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1 Introduction 

The problem of a hole motion in an antiferromagnetic (AF) background have 

attracted much attention last years. That is mainly due to a hope to elucidate 

the nature of the carriers involved in the high-Tc superconductivity in copper 

oxides. It is believed that the essential features of the problem are described 

by the t - J model with Hamiltonian written a;; 

H,_J = t L <t,<,. + JL:s,s, = H, + HJ. (1) 
(ij)a (ij) 

Here < ij > indicates nearest-neighbor pairs, ct, = c1;,(1- ni,-u) are the 

electron operators with the constraint of no double occupancy. At the half­

filling limit only the Heisenberg part of the Hamiltonian ( 1) is relevant and 

it describes an AF insulating state. A hole doped in this state propagates on 

tho lattice strongly interacting with a spin background. The properties of a 

single hole doped in the N eel spin background have been analyzed intensively 

with various numerical and analytical methods. Among them are the exact 

diagonalization of small clusters [1] and variational calculations [2]. A rather 

transparent description within a "string" picture have been developed by sev­

eral authors [3]. A perturbative approach to the problem wa;; proposed by 

Schmitt -Rink, Varma and Ruckenstein [4] and developed further by Kane, 

Lee and Read [5] and Martinez and Horsch [6]. In this approach a slave 

fermion representation for the t - J model was used and a hole propagation 

was treated within the self-consistent Born approximation (SCBA). In this 

formulation of the t- J model a hole motion, which is only possible due to its 

strong coupling to spin-wave excitations, is regarded as a sort of spin polaron 

propagation [6], [7]. The results obtained in this approach turned out to be 

in a good agreement with those for exact diagonalization of small clusters [1], 

[6] for a wide range of a parameter value J ft. 
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Now there exists a consensus that a hole doped in a quantum N eel back~ 

ground can propagate coherently with the quasiparticle (QP) band width of 

order of the exchange constant J and with a hole ground~state energy min~ 

ima at momenta k = (±rr/2,±rr/2). The calculated spectral density function 

[1], (5], (6] reveals a QP peak of intensity Zk "' Jjt at low energy side of 

the spectrum and this peak is well separated from the broad incoherent part 

which has a width of about 6 + 7t. 

Being so successful in reproducing the single-hole results calculated by 

exact diagonalization method the perturbative approach within the SCBA 

is expected to provide a reasonable scheme for examining quasiparticle hole 

properties at finite doping as well. Some progress along this way has been 

gained by Igarashi and Fulde (8]. By developing a standard diagrammatic 

technique at T = 0 they found that at finite doping a hole Green's function 

changes in a rather complicated way and new incoherent states below the 

QP peaks appear. Nevertheless, as it was argued in (8] to the first order in 

6 the QP band characteristics change negligibly as compared to the single­

hole results (8]. Therefore, the quasiholes being treated as noninteracting 

ones, fill up four "hole pockets" around the degenerate minima at the mo~ 

menta k = (±rr /2, ±rr /2). Some arguments have also been given in (8] that 

the fraction of the Brillouin zone covered by these pockets is equal to hole 

concentration 8. 

Below we present the results of calculations of hole's spectral properties 

based on the same formulation of the t- J model as in [5] - [8]. We assume 

a quantum N eel state for magnetic background and develop further the self­

consistent Born approximation to calculate with more accuracy the spectral 

density function A(k,w) and the momentum distribution function N(k) for 

holes at finite doping and finite temperatures. To this end the irreducible 
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Green's function method will be used to derive the two~time hole Green's 

function. As compared to the single-hole case [5], (6] now the self-energy 

involves both the processes of emitting and absorbing of spin waves and, that is 

more, incorporates temperature dependent corrections. The integral equation 

for the self-energy is solved numerically on the 16 X 16 lattice with good 

accuracy that allows us to compute A(k,w) and N(k) and analyze a quasihole 

behaviour at various concentrations 8 and temperatures T. While performing 

the computations we do not use from the beginning any additional ansatz 

about the shape of A( k, w) that differs our approach from that of presented 

in [8]. 

In this paper we are not interested in effects of renormalization of spin~wave 

excitations due to t~eir coupling to holes and treat spin waves as bare ones. 

