


1 INTRODUCTION .= = =

An 1mportant contrrbutron to the understandrng of the low -energy. electronrc
spectrum of cop‘per-oXJdes has been done by Zhang and Rlce [1] who pomted
out the remarkable role of s1nglet formatlon for doped oxygen. holes due to
strong‘Coulomb correlatlons Startmg from the orlgrnal p~d model proposed
by Emery [2] and Varma et al [3] they have derlved an effectrve one- band
t J model for the copper ox1de plane The appearance of smglet quasrpartrcle
states msrde the p-d gap was proved by dlfferent methods based on exact
dlagonahzatron [4], cluster calculatlons (5, 6], pro_]ectlon techmque [7] and
other calculatlons It should be noted that the commonly used local densrty
approxrmatlon [8] cannot descrrbe such a s1nglet band formatlon due to the
1nsufﬁc1ent treatment of electronlc correlatlons wh1ch questlons the results of

: e
these calculatlons

. T proee

Recently [9 10], the orlglnal Zhang che procedure has been cons1derably
1mproved in terms of the so- called cell perturbatlon method (see also (11, 12])
It results in srmple analytlcal formulas to reduce the p-d model to an effectlve
smglet trrplet model Applylng the equatron of motlon method for Green s
functrons GF) 1t has been found however that the couphng between smglet
and trlplet band is very small [10] So we are left w1th a one-band t-J like
model. One can a also Juse th1s formahsm as a basis to 1nvest1gate the palrmg

whrch may be mduced by erther the electron phonon or the exchange interac-

tlon [13]
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, The reductlon to at J model has some dlsadvantages, however whlch may
be hsted }asl follows Flrst of all it neglects completely the charge fluctuations
between the smglet and the one- -hole d-like states., As will be seen in,the
f‘ollowmﬁg’,w suc'h__awhybrldlza'.tlona:modlﬁes the spectrum in a considerable way

and cannot be neglected. Secondly, the ¢-J model does not reproduce in a
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correct way the spectral weight transfer which occurs <With ‘doping [14, 15].
More important difficulties may arise if one would like to calculate the pairing
induced by the exchange interaction: The J -terrn in the Hamiltonian describes
this effect only in a static and instanteneous way. That is quite similar to
the BCS'Hamiltonlan for vthe'el’ectron-phonon mechanism. It does not deal
with the dynamrcal effects of the exchange interaction as has been done for
instance in [16} in analogy to the Eliashberg theory of the electron- phonon
case. To solve all these problems we present in the followrng the reduction
to an effectrve ‘Hubbard model for one- hole d-like states and two-hole singlet
states and av01d the further second order perturbatlon theory to obtaln the J-
térm in the Hamrltonlan That keeps the possrblllty to describe the dynamlcal
effects of the exchange interaction in terms of Green’s functions.
" The main purpose of the present work consists in the presentation of a new
Hamiltonian in large analogy to the Hubbard model. In contraaistinction to
the usual case one ends up with an asymmetric model with different hopping
integrals for the singlet and the one-hole bands. That may give a good starting
point to study the differences between electron and hole doping; The use of
such a Ha’miltonian has also some practical reasons since several techniques are
easier to apply for a Hubbard model than for a i-J model. That is especrally
true for the Green’s functions decoupling scheme which is used here
“Then we apply the projection technique for the two-time matrix GF in
terms of Hubbard operators.  One ends up with a self-consistent system of
equations for the one-particle GF. Their solution gives a two-band spectrum
for d-like holes and Zhang-Ricesinglets. ' We' consider in the present work only
the paramagnetic state which may 'have',"hov‘ve\ler, strong short;\range antifer-
romagnetic correlations (spin-liquid state). The system of equations (lepends

on these spin correlation functions as parameters. The second task of our

e,

calculation consists in an analysis of the strong influence of short range anti-

ferromagnetic spin fluctuations on the dispersion relation of the one-particle

GF. It will be shown that its character changes dramatically by decreasing the

spin-spin correlations. ‘
The paper is organized as follows: a.fter presenting the reduction procedure
from the p-d model to an effective two-band Hubbard model in Sect. 2, we

define the one-particle GF in Sect. 3. In Sect. 4 we derive the self-consistent

system of equations and we present the results of a numerical calculatlon in

Sect.‘ 5. Finally we summarize the results.

