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1 INTRODUCTION 

An important contribution to the unde.rstanding of the low-energy electronic 
, 

1 
' • '. ~-. I , .• , ' ', ' i ' t, · , ,. / ':, _, " , . . . \· .. . \. . 

spectrum of copper-oxides has been done by Zhanitimd Rice [1] who pointed 
''. . t'' .· ;: ' • !''': .; '., ,' . 

out the remarkable role of singlet formation for doped oxygen holes due to 
. I , ' ' , ' :_ , '. ', i t.: , ! .. - . ~ . I~. . • 

strong Coulomb correlations. Starting from the original p-d model proposed 
' ' ' '. '\ ✓ • ' ,' ! ' •. :: 

by Err1ery [2] and Varma et. al. [3] they have derived_ an effective one-bal}-d 
. ' . ': •. _( ' '.. ' • ~' 'I '' : :_. ' • J •' • : •, ,. '•, '. ·, ' ' ' • _._ ' -

t-J model for the copper oxide plane. The appearance of singlet quasiparticle 
•, ' ; • . . ' • ' " > ', i • ' 1 . · ' ;, ' ~ : , , 

states inside the p-d gap was proved by different methods. based on exact 
• < • • i ·:. 1 ; ,-~ ' i , • ( . ' ; ;'. , . ' • , •· . • . • - :. ; 
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diagonalization [4], cluster calculatio~s [5, 6], projection technique [7} and 
• I • ~ .' • ' , r 'i .' 

other calculation.s. It should be noted that the commonly used local density 
, ( ! ! .• ,. ' .'' ,,· ' , '." , '. I • " ' f 1' • , \ ' • •, ,.•5; ,. 

approximation [8] cannot describe such a singlet band formation due to the 
,' [ '. l, • , ' I ~. ~,- t ' • • • '· • • . ' ., 

insuffic:ient treatment of electronic correlations which, questions the .. results of 
C • • It ,.,. ' ~' ' t .- . 

these calculations. . ' 

. Recently [9, 10], the original Zhang-Rice procedur~ has been considerably 
' J ~ 'j• , .o I ,i 

improved in terms of the so-called cell-perturbation met.hod (see also [11, 12]) . 
• ' • ,'; ·• f . • ••• ·, ' ••• ' ' . •.· ,. ' 

It results in simple analytical formulas to reduce the p-(1, model to an effective 
, . , 1 ~ I , . j . • , ' , ; , , , ' •• , '·• ,1 j . • ' • , . ' . · · ' ',1 

singlet-triplet model. Applying the equation of motion method for, ,Green's 
. ·, '. . . I, ! • • • , • ., . , . , .i • ~- .' l • • ; ' ' • , ': . _( ', . , ' , 

functions (GF) it has been found, however, that the coupling between singlet 
,_ .• : ' ,, •• : ; •: ,. • ' ,: :, .: :,.' •. ,,, : ' ' \J ,_ •• i. '. 

and triplet band is very small [10]. So we _are left with a .Qne-band t-J ~ke 
·., : ,, ,'.. ··', ,, ';1· • '·• ' ., ,, : ,,, ,.,, 

model. One can also. use this formalism as.~ basis t.o investigat~ the pairing 
- . : . ; ,\ .. •. , . ,·_ \ - . . . ' 

which may be induced, by either the electron-phonon or .the exchange interac-
:_ : • • • t ', ,,• ,·1· ! ' '' _) . / ' . '' · .. < ·, . , '. . : : 
tion fl3] ... 
! I'! ; •. , ' , ' j ~ f. }"!4,J i I I } ' -•,.,. 

, The reduction to,a t-J model has some disadvantages, however, which may ··; ,, .... \~ .. _, i.:,., :~,.·i ~ 'r•.(· ,:· ·., <1,•j;.;;· .. , .. : ;.. • ... _, ,· ~ , • - . . ·, 

be .listed as follows: :First of all, it. neglects completely the charge fluctuations 
,:":'" .. \-,,.'·?/·1,fl!,'',_f;\·>,~L ~ilH\ ),. :!·"',t•;!•I ,. "}, J •, , ,· '.·' ·"' . 

between the. singlet and the one-hole d~like,states. As will be seen in the 
.,;,,,,y•?••".:,:::~,r";,;,.'.'-<._:;•' .. {, ,,'t••;i 'f., ,•,;,: :. t', ,/,! ,'O ' , I' ' • ,!' 

{~µowing', su{:.~ ,ll:,}1ypridiz~tion,,mo~ifies, t.h,e, W~,ctrum in a .considerable way 

and ca~not be negleded. Secondly, the t-J model does not reproduce in a 
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correct way the spectral weight transfer which occurs with .doping (14, 15]. 

More important difficulties may arise if one would like to calculate the pairing 

induced by th~ exchange interaction: The J-term in the Hamiltonian desc~ibes 

this effect only in a static• and i~stante'neous way. That is quite similar to 

the BCS Hamiltonian fo~ th~ electron-phonon mechanism. It does not deai 

with . the dynamical effects of the exchange interaction as has been do~e for 

instance in [16] in ~nalogy to the Eliashberg theory of the electron-phonon 

case. To solve alt these problems we present in the foHowing the reduction 

to an effectiv~ Hubbard model for o~e-hole d-like states arid two-hole singlet 

states and a~oid the further second order perturbation theory t~ obtain the J

ter~ in the Hamiltonian. That keeps the possibility to describe the dynamical 

effect~ of the exchange interaction in terms of Green's functions. 

