba) - A;?(w)J i

5700 = 7o) 0
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with the following' notations

Ag(w) = % [A3(w) = B2 ()]
By(w) = [A“(w) + RZy(-w)] (41)

One can see that the solutions of Eqn. (40) scale with the factor
20, therefore, a notation wq = 200, will be also used.

IV, Staggered magnetization and Neel temperature

Let us recall that the staggered magnetization ¢ = (s#) should be
obtained self- consistently through the following equation

= Stsyst (42)
q9

g =

l\Dl»—l

where
+oo I < B B+ Lo
(S;S:) = / dw m l 1 >w+:0+ (43)

-0

with the i imaginary part of < By|B} >!! being defined from the equa-
tion (17). The equation (42) then becomes

1J B,(20w
2i NZz (0)‘*' o(2 q) coth( foid, )+

2aw

with the spin excitation spectrum wy = 20wq being a solution of the

Eqn.(40). Below we will solve the Eqn.(44) for the staggered magneti--

zation ¢ in the vicinity of the phase transition to a disordered magnetic
state when o '— 0. Accordingly the quantity x4x(w) should be esti-
mated by taking into account a particular character of the hole spectral
density p(k,w) in the AFM spin background near the phase transition.

The Green’s function G(*)(k,w) for a single hole moving in a 2d
square lattice with a quantum Neel background was calculated [13,14]
within the self-consistent Born approximation on the basis of the Hamil-
tonian (7),(8) with spin’s operators mapped onto boson’s ones. In this
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consideration a hopping of a hole is only possible by emitting (or ab-
sorbing) of a spin-wave excitation that leads to a strong renormaliza-
tion of the hole propagation properties. When the system approaches
an AFM phase transition due to a strong anisotropy of copper oxides
a 3d long-range order tends to be broken by losing the interlayer mag-
netic correlations while strong 2d intralayer spin-spin correlations still
persist and survive even in a disordered phase [3,4]. This makes rea-
sonable an assumption that the approach to a hole motion developed
in [13,14] is also applicable near the phase transition. However, effects
of a finite hole doping and of temperature should be taken into account
and a strong renormalization of spin-wave excitation spectrum is one
of them.Below we first briefly sketch some results of calculation of the
spectral density function p(k,w) for a single hole at zero temperature
[13,14) and then estimate how p(k,w) varies with increasing hole con-
centration 6§ and temperature T. In this way some insight is gained
about the shape the spectral density p(k,w) tends to when the system
approaches the AFM phase transition.

Being first suggested by Schmltt Rink, Varma and Ruckensteln
[17] and then developed by Kane, Lee and Reed [13] and Martinez and
Horsch [14] a perturbative approach within a slave fermion formalism
and self-consistent Born approximation proved to be very successful in
reproducing the spectral density function p(k,w) for a single hole ob-
tained by exact diagonalization of small clusters [18]. All of that led
to the consensus that the hole spectrum involves a narrow quasiparti-
cle band of coherent states at low energies and a broad continuum of
incoherent states above. The correspondmg spectral function is then
represented as :

p(k,w) =.pcah(k,:w)+pincoh(k’w) . (45)

with »
- pooh(k,w) = Zpb(w — Ex). (46)
The quasiparticle (QP) dispersion FEj; possesses minima at
k =:(£x/2,4£7/2) with the value Enin(J) = —3.2t + 2.9J%7 for the
relevant values of the exchange constant 0.1 < J/t < 1;the QP band
width W is estimated to be of order of J, while the residue Zy ~ J/t.
Kane et al.[13] estimated the incoherent part p(k,w) of the spectral
density to be practically a constant, p(k,w) ~ 1/t in a wide energy
interval above the QP band. Martinez and Horsch [14] calculated thls
interval to range from Ey,;, + W up to I' < zt, where z = 4.

11



Igarashi and Fulde [5] applied the self-consistent Born approxima-
tion to calculate p(k,w) at finite low dopant concentration § << 1
and T = 0. They found that for any particular momentum % a hole
spectral density is redistributed in such a way that a new incoherent
extra structure appears quite below the QP band. This extra struc-
ture with a spectral weight of order of § provides a fulfilling of a sum
rule (Eqn.(36) in our notations) with a chemical potential located in-
side the QP band. Along this way a four-pocket Fermi surface for
non-interacting quasiholes was justified within that consideration and
used to calculate a renormahzatlon of spin-wave excitations due to their
coupling to particle-hole excitations. As a result it 'was proved, how-
ever, that a broad incoherent part of the hole spectrum gives the main
contribution to this renormalization. Similar results have been also ob-
tained by Khaliullin and Horsch [6] who estlmated the incoherent part
of the hole spectral density as a constant p ~ _I‘ where T' < 2t, w1th1n
proper energy intervals below and above the QP band. They also em-
phasized that quasiholes produce a minor effect in a spin-wave velocity
reduction. That is mainly due to the fact that the QP band is rather
narrow and the residue Z of a quasihole pole is strongly reduced le.
Zk ~ 4 << 1, in the relevant range of J values.