2 TWO-BAND MODEL HAMILTONIAN

We consider the original p-d model {1, 2] in the limit of strong correlations at
the copper sites, Ug — oo. By taking into account only the most important
terms it can be written in a slmple form:

= ed Zduydw + 6 meapma +t Z Sim (d igPmo + h’ c. ) ) (1)

IU m,o zma

where df, = df (1 — niz) denotes the creation of a hole on a copper site i
provided there is no other hole with spin & = —0, pt creates-a hole on an
oxygen site m and Sim = *1 depending on the'position of the site m in the
unit cell  in agreement with [1]. The hopping p-d integral ¢ and the difference
between -the hole energy levels for oxygen and copper, A’ = €, — €q, are the
only two parameters in the model (1).

To derive the smglet band 1t is reasonable to simplify this Hamiltonian (1)
further, following mainly {9, 10]. Let us summarize the main steps: introducing

the symmetric combination of oxygen operators pga) in the unit cell ¢ according



to [1] we can define the orthogonal Wannier states c;, by the equation

(s) — ZS,mpm,, = ZV,J Co o - (2)

The overlapping parameters .

v = J—t— Z \/1 - %(cos kz + cos ky) etk- (3)

decrease rapidly, but nonexponentla.lly with the distance (j — - 1) vy = vj; ~
0.96, vy = v; Jia”y ~ —0. 14 and vp = y; Jd:a,d:a,, ~ —0.02. (see [9]). Taking
into account in the following inter-cell perturbation theory all the Wannier
coefficients vji we would obtain an artificial sha.rp cusp in the dlsperswn curve
at the I-point (k" =(0,0)) [10]. That is a known artefact of the Wannier
representation for nonisolated bands [17]. Therefore, we consider in the present
calculation the Wapnnier coefficients vy, v; and vy, only. Using the orthogonal
Wannier states c;; in (2) we can write the Hamiltonian in the form:

2 = Z{Ed J?I;J"U + e C?:;Cia + W (J?,;C,',, + h.c.)}

ic

+ ZVq {dwcj,,+hc} (4)

i#jo
where V;; = 2t v;; and V = 2t 5. Since [Vi;] € Vo one can consider the last,
inter-ce:ll term in (4) as a small perturbation to the intra-cell part given by
the first term in.(4).
As was shown in [9, 10] the first intra-cell part-can be diagonalized within

one unit cell. That givés for the lowest one-hole d-type state
[Dq). = cos 6y d}|0) —sin 8, cFlo), (5)
and the two-hole state with the lowest energy is the singlet state

|¥) = cos 8, % (dT+c d+c+) [0) — sin 6, cT cl [0), (6)

where the vacuum state |0) has no holes and tan26;, = 2Vp/A, tan20; =

24/2Vy/A. The corresponding one-hole Ep and two-hole energies Ey, are given

by: .
1 1

Ep = §(€d+€p)——\/A2+4V02, (7)

Ey = 3(cat3e)™ VIS (8)

Another one-hole p-type state has higher energy then the d-type state (5)
and can be neglected in the subspace of one-hole states. The singlet states
(6) are the lowest among the two-hole states and have to be filled first with
doping. At small doping we can also neglect the triplet states with the energy
E, A: (?d + €) since the mixing between singlet and triplet bands is rather
small [10].

By introducing the Hubbard operators in the subspace of the one-hole
states |D,) (5) and the singlet states |1) (6)

X?% = |Dig)(Dis|,  X{° = |Dis)(0], (9)

= )il , X7 =)0, X7 =) Didl, (10)

we can write the intra-cell part of the effective Hamiltonian in the form

Ho=EpY X +Ey ZX” Co (11)

io
By projecting the original p- and d-operators in the inter-cell part of the

Hamiltonian (4) onto the subspace of one- and two-hole states (5), (6)
¢t =20A X% ~sin0; X df =204aX* +cosf X (12)
where 20 = +1 we can write the inter—cell term in (4) in the form

Hie = Y {tH XX+ 4] X°X) + 20t8P(XP X + XP°XIM)}. (13)
i£jo



The effective hopping parameters are given by [10]:

" - -

tij = V,‘jl\,j,,j, Ii,w, = 2444,

D _ - - .

t; = Vi;Kpp Kpp = —25sin ) cos §,; (14)
P = vk ¢

5 = ViiKyp Kyp = A.cosb, — Aysin 6,

with the coeflicients

Ag = —i sin 6, cos @
) ) 1 2
Ac = sinb; sinb, + icos 61 cosé@
7 2 . (15)