Instead, focusing on the doping and temperature dependence of hole's spectral 

properties we examine not only the low concentration limit, but extend our 

calculations to a regime of moderate hole concentration, fJ ~ 10%, as well. A 

validity of such an extension will be discussed below. 

In Sec. II we describe the effective Hamiltonian in a slave-fermion Schwinger 

boson representation. The Dyson's equation for a hole two~time Green's func­

tion is derived and the self-energy is obtained in a SCBA. An iteration pro­

cedure to solve an integral equation for the self-energy is discussed shortly in 

Sec. III and numerical results are presented and analyzed. Section 4 contains 

the concluding remarks. 

3 



2 Effective Hamiltonian and Green's function for 

holes 

We make use of a slave-fermion Schwinger boson factorization for electron 

operators ciu = h[ biu, where the slave-fermion operator ht generates a hole 

at site i and the boson operator bia keeps track of the spins. Using this 

factorization the t - J model ( 1) can be mapped onto a new effective Hamil­

tonian in a few steps. 

We consider a quantum Nee! state and divide the square lattice into A( I) 

and B(l) sublattices. Fist to simplify a matter let us perform a 180° rotation 

of the spins at the B sublattice that is equivalent to the replacement 

Cia ---+ Ci,-u' s± -+ s'<' ' ' , Sf -+ -Sf i E B. (2) 

Then the N eel state can be considered as a condensate of bq bose field 

and, hence, to the lowest order in 1/ S expansion biT = v'2§. The uncon­

densed bosons bil turn into spin-excitation operators that can be written after 

Bogolubov u - v transformation as follows 

bql = UqO:q + VqO~q' (3) 

where bql is the Fourier transform of btl operators in the first Brillouin zone 

and 

Uq = [ 
~ 1/2 

1 + v 1- "/~] 
2J1 _ 'Y;f 

v, ~-sign("!,) V •- "/~ 
[

1- ~]1/2 

2J1- 'Y;f , 
(4) 

1 
'Yo= 2(cosqx +cosqy) (5) 
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Here the lattice spacing is taken as unity. Finally, we arrive at 

II, ~ I>thk-q[M1(k, q)a, + M2(k, q)a:!:,]-1' L ht hk, (6) 

~ k 

IIJ ~ L,w,ata,, w, ~ SzJ(l- 6J2 J1- "Y;f (7) 

' 
where 6 = {ht h;) is a hole concentration, z = 4 and 

(2s 
M1(k, q) ~ zty N(u,"/k-q + v,"/k), (8) 

(2s 
M 2(k,q) ~ zty N(u,"/k + Vq"/k- 0 ), (9) 

With more details the effective Hamiltonian ( 6) - (9) is derived in a number 

of papers [5], {6], [8]. To distinguish this Hamiltonian from the original t- J 

model we call it as the magnetic polaron model. It is worth noting also that 

an additional term proportional to a chemical potential JL is involved explicitly 

in (6). A variation of JL, as a function of hole concentration 6 and temperature 

T, should be calculated self-consistently. 

Let us now define a single-particle two-time retarded Green's function 

((hk(t)lht(t'))) ~ -iO(t- t')({hk(t),ht(t')}), (10) 

where O(t) is the step function and {,}stands for the anticommutator. The 

·~ Fourier transform is defined by 

+oo 

((hklht))w ~ j dteiw(t-t')((hk(t)lht{t'))) = G(k,w). (11) 

-00 

To obtain an equation of motion for the Green's function one may follow 

Ref. {9] differentiating with respect to both times t and t'. Then after the 

~Ourier transform we have a set of two equations 

(w + JL)G(k,w) ~ 1 + 'L,((hk_,B(k, q)lht))w, (12) 

' 
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(w + p, )( (hk~,B(k, q)iht) )w = L:;C (hk~qB(k, q)ihk_,,B+(k, q')) )w , (13) 
q' 

where 

B(k,q) = M1(k,q)a, + M,(k,q)a:!:,. (14) 

Substituting (13) into (12) and defining the zero order Green's function 

G01(k,w) = w + p,, we get the equation 

G(k,w) = Go(k,w) + Go(k,w)T(k,w)Go(k,w) (15) 

where the scattering matrix T(k,w) is a higher order Green's function 

T(k,w) = L((hk~qB(k,q)iht~,,B+(k,q')))w· (16) 
qq' 

