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1. Introduction

The model considered in this work consists of the one-dimensional (1D)
Hubbard Hamiltoni;an plus a bond-site interaction term X describing the cou-
pling between a site electron and another residing on the adjacent bond,

'H——tz Ciy10Cio T H.c. —{-UZn”n”—{—

‘LU

X Z(Ci+1,aci,a + H‘C')(ni,—a + ni+1,—a), (1)

where the Wannier representation was used; it is known as the (¢, U, X') model
and has been proposed [1] as relevant to quasi-1D materials with very screened
electron-electron interactions like conducting polymers. In 2D, Hirsch [2] intro-
duced the “hole superconductivity” using the same model (1). Exact results at
X =1t [3, 4] indicate also the bond-site interaction as significant for a possible
superconductor state.

We investigate in this paper the effect of the X term on the ground-state
instabilities of the system in a perturbative approach. Starting from the Bloch
representation of the (¢, U, X') model

H = Z E(k)cz.ack,a +

2N Z {U 2— (kl)+6(k3)]}6k1ﬂ?kz,ks&)hCzl,aczz,~ack4.—ack3,a1(2)

k1, ka0

where

e(k) = —2t cos(ak) (3)

(N denotes the number of sites and @ — symbol stands for the usual addition
operation and the reduction to the first Brillouin zone (BZ); we use also ©
with a similar meaning.) we solve the corresponding Bethe-Salpeter equation
in the simplest approximation, both in the particle-particle and particle-hole
channel. The poles of the solutions determine the transition ‘temperatures’ to
an ordered state (CDW, SDW or SS); by comparing them one gets a ground
state phase diagram (at T' = 0) depending on the parameters U/t, X/t and the
band filling factor » [5]. In the particular case of the Hubbard model we find a
SDW state for U > 0 and a SS (CDW) phase for U, < U < 0 (U < U,). At
n = 1 the X term brings no contribution; away from half filling, a rather small
bond-site attraction (repulsion) determines the pairing of electrons (holes). An
effective Hubbard constant can be introduced at low densities, explaining the
occurrence of a superconductor phase around X = ¢ direction.
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2. Bethe-Salpeter equation
| : . . a) o | = | 1 + | Fon I
The Bethe-Salpeter equations for particle-hole (ph) and particle-particle B
(pp) channel are both represented in Fig. 1; each of them decouples in three F) 7 7 7 7 6 T
independent equations [6], two for the case when the total spin equals one -
T4 (T7,) and Typp (Tpp), corresponding to the projection of the total spin on 3 13 1 3 5 ]
the thlrd axis g, = 0 and respectively o, = 41, and orie when the total spin ¢ - - - b == -
is zero — T, (T5,)- =
Ph b I = + r J
There are four kinds of instabilities usually studied in 1D systems. A charge ) PP J PP .
density wave (CDW) can be defined as a collective excitation in the ph channel ’ . Z T 7 7 7T 6 2
in the singlet state and such a phase appears as a complex pole of T, in the
total frequency variable  ; similar definitions can be done for the spin density o )
wave (SDW), singlet superconductzmty (SS) or triplet superconductivity (FS) » Figure 1. Bethe-Salpeter equation in: a) the particle-hole and b) the
instabilities. The relevant I'- quantltles in each case are particle-particle channel.
C’DW ;T =T 41
SDW : T,, =T;—T (6.=0); T,, =T5 (0, = £1) ()
S§§ T,,=Ts—Ts
TS : Tt =Ta+T5 (0.=0); T,, =T6 (0. =%1),
where I'y to ['g correspond to the six distinct choices of the spin variables, as
can be seemin Fig. 2.
The Bethe-Salpeter equation is an exact equation, but we consider only o - o 0. o o
its first approximation, when the exact Green function G is replaced by the : - - - - - -
free one G° and the irreducible part I (J) by I' in the first perturbative order A a) . l_1 - o r2 - —g l_3 —a
(proportional with the bare potential) : « «— « &« « «
G~G®, I(J)~TW, (5)
In this way we get the followmg approximate Bethe- Salpeter equation [7] : . o o - o o
— — - —> - —>
[(k,k'; K, ka' K V(k, k", K)G(K"; K"k , :
€T (k, K5 K, Q) = o-V/( +; S K)G(K" K, Q)T(K", k'; K, Q), (6) | 8) " o |Taloe -oilsle 1 Tsl s
g - — —

— — —

where T’ can be T}, (CDW) , T}, = Tpn (SDW) or T}, /2 (55) ; the TS case
does not occur in our approximation. K € BZ denotes the total conserved
‘momentum and the other quantities which appear in Eq. (6) are deﬁned by
- (-1 ¢cow . o
5‘{ ISDW,SS"':_”A".' ¢