The main purpose ofthe present w~rk consists in th~ presentation of a new 

Hamiltonian in large analogy to the Hubbard model. In contradistinction to 

the usual case one ends up with an asymmetric model with' different hopping 

integrais for the singlet and the one-hole bands'. That may give a good starting 

point to study the differences between electron and hole doping. The use of 

such a Hamiltonian has also some practical reasons since se~er~l techniques are 

easier to apply for a Hubbard model than for a i-J model. That is especially 

true for the Green's functions decoupling scheme which is used here. 

· Then we apply the projection technique for the two-time matrix GF in 

terms of Hubbard operators .. One ends up with a self-consistent system of 

equations for the one-particle GF. Their solution gives a two-band spe'ctrum 

ford-like holes and Zhang-Rirn'.singlets. We~onsider in the present'work only 

the paramagnetic state which may have, however, strong short-'range antifer

romagnetic correlatio~s (spin-liquid state). The system of equations depends 

on these· spin correlation functions as parameters. The ·second task of our 
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calculation consists in an analysis of the strong influence of short range anti

ferromagnetic spin fluctuations on the dispersion relation of the one-particle 

GF. It will be shown that its character changes dramatically by decreasing the 

spin-spin correlations. 

The paper is organized as follows: after presenting the reduction procedure 

from the p-d model to an effective two-band Hubbard model in Sect. 2, we 

define the one-particle GF in Sect. 3. In Sect. 4 we. derive the self-consistent. 

system of equations .and we present the results of a numerical calculation in 

Sect. 5. Finally we summar,ize the results. 

2 TWO-BAND MODEL HAMILTONIAN 

We consider the original p-d model [1, 2] in the limit of strong correlations at 

the copper sites, ud -+ 00. By taking into account only the most important 

terms it can be written in a simple form: 

" -+ - " + " -+ H =Ed~ d;O'd;O' + Ep ~PmO'PmO' + t ~ S;m (d;O'PmO' + h.c.), 
i,u m,u i,m,u 

(1) 

where Jt,. = dt,.(l - n;u) denotes the creation of a hole on a copper site i 

provided there is no other hole with spin if = -a, p;t;O' creates a hole on an 

oxygen site m and S;m = ±1 depending on the' position of the site m in the 

unit cell i in agreement with [1]. The hopping p-d integral t and the difference 

between the hole energy levels for oxygen and copper, ~ = Ep - Ed, are the 

only two parameters in the model (1). 

To derive the singlet band it is reasonable to simplify this Hamiltonian (1) 

further, following mainly [9, 10]. Let us summarize the main steps: introducing 

the symmetric combination of oxygen operators piJ in the unit cell i according 
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to [1] we can define the orthogonal Wannier states Cio- by the equation 

1 ·. 
P(s) - '°'S· p - '°'v .. c· iu - 2 L 1m mu - L 13 3u · 

m j . 

The overlapping parameters 

Vj/ = ~ L /1 - ~( cos kx + cos ky) eik(j-l) 

k 

(2) 

(3) 

decrease rapidly, but nonexponentially with the distance (j - /): v0 = Vjj '.:::'. 

0.96, V1 = Vj j±az/y '.::::'. -0.14, and V2 = Vj j±a.,,±ay '.::::'. -0.02. (see [9]). · Taking 

into account in the following inter-cell perturbation theory all the Wannier 

coefficients Vj/ we would obtain an artificial sharp cusp in the dispersion curve 

at the f-point (k = (0,0)) [10]. That. is a known artefact of the Wannie~ 

representation for nonisolated bands [17]. Therefore, we consider in the present 

calculation the W<Vmier coefficients vo, v1 and v2, on_ly. Using the orthogonal 

Wannier states c;u in (2) we can write the Hamiltonian in the form: 

H = · L { fd J:t,.d;u + fp c1:,.c;u + Vo ( Jt,.c;u + h.c.)} 
iu 

+ L V;j { d1;,cju + h.c.} , 
i,j;ju 

(4) 

where V;j = 2t Vij and Vo = 2t v0. Since l¼il ~ Vo one can consider the last. 

inter-cell term in ( 4) as a small perturbation to the intra-cell part given by 

the first term in ( 4). 

As was. shown in [9, 10] the first intra-cell part can be diagonalized within 

one unit cell. That gives for the lowest one-hole d-type state 

!Du).= cos01 d;j0)- sin01 c;j0), 

and the two-hole state with the lowest energy is the singlet state 

11/i) = cos02 ~ (diet- dtct) I0)-sin02 Cf~t I0), 

4 

(5) 

(6) 

·~ 

where the vacuum state I0) has no holes and tan 201 = 2Vo/ 6., tan 202 == 

2,/2V0 / 6.. The corresponding one-hole Ev and two-hole energies E,t, are given 

by: 

Ev= ~(fd + fp) - ~✓ 6.2 + 4Vc;, 

E,t, = ~(ld + 3tp):... ~✓ 6.2 + 8Vc;. 