Therefore, the total Hamiltonian of the two-band model for d-like holes and

singlets takes the form:

H=Ho+ Hine — unN | : (16)

where we have introduced the chemical potential x and the number operator

N = ZN‘ = Z(zx,-” +)X77). (17)

It is easy to prove that the number operator (17) acting in the subspace of
one- and’two-hole states (5) and (6) satisfies the necessary condition [N, Hy +
Hip) = 0 This condition is not satisfied for the number operator for the
original p- and d-holes in (1) written in terms of the Hubbard operators given
by (12) since the higher energy one- and two-hole states were ignored in the
model Hamiltonjan (16).

‘To prove the importance of the hybridization term in (13) between D-holes
and singlets we estimate the hopping parameters (14) for the case of strong

intra—cell coupling: 2t = A = ¢, — €. Direct calculation in (14) gives us

Kyy > —-0477, Kpp~-0.887, Kyp~0.834. (18)

This estimation shows that the - D hybridization is rather strong being much
larger than the singlet-triplet coupling Ky, considered in [10]: Kyp >>|
Ky, |~ 0.08. In the limit of small p-d hybridization, {/A — 0, while all
the coefficients Kyy, Kpp and Ky, tend to zero, Kyp has a finite value,
Kyp — 1/v/2. Therefore, in this ]jr'ni't'the effective hopping parameter t:.l’jD
vanishes linearly with Vij oc t while all the others, tu,t”, are proportional to
(?/A). As a result, the inter-band -D hybridization gives a rather stfong
renormalization of the singlet band dispersion being of the same order of
(t2/A) as the original one t:/; - '

The two-band Hubbard-like model (16) in comparison with-the originol
p-d model (1) takes into account the formation of a new singlet band for doped
p-holes due to strong Coulomb correlatlons on copper sites. The appearance
of the singlet band due to many— body correla.tlons was proved by different
methods (see .[4]-[7]) whllo it cannot be obtained in the framework of standard
band-structufe ca,lcula.tions‘b‘a.sed on the local-density a.pproximation [8] On
the other hand, the one-band ¢-J model for singlets [1] ’co‘nsiders t.he one-
hole d-like band only in a ‘static way by an effective exchange J-term and
it neglects charge—carrier fluctuations that prevents a proper study of charge
transport in the CuQ; planes. In general, the two-band (p-d) model (16) can
be considered as ti1e standard Hubbard modél with one-hole and two-hole
(lower and upper) subbands but with highiy asymmetric hoppingr parameters
(14) and the single-site correlation energy U ~ A = e,,: — €. Therefore:we.
‘can apply to this ‘mo’del well-developed methods in the theory of the standard
‘Hubbard model. ’ o



3 GREEN’S FUNCTIONS

To consider the hole spectrum for thé two-band model (16) we employ the
equation of motion method for the two-time Green function (GF). By using
the projection technique we obtain the Dyson equation which will be solved
in a generalized mean—field approximation neglecting finite lifetime effects.
To study the th—band problem we have to introduce the matrix Green’s
function : o oo ‘
Gijo(t = V') = (X (1) XL (2)) (19)
where we have used Zubarev’s notations [18] for the anticommutator GF for

 the two-component operators

XOz‘r‘

A\ S
By differentiating the GF (19) over time t we get for the Fourler component

the following equatlon

wGijo(w) = 65% + (Zi | X Do (e

with the matrix elements

Here and in what follows we consider a spin-singlet state for which the corre-
lation functions (23) do not depend on the spin o.. For the two-band model

(16) we have
XP+Y X+ X2 =1 (24)

(4

that impliés Xp =1— Xy

Xip = ( X : ‘X;; = ( xz X;?‘; ) (20)

>‘<=<X¢O) : (22)
0 xp :

X =(xb) = (XP+XP) . xp=(B)=(X7+X0). (23

Now, we project the many-particle GF in (21) on the one-hole one by

introducing the irreducible (irr) part of the Zi, opera.tor
(Zio | XN = 3 Eino(Xro 1 X3,) + (2 “"’ | X5) - (25)
k
Tﬁe projection is defined by the condition
W28, x5n =0 - (26)
that results in the equ#tion for the frequencyAmatrix. ‘
Fio = ({(Kion HL LN 577 (1)