The Eq.(15) can be also rewritten as the Dyson's equation 

G~ 1 (k,w) = G01(k,w)- E(k,w), (17) 

where the self-energy E(k,w) is connected with the scattering matrix by the 

equation T = E + EGoT. Hence, one can see that the self-energy E(k,w) is 

the irreducible part of T(k,w): 

E(k,w) = rU"l(k,w), (18) 

which can be evaluated by a proper decoupling procedure for correlation func­

tions entering in (16) as follows 

( ht_,, B+ ( k, q')hk~,( t) B( k, q, t)) :oe ( ht_, hk~q ( t) )(B+ ( k, q )B( k, q, t) )6", :oe 

"'6qq,(ht_,hk~q(t)){Mf(k,q)(o:ia,(t)) + M,i'(k,q)(<>~,o::!:,(t))}. (19) 
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Using the spectral representation for Green's functions we obtain the fol­

]owing intermediate result for the self-energy 

J 

+oo dw J+oo dw eP(w,+w,) + 1 lm((hk-qiht_,))w,+•" 

E(k,w) = L --;-' / (e~w, + l)(e~w, 1) w (w1 + w2 ) + i77 X 
q -oo -oo 

{Mf(k,q)lm((o:,lo:i))w2 +;" + Mi(k,q)Im((o::!:,lo:_,))w2 +;"}. (20) 

Further we neglect self-energy corrections to the spin-wave Green's function 

that results in the simplest form for the spectral density function 

-~Im((a,lo:t))w = 6(w- w,), 

-~Im((a:!:,lo:_,))w = -6(w + w,). 

Finally, we obtain 

E(k,w) = E1(k,w) + E,(k,w) 

+oo 
E1(k,w) = "Mf(k,q) J dE A(k- q,E). [1- n(E) + N(w,)], 

L..._, W - £ - Wq + lTJ 
q -oo 

+oo 

E,(k,w) = "Mi(k,q) J dE A(k- q,E). [n(E) + N(w,)J, 
£.... W - E + Wq + 17] 

q -oo 

where n(E) = (e~' + 1)-1 and N(w) = (e~w- 1)-1 and 

A(k,w) = ~·.!_lmG(k,E+i'l), 
1f 

(21) 

(22) 

(23) 

(24) 

(25) 

is the spectral density for holes. To make a set of equations (17) and (20) ~ 

(25) self-consistent the following equation for the chemical potentialp, should 

be adopted 

+oo 

6 = ~ L J dcn(E)A(k,E). 
k ~oo 

(26) 
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As it is shown in Appendix the set of equation we derived is equivalent at 

T = 0 to that obtained in standard diagrammatic technique within SCBA. 

However, in our formulation a temperature dependence is taken into account 

in explicit way. 

3 Numerical solution and discussions 

In this section we present the numerical results for the set of self-consistent 

equations ( 17), (22) - (26). We consider two dimentional square lattice on 

the 16 X 16 cluster exploiting all possible symmetries. For instance, one may 

deal only with 25 point in the irreducible wedge of the antiferromagnetic Bril­

louin zone (AF BZ). The frequency space is divided into meshes with their size 

0.005t to provide sufficient energy resolution. To make the iteration procedure 

convergent a sma11 imaginary part f/ = O.Olt to the frequency in the Green's 

function is added. The numerical procedure was organized in such way that 

at given 6 and T a value for the chemical potential 1-L and the spectral den­

sity function A(k,w) were calculated self-consistently by iteration procedure. 

Typically, after 40-50 iterations the chemical potential converged to some fixed 

value!'= J-1.(8, T) and the sum rule on A(k,w) was fulfilled with accuracy bet­

ter than 1%. Below presented A(k,w) at given 8 and T we measure frequency 

from the chemical potential J.l.( 8, T). By performing calculations with J = 0.4 

and J = 0.2 (from now we will refer all quantities in unit oft) we found no 

qualitative differences. Therefore the data with J = 0.4 will be only discussed. 

3.1 Spectral density A(k,w) 

We started calculating the spectral density function A(k,w) for the single 

hole at T = 0 and found substantial agreement with numerical results pre­

sented in Ref. [6]. Further referring these results we discuss how the hole 
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spectral properties will be changed with increasing hole concentration 6 and 

temperature T. 