(7) 

(8) 

Another one-hole p-type state has higher energy then the d-type state (5) 

and can be neglected in the subspace of one-hole states. The singlet states 

(6) are the lowest among the two-hole states and have to be filled first with 

doping. At small doping we can also neglect the triplet states with the energy 

ET = ( fd + fp} since the mixing between singlet and triplet bands is rather 

small [10]. 

By introducing the Hubbard operators in the subspace of the one-hole 

states !Du) (5) and the singlet states 17P) (6) 

xru = ID;u)(D;ul, xr0 = ID;u)(0I' 

x;2 = ll/i;)(l/id' x;0 = 11/i;)(0I' xr = l•l/i;)(D;ul' 

we can write the intra-cell part of the effective Hamiltonian in the form 

Ho= Ev Lxr + E,t, LX;2. 
iu i 

(9) 

(10) 

(11) 

By projecting the original p- and d-operators in the inter-cell part of the 

Hamiltonian (4) onto the subspace of one- and two-hole states (5), (6) 

c; = 2a AcX2a - sin 01 xuo d; = 2a Adxw + cos 01 X"0 (12) 

where 2a = ±1 we can write the inter-cell term in (4) in the form 

H· = '°' {t"'-X2u X'!2 + tP.x~0 Xou + 2at"'.v(Xw Xou + X~o Xa2)} (13) 
mt L 13 1 J 13 • 3 13 3 3 1 J • 

i,f.ju 
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The effective hopping parameters are given by [10]: 

t'P. = V.-iK,;,,;, •J K,;,,;, = 2AdAc 

tP = V,-il(DD ') 

t'f1.D = V,-iK,t,D 
'J 

KDD = -2 sin 01 cos 01 

K,t,D = Ac cos 01 - Ad sin 81 

(14) 

with the coefficients_ 

Ad = - ~ sin 01 cos 02 , 

= Ac sin 81 sin 02 + ~ cos 01 cos 02 • (15) 

Therefore, the total Hamiltonian of the two-band model for d-Iike holes and 

singlets takes the form: 

H=Ho+Hin1-µN, (16) 

where we have introduced the chemical potentialµ and the number operator 

N = I:N; = I:(2x;22 + I:xr). 
i i (7 

(17) 

It "is easy to prove that the number operator (17) acting in the subspace of 

one- and two-hole states (5) and (6) satisfies the necessary condition [N, H
0 
+ 

H;nt] = 0. This condition is not satisfied for the number operator for the 

original p- and d-holes in (1) written in terms of the Hubbard operators given 

by (12) since the higher energy one- and two-hole states were ignored in the 

model Hamiltonian ( 16 ). 

To prove the importance of the hybridization term in (13) between D-holes 

and singlets we estimate the hopping parameters (14) for the case of strong 

intra-cell coupling: 2t = ~ = fp - fd, Direct calculation in (14) gives us 

K,;,,;, ~ -0.477, KDD ~ -0.887, K,;,D ~ 0.834. (18) 

6 
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This estimation showit that the 'l/!-D hybridization is rather str~ng being much 

larger than the singlet-triplet coupling K,;,'T considered in (10]: K,;,v >>I' 

K,;,'T I~ 0.08. In the limit of small p-d hybridization, t/ ~ - 0, while all 

the coefficients K,J,v,, Kvv and K,J,'T tend to zero, K,J,D has a finite value, 

K,J,D - 1/,,/2. Therefore, in this limit the effective hopping parameter tf;D 

vanishes linearly with V.-i ex t while all the others, tf;, tf;, _ are proportional to 

(t2/ ~). As a result, the inter-band 'l/!-D hybridization gives a rather strong 

renormalization of the singlet band dispersion being of the same order of 

( t2 / ~) as the original one tt;. 
The two-b~nd Hubbard-,-like model (16) in comparison with the original 

p-d model ( 1) takes into account the formation of a new singlet band for doped 

p-holes due to strong Coulomb correlations on copper sites. The appearance 

of the singlet band due to many_:body correlations was proved by different 
'--

methods (see (4]-[7]) while it cannot be obtai_ned in the framework of standard 
' ' ' '. . ' ' 

band-structure calculations based on the local-density approximation [8]. On 

the other hand, the one-band t-J model for singlets [1] considers the one

hole d-like band only in a static way by an effective exchange J-term and 

it neglects charge-carrier fluctuations that prevents a proper study of charge 

transport in the CuO2 planes. In general, the two-band (p-d) model (16) can 

be considered as the standar4 Hubbard model with one-hole and two-hole 

(lower and upper) subbands but with highly asymmetric hopping parameters 

(14) and the single-site correlation energy U ~ ~ = fp - fd, Therefore we 

'can apply to this model well--'developed methods in the theory of the standard 

Hubbard model. 

7 



3 GREEN'S FUNCTIONS 

To consi.der the hole spectrum for the two-band model (16) we employ the 

equation of motion method for the two-time Green function (GF). By using 
' . 

the P.rojection technique we obtain the Dyson equation which will be solved 

in a generalized mean~field approximation neglecting finite lifetime effects. 