Here {A, B} and [A. B] are the anticommutator and the commutator for the
A, B operators, respectlvely After performing the necessary commutations
of the Hubbard operators w1th the Hamiltonian (16) we obtain the following

representation for the matrix (27):

h Y vD
n E.J,—ED—#'*'Afw Agu +(1-—-6")V" I:Jo' I(ua
[ e 3 t *
Bige = 2 Ep -+ AP T\ KR KBP
: (28)

The components of the matrix are determined by the energy-shifts

B¥% = 3 ValKaol XPXE) + Kop(X¥XD%)
ki _
APPxp = = Vi(Kyu(XT2XPE7) + Kpp(X7°X{7))
ki
A¥Pxp = =) Vie(Kpp{XT2X7°) + Kyu({X{°X7%)) =
ki
—20 Z V,'kI\’,/,D(szXZ& + X2°Xx%), (29)
k#i .

and by the renormalized hopping parameters

: - . 02 120
K% xo = KXl + XI°X]7) = Kpp(XP*X77)




KPP xp = —Kuu(X2XP)+ Kpp(xBxD + X7 X7%)
EK¥P xp = —20Kup(xixB ~ XP7XI7 + XXX . 0 (30)

Dy
For E;;7 we have the equation

ED’# (E\bD) ' ) (31)

1jo0 )0

Now we introduce the zero-order GF in the generalized mean—field approx-

imation by neglecting finite lifetime effects due to Zi’":

Glo(w) = {wiobi; — Eijo} ' % (32)
where 7y is the unity matrix. By writing the equation of motior for the
irreducible part of the GF in (25) with respect to the second time ¢’ and
performmg the same procedure as in (25) for the right— hand side operator
X+ T (") we get _

(257 | R Do = D U2ET 1 2857 37 Gk,a(w> SN € )

k
By using (21), (25) and (33) we can obtain the Dyson equation for the GF
(19) in the form
Gije (@) = Gl (@) + ) Gl (w) Mua(w)Gw(w) (34)
kl
where the self—energy operator M, (w) is deﬁned by the equation

Tiio (W) = Mijo(w) + Y Miko(w)GRo (w)Thjo (w) - (35)
' kil

The scattering matrix is given by the equation
- “e S(trr s (irr)t e
Tijo(w) = X251 257 e 271 (36)

Eqs.(32), (34) (36) give an exact representation for the one-hole GF (19).
To calculate it, however, one has to apply some approximation for the many—

particle-GF in the scattering matrix (36) which describes finite lifetime effects.
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4 SELF-CONSISTENT SYSTEM OF EQUATIONS

In the present section we consider an approximate solution for the zero—order

GF (32). For that we introduce the q-representation for the GF (32) and the

matrix elements in Eq. (28):

G%F(q,w)

Z Gogy(w)e™
Kf(a) = Z K e
v = 2 ZVa:’e U = 91(q) + 72(a) (37)
J#0
where 71 and 7, correspond to the nearest (n.n) and next nearest neighbours

(n.n.n.), overlapping parameters v;;(3). Then we can solve Eq. (32) in the

form L ‘
GO(qw) = {wro - E-(a)}7'X, (38)
where the q-representation for the ‘matrix (28) can ;be written as

YD
) = ( wy(a) a;<q>); Gy

7 W7¥(a) wp(a)
Here, the energy spectra for unhybridized singlets and D-holes are defined by

the functions \ | |
wi(@) = Eo—Ep—pt AP +V@
wp(@) = Ep-p+8PP+VPP@)  (40)
while the hybridization interaction is given by
WAt v, (1)
The effective interaction in (40)~(41) according to (28), (37) has the form

Vei(a) = 5 S (0K (k-a) (42)
| ] |

11




By using the matrix representation (39) the zero-order GF takes the final form

E3(a,) = { w-wn(@lxs  WiPxo

Dy ([w=Qy(a)llw-2p(a))~" ,
WXy [w — wy(a)lxp ,

v - (43)
where the hybridized spectra for singlets () and D-holes are given by

2.0(a) = lwe(@) +wp(@) £ S {log(a) - wp(@]F + WPWDUP (44)

To obtain a closed system of equations we have to calculate self-consistently
the correlation functions in (29). The energy shifts A%? (29) can be readily
calculated by using the spectral representatlon for the one—hole GF (43) For