The results outlined above with respect to a hole spectral denSIty
function p(k,w) and its evolution with hole doping were also examined
in [19] and proved to be correct. However, as the system approaches
the AFM phase transition a further transformation of p(k,w) takes
place. Actually, as it was pointed out by Kane et al.[13] the existence
of coherent quasihole states depends crucially on the density of states
of low-lying spin-wave excitations. The number of such excitations
increases dramatically due to a softening of the spin-wave spectrum near
the phase transition [3,4]. In our approach this softening is governed by
the stuggered magnetization . As a result the processes of scattering
of a quasihole by spin-wave excitations turn to be dominant, that lead
to a broadening of the QP peaks. These peaks lose their 1dent1ty and

_the entire hole spectrum becomes incoherent. :

Hence, to evaluate the function xg,k(w), Eqn (38) near the AFM
phase transition we assume a purely incoherent k -independent hole
spectral function '

Pl ) = ) % 50T = D | @)

where T f zt.

12

So taking into account the incoherent part only, it is easy to check
that the quantities Ag(w) and Bg(w) become g- -independent. Moreover

note that
Ag(200,) =0

2 .
. t .
B,(200¢) = — (%—) x(T, 8) + O[(20@,)’]
) .
~ t . -
B,(200) £ A} (200,) = — (—Z—) (1 £79)x(T) 8) + Ol(20@4)°)(48)
wheo 2qdq tends to zero, and we define x(T, 5) as

(T56) = — /_c:dwl / Zdwz”(““ #) = nlws - “)p(wl)p(m (49)

Wy — W2

The function x(T,6) depends on temperature T and dopant con-

' centration § through the chemical potential p = (T, 8) which satisfies

the Eqn.(36). The self-consistent equatlon (44) for the stuggered mag-
netization g:then becomes :

_E_J(O) Zt) X(T 5) oth(ﬂaw) | ‘(50)

and to the lowest order in o the Eqn. (40) leads to the following spin-

wave spectrum
2 - 2
wg = 20w [1 ~ Z—t—x(T, 5)] = 200, (51)

Note that we approximated the factors J (0) = J(q) in Eqn. (40) as the
2d factors zJ(1 :i:'yq) while the quantity wg ) preserves its 3-dimensional

nature, Eqn.(28).
After substituting (51) into (50) we expand the right-hand side of

Eqn.(50) in terms of o that leads to the result

I S
(52)
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where the Neel temperature TN(O) for the undoped case, 6 = 0 is
expressed as follows

J 1 J2(9)]7
TN(0)=-C—£, Ce= q [1 ngg;] - (53)

When £ — 0 the dominant contribution to the sum in Eqn.(53) origi-
nates from the neighborhood of ¢ = 0 that leads to a singular depen-
dence as C¢ ~ Inf~!. Hence, the Neel temperature tends to zero with
& — 0 and the correct thermodynamlc behavmr is restored in 2d hmlt

ol o

From the Eqn. (53) one can see that at finite dopant concentration
the stuggered magnetization vanishes at temperature TN(6) Wthh is
determined by the equation

Tn(6)
Tn(0)

zt? :
T OR) B 1)

To simplify the matter let us first rewrite x(T), §) in the following way

X(T,6) = ¢ /0 dz nll(22 ~1) - ]in - (55)

where the chemical potential u = u(T, ) satisfies the Eqn.(36). To
derive the formula (55) the spectral density function p(w) is taken in the
approximate form (47) which is valid near the AFM phase transition.
With this constant density the Eqn.(36) for the chemical potential p

can be easily solved to give the Fermi distribution function entering in
(55) as follows

exp (26T(z — 6))]
Yt T exp(—2pT%)

n[[(2z —1) -] = (56)

with g =T,

One can see that x(T,§) is a rather complicated function of T and
. Further we estimate x(T,6) and solve the Eqn.(54) in two limiting
cases. In both cases the Eqn.(54) leads to qualitatively close results and
describes a sharp drop of the Neel temperature with increasing dopant
concentration.