To. study the two-band problem we have to introduce the matrix Green's 

function 

Gija(t - t') = ((Xia(t);XJ:r(t')})' (19) 

where we have used Zubarev's notations [18] for the anticommutator GF for 

the two-component operators 

x- _ ( x~2.) ,u - ' 
~ x!Ju 

I 

, _x:+- = ( x~a xuo ) 
Ja J J (20) 

By differentiating the GF (19) over time t we get for the Fourier component 

the following equation 

wGija(w) = OijX. + ((Zia I XJ:r))w 

where Zia = [Xia, H] and 

X = ( X,t, o ) 
0 XD 

with the matrix elements 

(21) 

4-. 

(22) 

X,t, = (xfo.) = (X'f2 + Xf") . XD = (xfu) = (Xf" + x?0
) • (23) 

Here and in what follows we consider a spin-singlet state for which the corre

lation functions (23) do not depend on the spin a. For the two-band model 

(16) we have 

x9° + "x~a + x~2 = 1 
' L_,,' ' 

{24) 

that implies XD = l - X,t,• a 

8 
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Now, we project the many-particle GF in (21) on the one-hole one by 

introducing the irreducible ( irr) part of the Zia operator 

· · + " · • · + · (irr) • + ((Zia I xju)} = ~ Eika((Xka I xja}} + ((Zia I xja}). (25) 

k 

The projection is defined by the condition 

({ z(irr) x+ }) = 0 
tO' ' ]<1 . 

(26) 

that results in the equation for the frequency matrix· 

. . . + ··-1 
Eija = ({[Xia,H],Xja}) X . (27) 

Here {A, B} and (A, B] are the anticommutator and the commutator for the 

A, B operators, respectively. After performing the necessary commutations 

of the Hubbard operators with the Hamiltonian (16) we obtain the following 

representation for the matrix (27): 

• ( Ev, - Ev - µ + D.t"' D.t
0 

) ( I('!'."' 
E;;a = 6;; D,J, +(1-6;;)¼; ri" 

A Ev-µ+D.VD /(.."' U a tJU 

The components of the matrix are determined by the energy-shifts 

bi. "'"'x"' a 

b,.DDXD a 

b.tDXD 

= LV;k(K,t,,t,(X'fuxz2
) + J(DD(x?axk0

)) 

k#i 

- LV;k(K,t,,t,(Xf2xiu) + KDD(Xf0xfa)) 
k#i 

- LV;k(J(DD(Xf2Xk0
) + K,t,,t,(Xf0Xf2

))

k#i 

-2a L V;kK,t,D(Xf2xr + Xf0 Xfa), 
k#i 

and by the renormalized hopping parameters 

} ,,t,,t, ;·· ( ,t, ,t, + xauxua) ;·· (Xo2x20) \ija X,t, = \,t,,t, XiaXja i i - \DD i i 

9 

J('f'.D) 
''" 

J(PD ' 
IJC1 

(28) 

(29) 



l-•nn Ilijt1 xn 

K,;,n ija Xn 

l·" (xo2x20)·+ l·" ( n n+ X"iiXiitT) = -Il,t,,t, i j Ilnn Xi<1Xj<1 i j 

2 · R·· ( ,;, n · X"aXa" + xo2X20) = - <:1 ,;,n X;"Xi" - i i i i · 

For E3! we have the equation 

n,;, ( ,;,n)+ E-- X·'· = E-- Xn 9<1 o/ 9<1 . 

(30) 

(31) 

Now we introduce the zero-order GF in the generalized mean-field approx

imation by neglecting finite lifetime effects due to Zf ;r: 

G?j<1(w) = {wfoOij - Eij<1}- 1x (32) 

where fo is the unity matrix. By writing the equation of motior.. for the 

irreducible part of the GF in (25) with respect to the second time t' and 

performing the same procedure as in (25) for the right-hand side operator 

Xj;,.(t') we get 

(( z\irrl I x+ )) = ~((z\irrl I z(irr)+)) •-1 co. ( ) 1<1 Jt1 w L...., 1<1 ka X kJ" w · (33) 
k 

By using (21), (25) and (33) we can obtain the Dyson equation for the GF 

(19) in the form 

G;j"(w) = G?j"(w) + L G?k"(w)Mk1<1(w)G1j"(w) 
kl 

where the self-energy operator lvh1"(w) is defined by the equation 

T;j"(w) = Mij<1(w) + L Mik<1(w)Gi1"(w)I'ij<1(w). 
kl 

The scattering matrix is given by the equation 

T·· (w) = ·-l((z(irr) I z(irr)+)) ·-1 IJ<1 X 1<1 J<1 W X • 

(34) 

(35) 

(36) 

Eqs.(32), (34)-(36) give an exact representation for the one-hole GF (19). 

To calculate it, however, one has to apply some approximation for the many

particle GF in the scattering matrix (36) which describes finite lifetime effects. 
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4 SELF-CONSISTENT SYSTEM OF EQUATIONS 

In the present section we consider an approximate solution for the zero-order 

GF (32). For that we introduce the q-representation for the GF (32) and the 

matrix elements in Eq. (28): 

G~i\q,w) 

K:f3( q) 

~ acxf! ( .) -iqj 
L...., OJ<1 We 

j 

~ Kcxf! e-iqj 
L...., 03<1 

j 

,(q) = 2LVoje-iqj =~1(q)+,2(q) 
#0 

(37) 

where ,
1 

and , 2 correspond to the nearest (n.n) and next nearest neighbours 

(n.n.n.), overlapping parameters v;j(3). Then we can solve Eq. (32) in the 

form 

G~(qw) = {wro - E(1(q)}-1x' (38) 

where the q-representation for the matrix (28) can be written as 

E(1(q) = ( w,;,(q) wtn(q) ) . 