Figure 2. Choices of spin variables for I in: a) the particle-hole and
b) the particle-particle channel.
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V(k,k';K) = ]—lv-{U + 4 Xk [cos(ak) + cos(ak’)]} , Xk = X cos(ak(/2). (9)

Equation (6) can be solved analytically; its solution has the following struc-
ture, which can be guessed by iteration

L(k, k)= Z_N [ +4X) cos(ak)+4X; cos(ak')+ 16X 2 cos(ak) cos(ak’)]:  (10)

where the unknown quantities can be found from the matrix system

=5 U Xg _ U X}( \
M(le X1,2)— (XK 0 ) (11)

with M the 2 x 2 matrix

Xx X
§+Cog+4clTh 4CIU +1602TK
M= ' : (12)
X 'Y X\"
0071‘ £+ da tI
and :
t ; . :
c;(K,Q) = —NZ[cos(ak)]’g(k; K,Q) , j=0,1,2. (13)
' k

“ We are interested here only in the determinant D of the M matrix :

2

D(K,Q) = det(]/\l\) =1+ 500% + 8601—)%\— +16(c} — cocy) (%) © (14)
In the absence of the interactions D = 1 ; as the interaction turns on, D can
vanish 1nd1cat1ng the occurrence of an instability in the ground state of the
system.

Let us consider first the ph channel. The minimum energy at which an
-excitation can appear is zero and it happens when the total momentum K
equals kp @ kp ; this is the Peierls instability and reflects the degeneration
which occurs in 1D systems: by exciting an electron from —kj. to +k;» you necd
zero energy. The Cooper instability occurs at K = 0 and it is characteristic
not only of 1D systems; the required excitation energy is 2e and corresponds
to addlng or taking away two particles from the system. Consequently, we fix
K®at these values and look for the complex [-poles of the form

0 CDW,SDW (K =k, @ ky).

= FBege + 1T, Bese = { %, Ss (K = 0) (15)

ln this case, the determinant D takes the form

D:p+gF/\1n —jg-" (16)
where
.- 2In|cos(Zn)| { > cpw
tan(sn) 1) SDW
. B (1)
X
1 l/ 7I' A’
AL () 2] 2

1 r 1 - ,yw In|cos(Fn)| X CDwW

;sm<§n) [E cos ('2‘") + W 14 SDW
N (1)

wn

4 t
% [siu(%n) + g(l — n)cos(%n)] (2[(—)2 | S

-z DW,SDW
Qo = 8tsin’ <§n){ cos I(QTL) ¢ 5’5 (19)

gr = [27r qm(;rn)]—l ’ (20)

g/t being the density of states at the Fermi level. From Egs. (17) and (13)
it can be observed that when X = 0, p and A reduce to 1 and respectively to

the Hubbard constant U .

3. Critical ‘temperatures’

1t follows thal a transition to an ordered phase will occur for A negative
when the imaginary part of the total frequency has the BCS form

= || exp (gi‘—A) , A<0. (@)

T, corresponds to the inverse of the relaxation time to the new ground-state
or, by uncertainty principle, to the binding encrgy of the pairs; it can be
interpreted also .as transition temperature and it is well known that in a 1D
system with short range forces there is no phase transition at any non-zero
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temperature. However, following Gutfreund [8] (see also [9]), by comparing
these transition ‘temperatures’ we can get a phase diagram at T' = 0 which.
at least for the g—ology case, is strikingly similar to that obtained from more
sophisticated methods.

The dependence of critical ‘temperatures’ on the model parameters is pre-
sented in Figures 3 and 4. Due to the symmetry of kq. (21) under the
transformation n — 2 —n, X — —X , we can restrict to the case n < |[.
The curves drawn in Fig. 3 correspond to the CDW instability; the same
curves are obtained for SDW phase but with U - -U, X - —X . The §§
case is considered in Fig. 4 where it can be seen that for a repulsive Hub-
bard interaction, the X term determines generally an increasing of the critical
‘temperature’ ; there is also a maximum of T, at X = { for on-site atiractions
and small concentrations, which moves to the right as the density increascs.
We can observe also while the critical ‘temperature’ for density waves goes to
infinite when n — 1 | it is lirnited under a certain value in the S5 case.

4. Phase diagrams

Having determined the critical ‘temperatures’, we can find the regions in
the parameter space where the instabilities may occur. The result, typical
to 1D systems, shows that there is no normal Fermi liquid behavior at any
nonzero values of U/ and X . In the regions common to more instabilities, we
choose that one with the highest T, . In this way we get the phase diagram at
T = 0 in a mean-field-type approxirnation.