In Fig. 1 we show spectral function for several k-points calculated at T = 0 

and 8 = 3%. Let us first discuss the k-points belonging to the edge of the AF 

BZ, Fig. 1(a) and (b). There are no any visible changes in the shape of A(k,w) 

as compared to the single-hole case, 6 ---;. 0. More precisely, calculations give 

a few percentage increase of a QP spectral weigllt Z(k) (the integrated area 

under a QP peak). For instance, the value of Z(~, !f) increases from Zoe 0.33 

at 8 -> 0 to Z oe 0.35 at b = 3% and this tendency is kept for higher 8 (see 

Table 1). We found that the QP peak fork= G, ~)is located below!' at 

WQP( ~, ~) oe -0.01 while for k = (0, 1r) it is above J.l., WQp(O,,.) > 0. 

For the momenta k laying far from the AF BZ edge the spectral function 

A(k,w) is modified with doping in another way. Actually, one can see from 

Figs. 1(c) and 1(d) that in comparison with the single hole case fork= (0, ~) 

and (0,0) the spectral density is redistributed so that a new incoherent broad 

structure, as first has been noted in Ref. [10], appears far below the chemical 

potential. The spectral weight for this new structure is proportional to h. 

The peculiarities in the shape of A(k,w) mentioned above become more 

pronounced with further increasing of hole concentration. The spectral density 

A(k,w) calculated at T = 0 and 6 = 10% is shown in Fig. 2 for two most 

representative k-points: k = k* =(~,~)and k = (0,0). Examining the data 

fork*, Fig. 2(a) and Table 1, we noticed about 10% increase of the QP spectral 

weight Z(k*). Also the QP peak is shifted to the position wop(k*)"' -0.055. 

Fork= (0,0), Fig. 2(b), a strong suppression of the QP peak at woe 0.8 

and forming a band of incoherent excitations below the chemical potential are 

seen. 
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is measured from the chemical potential p. 
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Fig. 2.Spectral functions A(k,w) for 1' ~ 0 and 6 ~ 10% at k ~ (-rr/2,rr/2) (a) 

and k ~ (0,0) (b). 
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The energy minimum of the QP band was found at k ~ k' throughout 

our computations. Figure 3 shows doping dependence of the energy E(k') ~ 

WQp(k) + p. of the lowest QP peak and the chemical potential p.. We think 

that our finite-cluster computations at extremely low concentration, 6 < 6~, 

are not rigorous enough that results in inverse relative position of JL and E{k*) 

i.e. p. < E(k') in this region. Being measured from p. the position of the 

lowest QP peak is fitted with a good accuracy by the following dependence 

E(k') -p. ~ WQp(k')"" -1.51(6- 61 ) for 6 > 61 "" 1.5%. 

By analogy with a conventional case of free-fermion gas we associate the 

quantity p. - E(k'), taken for 6 > 6, with the Fermi energy for a quasihole 

gas. We can also define a degeneracy temperature as Td(6) ~ 1.516. It 

means that at T > Td( 6) one should expect a different behaviour for the 

quasihole gas as compared to the low temperature limit T < Td. We examine 

this hypothesis in Sect. 3.2 considering temperature variations for the hole­

momentum distribution function N(k). 

Now we address the problem of the temperature dependence of quasihole 

spectral properties. Analyzing a variety of spectral densities A( k, w) calculated 

in a wide temperature interval and several values of 8 we found no significant 

changes in the shape of A(k,w) up to T ~ Td(6). At a given 6 the only 

temperature effect is an equal shift of A( k, w) to higher values of w for all k. 

In particular, the lowest QP peak fork* is close to zero energy, wqp(k*') ~ 0, 

T "' Td( 6). 

Such a behaviour is an effect of temperature variation of the chemical po­

tentialp. ~ p.(6, T), (see Fig. 4), crossing the bottom of the QP band (i.e. the 

lowest QP peak energy) when temperature reaches the critical value T "' Td( 6). 