. wf"'(q) wn(q) 
(39) 

Here, the energy spectra for unhybridized singlets and D-holes are defined by 

the functions 

w,;,(q) 

wn(q) 

E,;, - En - µ+flt"' + v/"'(q) 

En - µ + 6.~n + vfn(q) 

while the hybridization interaction is given by 

w:n = lltn + v/n(q). 

(40) 

(41) 

The effective interaction in ( 40)-( 41) according to (28), (37) has the form 

v:f3(q) = ~ L ,(k)K:f3(k-q). 
k . 

(42) 
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By using the matrix representation (39) the zero-order GF takes the final form 

G~(q,w) = { [w -. w:(q)]x,:,, wfDXD }·([w-fl,:,,(q)][w-nn(q)])-1' 
. . • W,,. "'x,:,, [w -w,:,,(q)]xn · 

(43) 

where the hybridized spectra for single~s ( 1/J) and D-holes are given by 

1 1 · D / fl,:,,,n( q) = 2[w,:,,( q) + wn( q)] ± 2{[w,:,,( q) - wn( q)]2 + 4WJ' w,f"'} 1 2 ( 44) 

To obtain a closed system of equations we have to calculate self-consistently 

the correlation functions in (29). The energy shifts !!!..~13 (29) can be readily 
• . I 

calculated by using the spectral representation for the one-hole GF ( 43). For 

instance, one has 

L¾i(Xf
13

XJ'5) =-~ L,(q)(x;13x;6
) = 

i/i . q . 

- t " loo dw l a/3 "16 
- NL., ,(q) 1 + ..:13)--Im((Xq I xq ))w+io] .. 

q -oo e 7r 
(45) 

But to calculate th~ two-particle correlation functions in K'(;! (29) we have to 

adopt some approximations. For instance, according to a procedure proposed 

by Roth [19] a two-particle correlation function, e.g. 

(x 92 x20) = (X!l" X9"2 x20) , k • , , k , (46) 

can be calculated from an equation of motion for the subsequent many-particle 

GF 

((Xf"(t); Xf2X]0)). ·.· (47) 

Such 1 a technique was used for the original Hubbard model [20] giving the 

spectral function in good agre~ment)vith exact diagonalization results, It was 
. . ' . . 

found, however, that the Roth procedure underestimates _slightly the value of 

·the.nearest neighbour _spiri~spin:c6;;~latio~ rieai- to half filling. Therefore, we 

12 
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consider in the following calculation the spin-correlation functions like param

eters and deal with their doping dependence only phenomenologically. 

In the present paper we decouple the product N;Nj of the numbers opera

tors N; (17) on different lattice sites i -:j:. j like·in the Hubbard-I approximation 

but we keep spin correlations. By using the representation 

X1/J + X"a = !(" X"" + 2X 22 ) + !(X9"" - xaa) + X"a = !N· + 2<1Sz + S" 
H1 1 2L...., 1 1 2 1 1 1 2 1 1 1 

O" 

(48) 

where 2<1 = ±1, Sf = ±1/2 a~d Sf = S;, we can write 

(xfuxj.,.)+(Xf" X'J") = ((½N;+2<1St)(~Ni+2<1SJ)+Sf S_f} ~ x,:,,x,:,,+(S;Sj) 

( 49) 

and analogous expressions for (x!xfu), (xfo.xfu). We neglect also correlations 

in the creation and annihilation of pairs 

(X?2 xJ0
) ~ (X?2

) (XJ
0

) = 0 . . . (50) 

For a spin-singlet state without long-range magnetic order the GF ( 43) and 

the one-hole spectrum (44) do not depend on the spin u = ±1/2. But short

range magnetic fluctuations. may give a considerable contribution for the spin 

correlation function (SiSj) in ( 49). As it is well established, antiferromagnetic 

spin fluctuations are very strong in CuO 2 planes even in the metallic region at 

low temperatures and they should be taken into account in the renormalization 

of the hole spectrum. 

Now, by using the corresponding , 1(q) and , 2(q) in (37), we can write the 

following equation for the effective interactions ( 42): 

v/"'(q) = tK,:,,,:,,x,:,, L ,;(q)(l + xiil /x~) (51) 

' 
v/D(q) = -2<1tK,:,,nx,:,, L ,;(q)(l - x~il/x,:,,xv) (52) 
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where i = 1 forn.n. and i = 2 forn.n.n. We have also vf"'(q) = V/D( q)(XD/X,;,) 

while VfD( q) is given by (51) with the appropriate change of indexes, 1/J -> D. 

Here we have introduced spin correlation functions for n.n. 

xil) = (SiSi±a~/y) (53) 

and for n.n.n. 

xFl = (S;S;±a.,,±ay) (54) 

which are site-independent for a spin--singlet state. These correlation func

tions will be considered in the numerical calculations in the next section as 

phenomenological parameters . 

Now we can perform self-consistent calculations for the one-hole spectra 
.. • 

of D-holes and singlets and the corresponding density of states. To study the 

doping dependence of the spectra we have to find out also the position of the 

Fermi level µ from the equation for the average density of holes 

n 
1 . 
N :E(Ni) = (:Exr + 2x;2

) = 
i u . 