1nstance, one has

ZV‘J XaﬁX'y«S Z‘y(q) XaﬁX'vﬁ)
IF A ‘ )
Zv(q) / T TS | X ] (49)

But to calculate the two—partlcle correlation functions in K’ 35 (29) we have to
adopt some approximations. For instance, according to a procedure proposed

by Roth' {19] a two-particle correlation function, e.g.
<X02X20) (XOUXU2X20) - (46)
can be calculated from an equation of motion for the subsequent many-particle
GF
(X XX T4
Such ‘a technique was used for the’ original "Hubbard model [20] giving the
spectral functlon in good agreement with exact dlagonallza.tron results: It was

found, however, that the Roth procedure underestlmates slightly the value of

‘the nearest neighbour spm spm correIatlon riear to half filling. Therefore, we

12

consider in the following calculation the spin-correlation functions like param-
eter‘s and deal with their doping dependence only phenomenologically.

In the present paper we decouple the product N;N; of the numbers opera-
tors N; (17) on different lattice sites % # j like'in the Hubbard-I approximation

but we keep spin correlations. By using the representation

+ 2087+ 57

N —
=

1 . _
X XS =MD X $2XB) 4 S(XF - XI) 4 X =
’ (48)

where 20 = £1, 57 = £1/2 and .57 = SE, we can write

: s s 1 1 . \ o
(G X+ (KXY = (5 Nik 20ST)(GNs+205)+S757) = xuxu +(S:S)

| (49)
and analogous expressions for (x:‘f7 xﬁ), xP xﬁ). We neglect also correlations

in the creation and annihilation of pairs
<X02X20) <X02)<X20) =0. i (50)

For a spin-singlet state without long-range magnetic order the GF (43) and
the one-hole spectrum (44) do not depend on the spin ¢ = +1/2. But short-
range magnetic fluctuations may give a considerable contribution for the spin
correlation function (S;S;) in (49). As it is well established, antiferromagnetic
spin fluctuations are very strong in CuO; planes even in the metallic region at
low temperatures and they should be taken into account in the renormalization
of the hole spectrum.

Now, by usidg the corresponding 71(q) and Y2(q) in (37), we can write the

following equation for the effective interactions (42):

VI (q) = tKyyxs Z'y. (@1 + x“/xi) (51)
VIP(q) = —20tK ypxv ¥ i @)(1 = x8)/xuxp) (52)
13



where i=1 forn n. and ¢ = 2 forn.n.n. We have also V;; 1”(q)
while VDD(q) is given by (51) with the appropriate change of indexes, ¥ —

Here we have introduced spin correlation functions for n.n.

X = (S:Sita,,,) L (53)

and for n.n.n.
X = (SiSita,ta,) - (54)

which are site-independent for a spin-singlet state. These correlation func-
tions will be considered in the numerical calculations in the next section as
phenomenological parameters.

Now we can perform self-consistent calculations for the one-hole spectra
of D-holes and singlets and the corresponding density of states. To study the
doping dependence of the spectra we have to find out also the position of the

Fermi level p from the equation for the average density of holes
1 .
¥ 2!
1

1 ® d 2 ; ‘ ;
=3 / e_‘w_“’ﬁ{_;lm[cﬁ'ﬁ(q,w +16) + GDP(q,w + i6)]} (55)
7 —co » ‘ : oo '

Niy = (Y X7° +2X7) =

I

There is also a useful relation

Xy =1-xp=n/2 (56)

which follows from (24). In the next section we consider some numerical results

of the self-consistent solution of the obtained system of equations.

5 NUMERICAL RESULTS

We will analyze three cases with hole numbers n = 1,1.2 and 1.4, respectively.

There are strong antiferromagnetic correlations in the undoped case n = 1.

14

va(q)(xD/xw

We use in the present calculation the nearest and next nearest neighbour spin-
()

spin correlations x;' of the two dimensional Heisenberg model. Within the

linear spin-wave approximation we obtain x(l) —0.336 and x( ) =

= 0.202
[21]. That corresponds to an infinite spin-spin correlation length £. Neutron
scattering experiments for Laz_ ISrICuO4 [22] show a decreasing correlation
length £ with doping. Therefore, we expect reduced absolute values for x( )

the doped case n = 1.2. For simplicity, let us assume a lorentzian shape for

the static spin susceptibility x,

SoS V=-ﬁzxq g | - (57)

which is peaked around the antiferromagnetic wave vector (m,7): *

RGN
1+€2[1+ 1(cos gz + cos gy)] ‘

: ‘Xq = (58)

The value of C(§) is determiﬂed by the condition (S;S;) =.3/4. Assuming for
n = 1.2 a spin-spin correlation length £ of the order of the lattice constant
¢ = 1, we obtain from (57) and (58) x(l) —0.10 and xﬁ"’ = 0.03. That
values will be used for n = 1.2. For the overdoped case n ='1.4 we expect no
antiferr\omagneticv spin-spin correlations and we set them equal to zero.