With further increasing in T, as it can be seen from Fig. 5, the sharp structure 
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Fig. 3.Chemical potential p. (solid line) and energy of the lowest QP peak 

E(k" = (7r/2,7r/2)) = wqp(k") + p. vs 6 at T = 0. 
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Fig. 4 .Temperature dependence of p. for 6 = 3% (lower curve) and 6 = 10% 

(upper curve). 
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Table 1: QP spectral weight Z(k') and QP peak position 

WQp(k') at k' = (7r/2,Jr/2) for different hole concentrations 

and T = 0. The concentration 8 ~ 0.4% corresponds to a 

single-hole case 

6 

0.4% 

3% 

10% 

20% 

Z(k') 

0.329 

0.353 

0.369 

0.373 

WQp(k') 

0.005 

·0.010 

·0.055 

·0.085 

Table 2: The Dependence of Z(k') and WQp(k') on temper· 

ature 

(6 = 3%) 

T 

0.000 

0.017 

0.061 

0.100 

Z(k') 

0.353 

0.339 

0.333 

0.321 

16 

WQp(k') 

-0.010 

0.005 

0.115 

0.225 

of the spectral density is smeared out and all QP peaks are shifted and become 

above the chemical potential (wQp(k) > 0). 

It is worth noting a weak temperature renormalization of QP spectral 

weights Z(k) for k·pints at the AF BZ edge as can be seen for 6 = 3% and 

different temperatures from Table 2. 

To get more insight into the problem we compare the data for the spectral 

density A(k, w) and the imaginary part of the self·energy f(k,w) = -ImE(k,w ). 

Figures6(a)and(b)showf(k',w)obtainedfor6 = 10%atT = OandT = 0.1, 

respectively. Calculations at low concentration, e.g. 8 = 3%, give similar re­

sults. 

Figure 6( a) shows that f(k', w) "" 0 (we found f ~ 10-14 ) in the frequency 

interval lwl ~ 0.2 where the QP peak is located. This clearly indicates that 

there are no low-energy states to which the quasihole can scatter and therefore 

it has infinite lifetime. For higher frequencies, 0.2 < w ~ 7, f(k,w) grows 

sharply giving a wide distribution with a large characteristic amplitude. Since 

in this region lw- ReE(k,w)l <t: f(k,w) we can write 

1 
A(inwh)(k',w)"' 1rf(k',w) (27) 

Comparing f{k', w) calculated at higher temperature T = 0.1, Fig. 6(b ), with 

corresponding A(inooh)(k', w ), we conclude that the same relation (27) between 

them is hold. Though QP width rk. = r(k'' w = WQP) increases strongly 

with temperature and reaches the value r "'0.01 at T = 0.1, nevertheless, it 

remains still negligibly small. We come to the same conclusion with respect 

to other k·points arranged along the AF BZ edge, Fig. 7. 

Thus we can infer that quasihole states remain a well-defined excitations 

being stable over a wide range of temperature and hole concentration. 
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Fig. 6.Imaginary parts of the self-energy operator E(k,w) for 6 

k = (rr/2,rr/2): T = 0 (a);O.l (b). 
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3% at 

Presented numerical results for the spectral density could be fitted with 

some accuracy by the following formula: 

A(k,w)"' z. /k I + I I = 
7r (w- wqp(k))2 + ~~ w"wqp(k) rrf(k,w) w;<wqp(k) 

= A(wh)(k,w) + A(incoh)(k,w) (28) 

where /k = Z•'1 and '7 = 0.01. The broadening of the coherent peak seen in 

our figures for A(k,w) is· an artifact due to finite TJ introduced in our numerical 

procedure to facilitate computations. 

0.05 ~-------.. ---
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~ 

..!;: 0.03 

!'::' 
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-6 

~10--------
o.oo 1 2 3 4 5 

k 
Fig. 7.QP width f(k,w = wqp) dependence forT = 0.1 (solid line) and 

T = 0.01 (dashed line multiplied by 10-6 ) at five k-points: I - (0,0); 2 -

( • ")· 3 (' 3')· 4 ( 3' 
5
')· 5 (' ') g,g! - 4•4' - 8 1 8! - 2 1 2. 
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3.2 Momentum distribution N(k) 

In this subsection we present data for the hole-momentum distribution func­

tion N ( k) defined as 

+= 
N(k) = j dw n(w)A(k,w) (29) 

-= 

First we calculate N ( k) at T = 0 for several hole concentrations, Figs. 8 -

10. One can see four quasiparticle "pocketsl' at k = (±~,±%)superimposed 
over the smooth slightly k-dependent background. Let us first discuss an 

origin for a partial, of order 6, occupancy for k-po.ints far from the edge of 

AF BZ. To this end one should take into account a particular shape for the 

spectral density A(k,w) at these points, as seen from Figs. l(c), (d) and 2(b). 