1 '°'100 

dw 2 NL, -oo efJw + 1 {-;Im[Gt"'(q,w + io) + GfD(q,w + io)J} {55) 
g 

There is also a useful relation 

x,;, = 1 - XD = n/2 (56) 

which follows from (24). In the next section we consider some numericalresults 

of the self-consistent solution of the obtained system of equations. 

5 NUMERICAL RESULTS 

We will analyze three cases with hole numbers n = 1, 1.2 and 1.4, respectively. 

There are strong antiferromagnetic correlations in the undoped case n = 1. 

14 

1!. 

I 'f 
. 

l 
1i_r l' ,/) 

We use in the present calculation the nearest and next nearest neig4bour spin

spin correlations xii) of the two dimensional Heisenberg model. Within the 

linear ~pin-wave approximatio1;1 we obtain xPl = -0.336 and xi2
) = 0.202 

[21]. Th_at corresponds to an infinite spin-spin conelation length f Neutron 

scattering experiments for La2_xSrxCuO 4 (22] show a decreasing correlation 

length t with doping. Therefore, we expe~t reduced absolute val_ues for xii), in 

the doped case n = 1.2. For simplicity, let us assume a lorentzian shape for 

the static spin susceptibility Xg 

1 .. ' 
(SoS;) = N LXgeiqJ (57) 

g . 

which is peaked around the antiferromagnetic wave vector ( ,r, ,r ): 

Xg = . . 
1 + e2 [ 1 + ½ ( cos qx + cos qy) l 

C(t) -· 
(58) 

The value of C(l) is determined by the condition (S;S;) = 3/4. Assuming for 

n = 1.2 a spin-spin correlation length t of the order of the lattice constant 

l = 1, we obtain from (57) and (58) xi1l = -0.10 and xi2l = 0.03. That 

values will be used for n = 1.2. For the overdoped case n =·1.4 we expect no 

antiferromagnetic spin-spin correlations and we set them equal to zero. 

We calculated also the influence of the energy~shifts (29) on the spectrum. 

It turned out, however, that they are very small and their influence on the 

spectrum can be neglected. Therefore, we will present the results of our cal

culations without the inclusion of these energy shifts. Then, besides the spin

correlations, the para~eters X,t,, XD and the position of the Fermi level depend 

~n the doping. The. Fermi level" will be determined self-consistent!~ from Eq. 

(55), while {,t, and XD are given from (56). So, with doping, the parameter 

X,J,, which is'prop~rtional to the spectral strength of the singlet band increases' 

and the'corresp~nding parameter XD of the one-hole d-like band decreases. 
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In Fig. la-c we show the dispersion relation for both bands ( 44) for n = 

1, 1.2 and 1.4 with the spin correlations discussed above. We chose the param

eters~= 3eV and t = 1.5eV. For comparison we present also the result if we 

would neglect the hybridization between singlet and one-hole band. One may 
\ 

note that the hybridization between D-hole and singlet band is very crucial to 

obtain the correct dispersion relation for n = 1 and 1.2, but less important for 

n = 1.4. To study the influence of spin-correlations one should compare Fig. la 

with Fig. le. First of all, one observes a complete change of the dispersion due 

to the spin-correlations. Without them, in Fig. le, one has a simple nearest 

neighbour dispersion as for free holes. Qualitatively, the same behaviour may 

also be observed in all the slaved boson calculations or in the first analysis of 

the singlet-triplet model [10] neglecting the influence of the spin-system on the 

quasi-particle dispersion. The strong antiferromagnetic correlations suppress 

nearly completely the nearest neighbour dispersion. They allow only a motion 

on one sublattice, dominantly, which gives rise to a next nearest neighbour 

spectrum. Decreasing the spin-correlations from their value in the undoped 

system to zero one obtaines a continuous change of the shape of dispersion. 

Fig. lb shows a intermediate stage where the dispersion of the singlet band 

is very flat between (1r,O) and (1r,1r). A similar change of dispersion has been 

found recently in a variational study of the t-J model ·[23]. 

Besides the dispersion relation ( 44) we also calculate the density of states, 

i.e. the imaginary part of the Green's function -¾Im(G1P1P + aDD). That 

quantity is normalized such that it gives the number of holes if one integrates 

up to the Fermi level. The density of states is shown in Fig. 2a-c for the same 

parameters as the band structure Fig. la-c, respectively. To clarify the amount 

• of hybridization between singlet and one-hole d-like band we present also the 

mixed Green's function -¾ImG,J,D. The most remarkable detail consists in 
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the occurrence of van-Hove singularities near to the bottom of the singlet 

band in Figs. 2a and 2b. We find the Fermi level in the singlet band near 

to the maximum of the density of states for the doped case Fig. 2b. That 

may give a possible foundation for the van-Hove scenario of high-temperature 

superconductivity. The very high density of states in Fig. 2b in comparison 

with Figs. 2a and 2c is due to the flat dispersion region in Fig. lb. The 

Fermi level of the overdoped system n = 1.4 is far away from the van- Hove 

singularity. Another interesting detail consists in the ratio between singlet and 

D-hole band. With doping, the integrated spectral weight of the D-hole band 

decreases, but the spectral weight of the singlet band increases in agreement 

with other studies of the spectral weight transfer [14, 10]. 