We calculated also th'e influence of the energy-shifts (29) on the spectrum.
It turned out, however, that they are very small and their inﬂuence on the
spectrum can be neglected Therefore, we will present the results of our cal-
culations without the inclusion of these energy shifts. Then, besides the spin-
correlations, the parameters Xy» Xp and the position of the Fermi level depend
on the dopmg The Ferm1 level ‘will be determlned self—con51stently from Eq.
x,/, which is prOportlonal to the spectral strength of the singlet band increases’

and "the"‘corresip(;ind‘iﬁgﬂ pa.ra.meter xp of the one-hole d-like band decreases.

15



In Fig. la-c we show the dispersion relation for both bands (44) for n =
1,1.2 and 1.4 with the spin correlations discussed above. We chose the param-
eters A = 3eV and t = 1.5¢V. For comparison we present also the result if we
would neglect the hybridization between singlet and one-hole band. One may
note that the hj.,'bridization between D-hole and singlet band is very crucial to
obtain the correct dispersion relation for n =1 ahd 1.2, but less important for
n = 1.4. To study the influence of spin-correlations one should compare Fig. 1a
with Fig. lc. First of all, one observes a complete change of the dispersion due
to the spin-correlations. Without them, in Fig. 1c, one has a simple nearest
»neighbouf dispersion as for free holes. Qualitatively, the same behaviour may
also be observed in all the slaved boson calculations or in the first analysis of
the singlet-triplet model {10} neglecting the influence of the spin-system on the
qﬁasi-particle dispersion. The strong antiferromagnetic correlations suppress
nearly completely the nearest neighbour dispersion. They allow only a motion
on one sublattice, dominantly, which gives rise to a next nearest neighbour

spectrum. Decreasing the spin-correlations from their value in the undoped
system to zero one obtaines a continuous change of the shape of dispersion.
Fig. IB shows a intermediate stage where the dispersion of the singlet band
is very flat between (r,0) and (7, 7). A similar change of dispersion has been
found recently in a variational study of the {-J model-{23]..

Besides the dispersion relation (44) we also calculate the density of states,
i.e. the imaginary part of the Green’s function —IIm(G¥¥ + GPP). That
quantity is normalized such that it gives the number of holes if one integrates
up to the Fermi level. The density of states is shown in Fig. 2a-c for the same
parameters as the band structure Fig. la-c, respectively. To clarify the amount
- of hybridization between singlet and one-hole d-like band we present also the

mixed Green’s function —2ImG¥P. The most remarkable detail consists in

16

the occurrence of van-Hove singularities near to the bottom of the singlet
band in Figs. 2a and 2b. We find the Fermi level in the singlet band near
to the maximum of the density of states for the dopéd ‘case Fig. 2b. That
may give a possible foundation for the van-Hove scenario of high-temperature
superconductivity. The very high density of states in Fig. 2b in comparison
with Figs. 2a and 2c is due to the flat dispersion region in Fig. 1b. The
Fermi level of the overdoped system n = 1.4 is far away from the van-Hove
singularity. Another interesting detail consists in the ratio between singlet and
D-hole band. With doping, the integrated spectral weight of ?the D-hole band
decreases, but the §pectral \.Neight of the singlet'band increases in agreement
with other studies of the spectral weight transfer [14, 10].

Let us discuss some details of the singlét band dispersion in the undoped
case. In Fig. 1a we find minima of the singlet dispersion at (v/2,7/2)and (x,0)
which are nearly degenerate, but (r,0) is lower in energy. These t;vo minima
correspond also to the double-peak structure in the density of states. If we
would neglect in the present calculation the next nearest neighbour hopping
vz we would obtain a complete degeneracy between (r/2,7/2) and (r,0). The
reason for that consists in our special decoupling proce&ure such that the spin
correlation function

X = (SiSix2a,,,) (59)

< x®

gives rise to a minimum at (7/2,7/2). So, it might be that an improvement of

the present calculation shifts the minimum to (7/2,7/2). That would also be

does not occur. Indeed, it was shown in [24] that the inequality x?’