It is clear that while calculating N(k) according to (29) the high-energy part 

of the spectral density is cut off by the Fermi factor and only the low-energy 

incoherent part A(incoh)(k,w < 0) contributes to background: 

0 

N(k) = J dw A(incoh)(k,w) = NB(k). (30) 

-= 
As found numerically, the spectral weight for the low-energy incoherent part 

A(incoh)(k,w < 0) is approximately equal to 6. Hence, it is possible to estimate 

the background value as NB(k)"' 6. 

Now we can consider k-points at the vicinity of AF BZ edge. As was 

pointed out above there is no incoherent part of the spectral density below 

the chemical potential, i.e. A(incoh)(k,w < 0) = 0 for this region of BZ. At 

T = 0 QP sates fork-points near k* are located below J1- and wqp(k) < 0. 

Just this states lead to appearance of QP "pockets". It is easy to get from 

(29) using formula (28) for A(k,w) that at zero temperature the occupancy is 

equal to N(k)"' Zk = Nqp(k) inside the "pocket" and Nqp(k) = 0 outside .. 
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Fig. 8-l!ole-momentum distribution function N(k) for 6 = 3% at T = 0. Four 

quasiparticle hole "pockets" at k = (±%, ~) are clearly see on smoothly k­

dependent background. 

·"'" 

Fig. 9.1!ole-momentum distribution function N(k) for 6 = 10% at T = 0. 
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Fig. 10.Hole-momentum distribution 

function N(k) for 6 = 20% at T = 0. 

The volume covered by "pockets" in the k-space increases with 6. However, 

we cannot obtain sharp Fermi surface at T = 0 due to our artificial broadening 

of A(k,w) spectra of order 1) = 0.01 

Studying temperature effects at a given concentration C we find that the 

momentum distribution function N(k) changes dramatically when temper­

ature reaches the value T ~ Td( 6). Momentum distribution calculated for 

6 = 3% at temperature somewhat higher than Td(3%) "' 0.01 is shown in 

Fig. 11 (pay attention on the change of scale). "Four-pocket" structure for 

N(k), which exists at T < Td, almost washed out at T ~ Td. This peculiarity 

can be easily understood if one takes into account a temperature shift of the 

QP spectrum WQp(k). As discussed in the previous section, forT > Td(6) 

all the QP peaks occur above the chemical potential and, hence, WQp(k) > 0. 

Thus the Fermi-factor leads to a strong reduction of the occupancy weight in 

comparison with the low-temperature value Z(k) that explains a disappear­

ance of the quasihole "pockets". We also found that background value NB(k) 

is almost T-independent and NB(k)"' 6. 
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Fig. 11-Hole-momcntum distribution function N(k) for 6 = 3% at T"' 0.017 > 

Td. Pay attention on the change of scale. 

4 Conclusion 

Based on the t-J model we have studied a doped anti ferromagnet and calcu­

lated the spectrum of hole excitations in a wide rage of temperature, T ~ 0.1, 

and hole concentration, 6 ~ 0.2. The t-J model was treated in a slave-fermion 

representation with holes considered as spinless fermions strongly coupled to 

spin excitations in a quantum Neel background. The effect of strong hole­

spin coupling is very important in forming the hole spectrum since there is 

no bare kinetic term in the effective Hamiltonian we consider, Similar to 

other approaches [4], [5], [6], [8] the problem was investigated within the 

self-consistent Born approximation based on the two- time Greens function for­

malism for finite temperatures. Mainly we were interested in the stability of 

QP hole excitation in respect of hole doping and temperature variation. 
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For this purpose we have calculated the hole spectral density function 

A(k,w) Eq. (25) and the imaginary part of the hole self-energy f(k,w) whose 

temperature and doping dependence have been studied. For k-points posi­

tioned at the AF BZ edge k = (rr/2,rr/2), (O,rr), the spectral density A(k,w) 

clearly shows a quasiparticle peak, with intensity Z(k) ~ J, at w = wqp(k) 

(see Figs. l(a),(b), 2(a) and 5(a)) which is stable in a wide range ofT and 

6 (see Figs. 5, 6, 7). A broad band of incoherent states with spectral weight 

(1- Z(k)) at w > wqp(k) is also seen. 