Let us discuss some details of the singlet band disp·ersion in the undoped 

case. In Fig. la we find minima of the singlet dispersion at ( 1r /2, 1r /2) and ( 1r, O) 

which are nearly degerrerate, but ( 71", 0) is lower in energy. These two minima 

correspond also to the double-peak structure in the density of states. If we 

would neglect in the present calculation the next nearest neighbour hopping 

112 we would obtain a complete degeneracy between ( 1r /2, 1r /2) and ( 1r, 0). The 

reason for that consists in our special decoupling procedure such that the spin 

correlation function 

xP> = (S;Si±2ar/y) (59) 

does not occur. Indeed, it was shown in [24] that the inequality xF> < xi3> 
gives rise to a minimum at ( 1r /2, 1r /2). So, it might be that an improvement of 

the present calculation shifts the minimum to ( 1r /2, 1r /2). That would also be 

in _agreement with_ other studies of the one-hole motion in an antiferromagnetic 

state [25, 2fi]. It was shown b_y variational studies [27, 23] that the antifer

romagnetic long range order is not a necessary condition to observe such a 

dispersion and that the main features are also preserved in a spin liquid state 
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Fig. le. 

FIG. 1: The band ~tructure (thick line) in the. undoped (a) n = 1, doped (b) 
' 

n = 1.2 and overdoped (c) n = 1.4 case for~ = 3eV and t = 1.5eV. 
• • t - , 

For comparison we s~ow also the result without hybridization (thin line). 

The zero of energy· corresponds to the position of the non bonding oxygen 

band and the EF denotes the Fermi level. 
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FIG. 2: The density of states corresponding to Fig. 1 (thick line). The thin line 

shows the imaginary part of the mixed Green's function G,J,D. 
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with only short-range antiferromagnetic correlations, In that case, however, 

the degeneracy between ( 7r; 7r) and (0, 0) is lifted and one finds ( 7r, 7r) to be 

higher in energy (see Fig, la). 

It is clearly visible in Fig. 1 that the change of the dispersion for the singlet 

band with doping occurs mainly at the point (7r,7r) and not at the f-point. It 

results mainly due to the suppression of Xq at the point ( 7r, 7r) by decreasing 

~ in (58).- Furthermore, there is a flat dispersion region around ( 7r, 0) which is 

even enhanced in the doped case (Fig. 1 b ). Interestingly, such a flat dispersion 

region was observed recently, both in experiment (28] and in a Monte Carlo 

calculation (29]. In agreement with the experiment (28] we firid the Fermi 

level in the singlet band below the band position at (7r,0) (Fig. lb). The 

energy difference, however, is too small, only 5meV in contrast to the measured 

30meV. But to find all these details in agreement with experiment is beyond 

the scope and the accuracy of the present calculation. Another disagreement 

is the position of the point ( 7r, 7r) in the singlet band above the Fermi level for 

n = 1.2. That gives also· rise to a wrong feature in the Fermi surface shape. 

Besides this wrong detail, the Fermi surface for n = 1.2 has some similarities 

to the large Fermi surface of the usual bandstructure calculations within the 

iocal density approximation. It should be noted, however, that our approach 

does not fulfill the Luttinger theorem, i.e. there are only 33 percent occupied 

k-values for n = 1.2 in contrast to 60 percent from the Luttinger sum rule. 

Even for n = 1.4 we find less occupied k-values (57 percent) as it should be 

(70 percent). 

6 CONCLUSION 

In the present paper we proposed a new model to describe the physics both 

in the low energy and charge transfer excitation regions of the copper oxygen 
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plane of cuprate superconductors (11, 13). It describes the one-hole d-like 

states and the two-hole singlet states in large analogy to the original Hubbard 

model. We calculated all its parameters in an effective and analytical way 

from the more realistic p-d model by means of the cell-perturbation method. 

In difference to the commonly used t-J m?del it allows to take into account the 

charge fluctuations between singlet and D-hole states, describes more correctly 

the spectral weight transfer and has the possibility to deal with the dynamical 

aspects of the exchange interaction. In difference to the original Hubbard 

model it is an asymmetric one with different bandwidths for the singlet and 

the D-hole band. That may·give a basis to explain the asymmetry between 

electron and hole doping, but that deserves further studies . 

Further on, we analyzed the one-particle properties of this model. The 

2 * 2 matrix Green's function for the effective twl!-band model can be written 

in terms of a Dyson equation (34) with the self-energy operator defined by eqs. 

(35, 36). The zero-order GF can be obtained by the projection technique with 

the frequency matrix (39). To obtain a closed set of equations w~ decoupled the 

density-density correlation functions like in the Hubbard-I approximation but 

we kept the spin-spin correlations as parameters. The res.ults of the numerical 

calculations show that the spectrum is influenced by the spin-correlations in 

a dramatic way: For strong antiferromagnetic correlations near to half filling 

we- observe a next nearest neighbour dispersion very similar to known results 

for the one-hole motion in antiferromagnets. Our calculations within the spin

liquid ground state show, however, that the long range antiferromagnetic order . . 

is not a necessary condition for such a dispersion. Remainders of the antifer-

romagnetic correlations are also observed in the bandstructure of the doped 

case. But the overdoped system shows a simple nearest neighbour dispersion. 