14

" First we estimate the quantity x(T, ) at extremely low hole con-
centration and high enough temperatures 8 ~ Tx'(0) such that

2876 << 1. | (57)
In this case one obtains from Eqn.(56)
n[M(2z —1) — u] ~ 2[31‘5(”“ 0<z<1). (58)

This Boltzmann—type form of the distribution function arises due to a
strong renormalization of the chemical potential y, Eqn.(36). Such a
behavior resembles a low—density Fermi gas in a strongly nondegenerate
limit. However, it is only a formal analogy because there are no well-
defined quasiparticles in our consideration. Inserting (58) into (55) we
obtain ) ST
x(T,6) = 2B6F(20T) - (59)
with '

l—=2

(60)

1
F(2p7) =/ dz 727 |
0

T

Typical values for 28T ~ t/Tn(0) are quite large. Therefore an asymp-
totic expression for. F(28T") can be used that yields the following esti-
mate

1 1
‘)
F(2pT) = 28T [ln ’BF+C+O(9,BP)] (61)
where C is Euler constant (C ~ 0.6). Hence Eqn. (54) reads

Jr 1—-7

62
2t26+lnT(0) Int - (62)

where 7(8§) = Tn(6)/Tn(0) denotes the reduced Neel temperature.
We have plotted the corresponding curve 7(§) in Fig. 1 with t =
0.5eV, J/t = 0.2, I' = 2V/3t and with the Neel temperature
Tn(0) = J/3 (~ 300°K) which is typical for the undoped copper ox-
ides.

From Fig.1 one can see that being valid at extremely low hole
concentration, § < 0.01 and temperatures 7 <1, the Eqn.(62) describes

" a.sharp decrease of Tn(6) in the upper part of the magnetic phase

diagram. Being formally extended to lower temperatures and higher
concentrations § the curve 7(6) crosses the temperature axis at 6* =~

15



0.04, i.e. 7(8*) = 0, that is in a good agreement w1th an experimental
value 6.~ 0.03 (3, 4]

An extrapolation of the Eqn.(62) to the region of higher values of
é and more lower temperature still remains questionable. Therefore, let
us return to the basic equation (54) and examine the other limit

26T6 >> 1, (63)

in which case the Eqn.(54) can also be treated analytically. The Ferm1
distribution function (56) then ‘becomes

: L . -1 . :
n[I‘(?,m—l)-—,u]:! 14erE=0 (64)

In comparison with the case we considered above, Eqns.(5§7) and
(58), the values of the parameter 28" ~ t/Tn(§) is now strongly en-
hanced due to a strong reduction of the Neel temperature Tn(§) at
finite hole concentration §. This allows us to approximate further the
Eqn.(64) with a familiar step function. Then a straightforward.alge-
braic calculation of x(7T',§) leads to the following result

zt? :

where a mean—field renormalization of the exchange constant J — J(1—

§)? is also taken into account in accordance with (6). With the same

values for the parameters as above we found that 7(6*) = 0 at 6* ~ 0.08.

Finally, we solved the Eqn.(54) in two limiting cases. First solution

(62) is applicable at extremely low hole concentration and the second

one (65) is for somewhat higher values of §. Both solutions reveal a

strong decrease of the Neel temperature at very small doping level that

is consistent with experlmentally observed behavior of Ty (6) in copper
oxides.

V. Conclusidn

Based on the t-J model in a slave fermion pseudospin representa-
tion we have studied a mechanism of magnetic phase transition for a
doped antiferromagnet. Not only thermally excited spin fluctuations,
but also processes of decay of spin waves into particle-hole pair excita-
tions lead together to a strong suppression of AFM long-range order.
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The self-energy corrections to the spin Green’s function are calculated
in the self-consistent Born approximation with a particular form for a
hole spectral function p(k,w) which is valid near the phase transition to
a magnetically disordered phase. By using the results of previous stud--
ies as a background we argued in favour of a broad structureless shape
for p(k,w). In this approximation an equation for the magnetic order
parameter is analyzed to obtain the Neel temperature dependence on
hole concentration. Analytical estimations carried out in the final stage
shown clearly a sharp decrease of the Neel temperature with doping.
Just this behavior was observed in copper oxides.
The scheme developed in the present paper could be considered as
a preliminary step to start accomplishing a more tendentious program.
Actually, more accurate description could be done within complete self-
consistent calculations when both systems, holes and magnetic“excita_-
tions, are treated on an ‘equal footing. This program is clearly for-
mulated by using the Born approximation both for the spin Green’s
function and for the hole Green’s function {20]. That leads to a set of
self-consistent equations for these Green’s functions which should be
solved numerically. This work is in progress now and the results of
numerlcal computations will be presented elsewhere
1 0 T T T ¥ T T v T T

0.9 , | —
0.8
So7p o
06 ‘ SR =
=05 1
0.4 ' ' 7 :
0.3 ‘ : 1

0.2} \ -
0.1 . : . 1-
0.0 R A P s n A )
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Fig. 1 The reduced Neel temperature dependence on hole concentra-
tion as following from Eqn.(62). The parameters are defined in the
text. '
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