For low temperatures, T :-:; Td(6) "" 1.5J6, the QP peak at k = k' = 

( 1r /2, 1r /2) is positioned below the chemical potential, wqp = E(k) - Jl < 0 

(Fig. 3) that results in "four-pockets" shape for the momentum distribution 

function N(k) (Fig. 8 - 10). But at T > Td(6) this picture is completely 

washed out (Fig. 11 ). 

Since the intrinsic widths rk for QP states remain negligibly small at T ~ 

Td(6) a disappearance of the "pockets" in N(k) is not caused by a broadening 

of QP peaks but results from a strong temperature shift of wqp to positive 

values, w > 0. 

Examining k-points far from the AF DZ edge, k = (0,0), (O,rr/2) we have 

found a more strong variation of QP peaks with T and 6 (Fig. 1c,d, 2b ). In 

this region of k-space the most pronounced effect of doping is an appearance 

of a band of incoherent states far below p.. These incoherent states manifest 

themselves as a smoothly k-dependent background in momentum distribution 

N(k). 

Therefore the main result of the present calculations is a weak concen­

tration and temperature dependence of the spectral function (quasi-particle 

hole spectrum) while the momentum distribution function is proved to change 

dramatically with increasing temperature forT> Td with Td"" 1.5]6. 
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In the present investigation we neglected any renormaJization of the spin­

wave excitation spectrum. Hence, an extension of the model (6)- (7) [5], [6] 

to the regime of moderate hole concentration fJ 2: 10%, where one can expect 

a strong renormalization of the spin-wave excitations [8], seems to be ques­

tionable. But we can argue that due to a small radius of the AF polaron [7] 

and finite correlation length of AF fluctuations, even at higher doped cuprates 

[11], a qualitative description within the framework of the present model is 

possible. 

A more reasonable self-consistent calculations allowing for the renormal­

ization of AF spin-fluctuation spectrum will be considered in a separate pub­

lication. 
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Appendix: T = 0 limit 

Here we consider a particular limit of zero temperature, T = 0, and show 

in this limit an equivalence of equations (17) and (22)- (26) with that derived 

within the standard diagrammatic technique in Refs. [5], [6], [8]. To this end 

it is convenient to change the notations as follows 

G(k,w) ~ G(k,w- Jl), E(k,w) = E(k,w- Jl) (A1) 

Then the self-energy part E,(k,w- Jl), eq.(23), can be rewritten as 

+oo -- L j -1/trlmG(k- q,E) 
E 1(k,w) = Mf(k,q) dE . [1-n(c-Jl)+N(w,)J. (A2) 

W ~ £ ~ Wq + t1] 
q -00 

By analogy with (A2) a similar formula for f:,(k,w) and the equation for the 

chemical potential Jl = Jl(6, T) can be written straightforwardly from (24) and 

(26), respectively, with the replacement n(c) ~ n(£- Jl) in the integrands. 
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Let us consider now the case of a single hole, 6 ____,. 0, and T = 0. A value for 

the chemical potential l"o = JJ.(O, 0) in this case is determined by the equation 

"' 1"'/ 1 -0= NL..J dt(--)ImG(k,w), 
k 7r 

-00 

(A3) 

from which one deduces that 

ImG(k,E) = 0, if t < JJ.o, (A4) 

and, hence, 

E2 (k,w) = 0. (A5) 

Thus the value JJ.o defines a low energy cut off for the hole spectral density 

function that leads to 

00 

G(k,w) = -~ j dE ImG(k,E) 
7r w- £ + ;., (A6) 

"' 
The self-energy then takes the form 

00 

E(k,w) = f; 1
(k,w) = LMf(k,w)Jd£ -1/rrimG(k- q,t) = 

q W - Wq - [ + t.TJ 

"" 
= LMf(k,q)G(k-q,w-w,). (A7) 

Taking into account the Dyson's equation (17) which is written now as 

G(k,w) = [w- E(k,wJr 1 (AS) 

one comes to the equation for E(k,w) derived in Refs. [5), {6). 

Examining in the same way a regime of finite doping 6 f:. 0 and T = 0, 

where, however, t,(k,w) ¥ 0, we arrive at the equations of Ref. {8). The only 

difference is that a retarded Green's function G( k, w ), not causal one, is chosen 

in our calculations. 
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