One should be aware of the limitations of our, quite simple calculation for 
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the electronic structure of the singlet band. Most importantly we neglected 

to calculate an additional renormalization of the singlet quasiparticle spec

trum due to finite-life time effects described by the self-energy operator in the 

Dyson equation (34). Therefore, we cannot obtain the division of the singlet 

band into a rather narrow quasiparticle spin-polaron band and a broad inco

herent contribution which is preserved even for finite concentration of doped 

holes (30). In addition, the spin-spin correlations should be calculated self

consistently from the one-particle Green's function itself. Nevertheless, our 

new rnodel and the first analysis of the one-particle properties seems to be 

a good starting point for further studies of the spin dynamics or exchange 

mediated pairing in cuprates. 
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IIJiaKH,!la H.M., XaiiH P~. P11qap,11 )K.-JI. . . 
)];syxammall c11?1rJieT-,11&1poqaal! MO,lleJib ,ll]lll Me,11Iio0Kc11,11aoii IIJIOCKocm' .. · 

El 7-94-516 

JfCXO,llll 113 CTaH,11apTHOH p-d MO;ieJm IlOJIY'leHa 3cpcpeKTl1BHall MO,lleJlb Xa66ap,11a ,ll]lll 0,llHO,llbl
pO'IHblX d-COCTOllHl1H 11 ,llBYX,llblpO'IHblX Cl1HrJIC::THblX COCT0ll.Hl1H ,llJ!ll on11caHl1ll Hl13K03Heprernqe
CKOI'O cneKTpa ,llbipoK B IlJIOCKOCT11 Cu02 KynpaTOB'. Ha OCHOBe npoeK~l10HHOH TeXHl1Kl1 ,ll]lll ,llByx
BpeMeHHOH MaTp11qaoii cpyaK~1111 I)maa OT xa66ap,11oncK11X onepaTOpon, n&1'111CJiea ,11nyxaoiia&1ii · 
cneKTP ,ll]lll d--;,llblpOK 11 Cl1HrJieTOB 11 Bbl'l11CJieHa IlJIOTHOCTb COCT0llHl1H ,ll]lll Hl1X. 06aapy}KeHa 
Cl1JlbHall nepeaopM11pOBKa cneKTpa, o6yCJIOBJieHHall rn6p11,1111aa~11eii d~bipOK 11 Cl1HrJieTOB, )];o
IlOJIHl1TeJibHO IlOKa3aHO, '!TO ,1111cnepc110HHhle Kp11Bble Cl1JlbHO 3aBl1CllT OT aHT11cpeppoMarn11THblX 
C011HOBblX. KOPOTKO,lleHCTBYI0~11X KOppeJill~l1H B COl1H-Cl1HrJieTHOM COCTOllHl111, Tip11 HaJil1'11111 

• CHJI&H&IX KoppeJill~11ii ,llJill a11aKoii KOH~eHTpa~1111,11&1poK aa6JI10,11a10Tcll ,1111cnepc11oaa&1e Kp11n&1e, 
xapaKTepH&Ie . ,ll]lll nepeCKOKOB Me}K,lly. CJie,llyIO~l1Ml1. aa. 6Jil1}KaHWl1M11 coce,11H11M11' y3JlaM11. 
Tip11 yseJI11'leH1111,11on11posaii11ll· cn11aos&Ie KoppeJill~1111 oCJia6JiiiIOTCll 11 ,1111cnepc11oaa&1e Kp11s&ie 
npeo6paayIOTCll K n11,11y, xapaKTepHOMY llJill nepecKoKos Me}K,lly 6JI11}Kaiiw11M11 coce,11llM11. 

. . 
. ~ . -

Pa6om s&mOJIH~Ha s Jla6opaTOp1111. TeopeT~'leCKOH cp11~11K1111M. li,H.lioroJI106ona OIUIM. 

Ilpenp11HT Qm,e,1111HeHHOI'O 11HCTl1yYTa ll,llepHblX 11CCJie,llOBaH11H, )];y6aa, 1994 

. \ .-

Plakida N.M., Hayn R'., Richard J.~L . . El 7-94-516 
Two-Band Singlet-Hole Model for the Copper Oxide Plane 

. An effective Hubbard model for on~-hole d-like stat~s and two-h~le sir{glet states is derived from 
the original p-d model to describe the low-energy electronic spectrum of the Cu02 plane in cuprates. 
By using the projection technique for the two-time tnatrix Green's function in terms bf Hubbard 

. opera tors a two-band. spectrum ford-like holes and singlets as well as the density of states is calculated. 
It is found. that the hybridization between d-like holes ·and singlets results in a substantial 

. renormalization _of the spectrum. In addition, the dispersion. relation depends strongly on -the 
antiferromagnetic short-range spin correlations i.n the spin-singlet state. For large spin-correlations 
ai smal~ doping values one finds a next-nearesfneighbour.dispersion;With doping, by decreasing 
the spin correlations, the dispersion change~ to an ordinary nearest neighbour one . 

. The investigation has !>een performed at the Bogoliubov Laboratory of Theoretical Physics, HNR. 

Preprini of the Joint Institute for Nuclear Research.,Dubna, 1994. 