Let us consider first the case of the Hubbard model (X = 0); the corre-
sponding phase diagram obtained in our approxirnation is presented in Fig. 5.
For U > 0 we get only a 2k — SDW instability, consistent with the exact
results [10] (which predict also a 4k — CDW instability). For U < 0 we find
a critical value of the attraction

U. 2msin(3n)

1 Injcos(Zn)|

(22)

which scparates a S5 zone from a CDW one; technically, U, comes from
working with the exact dispersion law in the whole BZ , not only with its
lincarized version around the Fermi points. Earlier works indicate, for the
attractive Hubbard model, a possible phase of “correlated” [11] or “localized”
[12] Cooper pairs (a kind of a superposition of CDW and SS). At half filling
it is clear that the ground-state is a CDW | as was pointed out by Shiba [13] ;
at other fillings, a S5 state is expected in the small coupling regime [14, 15] .
More recently, Bogoliubov and Korepin [16, 17] showed (using the asymptotic
formn of the correlation functions) that for n < I the ground state is §S .

6
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Figure 3. Critical ‘temperatures’ for CDW instability.
The same curves correspond to the SDW case but with
U— -Uand X —» —-X .
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Figure 4. Critical ‘temperatures’ for SS instability.
The unlabeled curves correspond to U/t = £20 .
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Let us consider now the effect of the bond-site interaction. A few phase di-
agrams at different densities are presented in Fig. 6. At half filling the X term
does not change the phase diagram of the Hubbard model, in agreement with
other results (evaluation of the X term only at kp [18] , exact diagonalization
techniques [19] , valence bond calculations [20] or exact results for X = ¢ [21] ).
Going away from half filling, a S5 zone appears between the SDW region and
the CDW one. For densities lower than the quarter-filled case, the 55 zone
increases along X = t direction for U < 0 ; a possible explanation is given in
the next section.

- For more realistic parameters of the model, the phase diagram looks like
in Fig. 7; the only effect of the X term is the occurrence of a 55 region at
low densities (for X < 0) or for a band almost filled (for X > 0), the last case
suggesting us the “hole superconductivity” mechanism proposed by Hirsch [2]
in 2D (the bandwidth parameter for holes is t —2.X and thus the S5 instability
can appear at smaller values of X/U in comparison with the electron case).

5. Discussion

In accordance with our results, the effect of the X term (for reasonable
parameters of the model) is more important away from half filling where it
can determine the .occurrence of a superconductor phase (even in the region
where the bare potential is always positive: |X|/U < 1/8). This fact can
be interpreted as an effect of low densities [22] : the effective value of the
repulsive (on-site) interaction can become smaller than the attractive (bond-
site) part due to the possibility of electrons to avoid each other by jumping on
free neighbor sites. A quantitative estimation of this effective interaction can
be determined as follows.

Once the Bethe-Salpeter equation in the pp channel solved, we can compute
easily the ground-state energy of the (¢, U, X) model in ladder approximation
[23] . At low densities, where we expect this approximation gives good results,
the X term can be included in an effective Hubbard constant which coincides

with Agg/pss given by Eqgs. (17) and (18) :

U +8X —4X/t

Ues = == X702 (23)

. The dependence of U; on X at different U values is drawn in Fig. 8. This
effective on-site interaction takes negative values even for U > 0 and small
X ; for X = t it becomes infinite, determining a maximum of 1.(5S) at
low densities (and U < 0). In our opinion, the behavior of Ue; at X = ¢
can be connected with an important property of the (¢;U, X) model [21, 24] :

8
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Figure 6. Phase diagrams for the 1D (£, U/, X) model
in a mean-ficld-type approximation. At half filling, a
SDW phase appcars in the upper half-planc and C DWW
in the lower one (as for the 1D Hubbard model).
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Figure 8. Effective on-site interaction for the 1D
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10

when X = t the motion of electrons interfere in such a way that the number
of double-occupied sites is conserved (exact results can be obtained in this
particular case). As is well known, at low densities the main effects come from
successive interactions of the same two electrons; but such an ‘elementary’
process breaks the symmetry mentioned above (excepting a very synchronized
motion, physically not relevant). Let us suppose U = 0 ; due to the symmetry
constraint, the'electrons will avoid to stay on the same site and thus the number
of double-occupied sites will be zero, as for the infinite repulsive Hubbard
model. The picture does not change much for I/ > 0 or small attractions.
However, for {7 less than a critical value (=4t according to our estimations;
such a value appcars also as relevant in the exact results 3, 4]), the electrons
will prefer to form only site-pairs, like in the infinite attractive Hubbard model.
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