In agreement with other studies of the one-hole motion in an antiferromagnetic
state [25, 26]. It was shown by variational studies [27, 23] that the antifer-
romagnetic long range order is not a necessary condition to observe such a

dispersion and that the main features are also preserved in a spin liquid state
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FIG. 1:

(mm) (0,00 (m,0) (m,m)

Fig. lc.

The band ;tructure (thick line) in the undoped (a) n = 1, doped (b)
n=12 ahii overdoped (c) n = 1.4 ca.;e for A = 3eV and t = 1.5¢V.
For coﬁlpé;ison we show also the result without hybridization (thin line).
The zero bf energy corresponds to the position of the nonbonding oxygen

band and the EF denotes the Fermi level.
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with only short-range antiferromagnetic correlations, In that case, however,
the degeneracy between (m;7) and (0,0) is lifted and one finds (7, 7) to be
higher in energy (see Fig. 1a).

It is clearly visible in Fig. 1 that the change of the dispersion for the singlet
band with doping occuré mainly at the point (7, 7) and not at the I'-point. It
results mainly due to the suppressidn of x, at the point (7, 7) by decreasing
£ in (58). Furthefmore, there is a flat dispersion region around (7,0) which is
even enhanced iﬁ the doped case (Fig. 1b). Interestingly, such a flat dispersion
region was obsefyed recently, both in experiment [28] and in a Monte Carlo
calculation [29] In agreement with the experiment [28] we find the Fermi
level in the singlet éband below the band position at (r,0) (Fig. 1b). The
energy difference, however, is too small, only 5meV in contrast to the measured
30meV. But to find all these details in agreement with e)\iperiment is beyond
the Scope ak.nd, the accuracy of the présent calculation. Another diéagreement
is the posi};ion of the point (7,7) in the singlet band above the Fermi level for
n = 1.2. That gives also rise to a wrong feature in the Fermi surface shape.
Besides this wrong detail, the Ferm’i surface for n = 1.2 has sorﬁe similarities
to the large Fermi surface of the usual bandstructure calculations within the
local density approximation. It should be noted, howebvker, that our approach
does not fulfill the Luttinger theorerh, i.e. there are only 33 percent occupied
k-values for n = 1.2 in contrast to 60 percent from the Luttinger sum rule.
Even for n = 1.4 we find less occupied k-values (57 percent) as it should be

(70 percent).

6 CONCLUSION

In the present paper we proposed a new model to describe the physics both

in the low energy and charge transfer excitation regions of the copper oxygen
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plane of cuprate superconductors (11, 13). It describes the one-hole d-like
states and the two-hole singlet states in large analogy to the original Hubbard
model. We calculated all its parameters in an effective and analytical way
from the more realistic p-d model by means of the cell-perturbation method.
In difference to the commonly used {-J model it allows to take into account the
ch@rge fluctuations between singlet and D-hole states, describes more correctly
the spectral weight transfer and has the possibility to deal with the dynamical
aspects of the exchange interaction. In difference to the original Hubbard
model it is an asymmetric one with different bandwidths for the singlet and
the D-hole band. That may-give a basis to explain the asymmetry -between
electron and hole doping, but that deserves further studies.

Further on, we analyzed the one-particle properti;zs of this model. The
2 x 2 matrix Green’s function for the effective two-band model can be written
in terms of a Dyson equation (34) with the self-energy operator defined by eqs.
(35, 36). The zero-order GF can be obtained by the projection techniqué with
the frequency matrix (39). To obtain a closed set of equations we decoﬁpled the
density-density correlation functions like in the Hubbard-I approximatioh but
we kept the spin-spin correlations as parameters. ’i‘he' results of the numerical
calculations show that the spectrum is influenced by the spin—cdrrelatidné in
a dramatic way: For strong antiferromagnetic correlations fear to half filling
we observe a next nearest neighbour dispersion very similar to known results
for the one-hole motion in antiferromagnets. Our calculations within the spin-
liquid ground state show, however, that the long range antiferromagnetic order
is not a necessary condition for such a dispersion. Remaiﬁdefs of the antifer-
romagnetic correlations are also observed in the bandstructure of the doped
case. But the overdoped system shows a simple nearest neighbour dispersion.

One should be aware of the limitations of our, quite simple calculation for
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the electronic structure of the singlet band. Most importantly we neglected
to calculate an additional renormalization of the singlet quasiparticle spec-
trum due to finite-life time effects described by the self-energy operator in the
Dyson equation (34). Therefore, we cannot obtain the division of the singlet
band into a rather narrow quasiparticle spin-polaron band and a broad inco-
herent contribution which is preserved even for finite concentration of doped
holes [30]: In addition, the spin-spin correlations should be calculated self-
consistently from the one-particie Green’s function itself. Nevertheless, our
new model and the first analysis of the one-particle properties seems to be
a good ‘starting point for further studies of the spin dynamics or exchange

mediated pairing in cuprates.
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- | Tinakuma HM., Xait P. Puqapu)I(-JI L EI7-94-516
’ }Isyxsormaa cuHmeT-ublpouHaa MO}.‘leﬂb g MC}.‘(HOOKCM}.‘(HOH rmocxocru T e

L chonn u3 craunap'mou - d Mone.rm no:ryqena sd)d)exmnﬂan MO}ICJH: Xa66ap11a ans onuom,r-

 pouHbIX d-cocrommu M IBY XABIPOUHBIX cunrne-mmx COCTOSHUIA JUI OTMCAHUS Husxosnepremqe- .
CKOTO CrIEKTpa nmpox B riockoctu CuQ, xynpatos. Ha 0CHOBE MPOEKIMOHHOM TEXHUKH 7St ABYX-
“BPEMEHHO# MATPUYHO ¢byHkuum I'puta ot xa66apnoncxux oneparopos, BLIYMCIICH [BYX30HHBIA
CRexTp zns d—nmpox u cunmeron M BLIMCIIEHA TUIOTHOCTB coc-ronnuu n.rm HMX. O6Hapy)xena :
no.vmmensno noxasaHo, uTo nncnepcuounme xpm;sle CHIIBHO 3aBUCAT OT' anrud)eppouammnmx
CIIMHOBBIX: . KOPOTKOAEHCTBYIOMMX  KOPPENSIMii B CITUH-CHHINIETHOM COCTOSHMM.. TIpH HAMMUMK

' CWJILHBIX KOPPEJISLMIL TSl HUSKOM KOHUEHTPALIMK JBIPOK HabmoAaloTes AMCNIEPCHOHHDIE KPUBbIE,

. ‘xapax'repﬂbre 9154 oy nepecxoxon MCXTOY . C.’le)IyK)uJ,MMM 3a . GvoxafimMu - COCC}.‘(HMMM y3nraMu.

-|-TIpn ynenuqeﬂuu AOTMPOBAHUS CIIUHOBBIE KOppesumum oc.na6nsuo1'csl M QUCTIEPCHOHHBIE KPUBBIE
npeoﬁpasylo'rca K Bmxy, xapaxrepnomy )um nepecxoxon MeXIy 6.v1mxauummd cocenﬂMM

o ff Pa6o-ra Bbmoni{eﬂa n Jlaﬁoparopuu‘reopemy-recxoﬁ dmsuxn im. H,_H.Bommo6oaa OPIS{I’I.'

‘Plakida N.M., Hayn R, Richard AL 220 % o E17.04-516
“Two Band Smg]et Hole Model forthe Copper Ox1dePlane Lo T R

“An effecnve Hubbard model for one hole d-lxke states and two- hole smglet states is denved from
: ‘the origmal p—d model to describe the low-energy electronic spectrum of the Cqu plane in cuprates.
By using the pro_]ecnon technique for the two-time matrix' Green’s function in terms of Hubbard.
-operators a two-band spectrum for d-like holesand smglets aswellasthe density of statesis calculated.
It is found- that ‘the - hybndlzanon between d-like: holes ‘and_ singlets: results in “a substantial -
: renormahzanon ‘of the spectrum In addition, the dxspersnon relation depends strongly ‘on ‘the
annferromagnenc short- -range spin correlations in the spin- s1ng1et state. For large spin- -correlations - |-
-at smalL doping values one finds a next-nearest “neighbour. dlspersmn With dopmg, by decreasmg’ .
the spm correlanons the dlSpel‘SlOﬂ changes to an ordmary nearest nelghbour one. iy

: The mvesnganon has been performed at the Bogollubov I.aboratory of Theorencal Physlcs JINR




