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1 Introduction· 

Recently; the path integral in the cohe.rent state representation has b.een considered (Klauder 
1978,1979, Berezin 1980/ Blaziot arid Orland 1981, Negele and Orland 1988). The path integral 
in the generalized coherent state representation provides a natural and convenient device for 
quantization of classical systems with nontrivial (nonflat) phase space. Note that the ordinary 
phase space path integral can be thought of as ·an integ~al in the Glauber coherent state 
representation and. is defined on paths in C1 , the ordinary 'complex plane. It is relevant to 
boson oscillator-like·systems, whereas for 'spin ·systems it is more convenient, however, to use 

. •· ', -1 ' . 
a path integral defined on the compact nonflat manifold C ·, extended complex plane which is 
homeomorphic to the two-sphere, S2 .' · · ' · 

Fiom the group theoretical point of view, coherent states can be associated with unitary 
irreducible representations of Lie groups (Per~lomov ·1972, Gilmore i'972). The irreducibility as 
well as the existen~e ~f the group invariant ~ea~ure ensures that the resolution of unity holds in 
the coherent state basis (Onofri 1975: Klauder an'd Skagerstam 1985), which turns out to be the 
most important property of'the coherent stateg'tha:t' allows for the path integr~I construction. 

The conventional Glauber coherent states are related to the UIR of the Heisenberg-Wey! 
group, whereas the spin (SU(2)) coherent states- to the UIR' of t_he SU(2) group, (Radcliffe 
1971, Arecchi et al 1972, Perelomov 1972). In the SU(2) case integration is carried out over 
paths in C1 ~ S2, whi~):i can be identified with the SU(2) homogeneous space, SU(2)/U(l) 
(Perelomov 1985). The path integral in the SU(2) coherent state representation originally 
appeared in the paper by Klauder 1979 as an integral on S2

• Kuratsuji and Suzuki 1980 have 
represented it.as an int~gral on paths in C1

. For recent and comprehensive review on the SU(2) 
path int~gral and its applications see.Kuratsuji 1992. 

As is generally appreciated, a path integral serves as the most effective calculational device 
either in getting the exact form of a propagator for,particular. Hamiltonians or in deriving 
perturbation or semiclassical approximations to -the propagator for a generaL problem. As 
is known, the path integral in. the configuration space has been successfully used for these 
purposes both in the flat case start.ing from its invention by Feynman in 1948 and in the spaces 
with curvature and torsion. (For review see, for example, Schulman 1981, Langouhe et al 1988, 
Klei;,ert 1992, and lnomata)992). 

There are, however, a number of unsatisfactory.points and mysteries when the path integral 
in the coherent state representation is concerned. By saying this,. we do not mean the unsat
isfactory points concerning the definition of a. path integral itself as the formal limiting form 
of the time-lattice approximation. These difficulties are the same for both the configuration 
or coherent state path integrals. In tµe first place, we mean the. so-called overspecification 
problem (Klauder 1978;1979)." i:e., that the semiclassical expansion for1 a path integral that 
represents a transition amplitude between coherent states encounters a mystery: the number of 
boundary conditions turn out't6'be twice of the equation of motion. The se_cond point 'is that 
the coherent state path integral fail to recover' the exact spectrum e;en for' the solvable simple 
models. Restricting ourselves to the SU(2) c~~e we ii.cite that the spe~trum of the single spin 
Hamiltonian 

H=wS, 

is recovered by the SU(2) path integral calculations with the shift by 1/2 (Kuratsuji and 
Mizobuchi 1981, Enz and Schilling 1986). More worse, however, is that the semiclassics is not 
exact in the case of dynamical symmetry as it must be due to the path integral generalization 
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of the Duistermaat-Heckman theorem (Blau et al 1990). All this might obscure the physical 
interpretation of the coherent state path integral and hinders its usdul~ess in ,applica!ions. 

On the other hand, when applied to the discrete time formulation the WKB expansion 
becomes exact and non of the above mentione_d difficulties arise (Funahashi et al 1994). Due 
to this one might suggest that the discretized form of the coherent state path integral i~ to be 
used rather than_ th~ continuum one. But _this in tu~n w~uld mean th~t- the coh~rent ~tate path 
integral fails to put _a continuo\lS dassical adion intc"; correspondence with ~ qu'.'-ntum ~yst~rn. 
This would fall in an obvious disagreement with the Berezin quantization scheme devdo1Jed for 

,. ·.·• . . .. ' -1 . 
homogeneous Kahler manifolds (Berezin 1975) which, for example, C belongs to. 
· In the pr~sent paper we consider th~ self-contained.SU(2) path integral representation for 
the matrix eler'nent of the quantum propagator in the SU(2) coherent state basis. It is essentially 
based· o~ the correct contimium·expression for the classical a~tion.which includes a boundarv 
term. This term arises due to the discontin~ity of complex l;ajectories at the end poi11ts. 1-t. 
should be remarked thatthe ~xistence and importance of boundary ·teri-ns in the coherent state 
path integrals have been 'stated by Faddeev 1975, Berezin 1980, Blazoit and Orland 1981. For 
a·very good review on this topic see N~gele a~d Orland i'988. Nevertheless, till now a very little 
attention has b·een paid to the correct conti~uum form of a path integral and _all the difficulties 
encountered are merely assigned to the fact that a path integral is an ill defined object in.itself. 
· · _In the present pap~, by the simple e~ampe of the 'SU(2) coherent state path 'integral we 
argue that all the above mentioned difficulties can be safely avoided provided a correc1, form 
of a continuous classical action with boundary term is tak~n into account. This enables one to 
consider the SU(2) path integral to be a convenient and useful device for qu'antizing classical 
systems. This .seems to be true for any coherent state path integral, which wiil be disrn~sed 
else'where. · All this indicates that using of the coherent state path integral does no't imply 
encountering of any additional problems as compared to those of the conventional configuration 
space one. But one should kept in mind, however, that' both or'these constructions cannot be 
in general thought of as integrals over certain measur_es, which means that in case of a trouble 
the recourse to the time-lattice approximation should be made. : . 

· The plan of· this paper· is as follows. In I the second section we ·write down the correct con
tinuum SU(2) path integral representation for a transitiori:' amplitude' ( quantum propagator) 
and show how it can' be comptited in case of dynamical symmetry. The nexi ·section is d«!voted 
to the application of the SU(2) path integral to a real spin system, quantum Heiseriberg'fcr
romagnet. The main result of the paper constitutes section 4. ·rt concerns the'evaluation of 
tlie semiclassical SU(2) propagator. We follow the ideas by Levit and Smilansky 1977, Buslaev 
1980 and Kuratsuji and Mizobuchi 1981 and express the final result in a closed form in terms 
of"a total classical action and classical trajectories. Section 5 is a conclusion. 

2. SU(2) path integral for transition amplitude 

At the beginning ~{this se~tio~ w~ r~capituiate the necessary ingredients for the SU{2) path 
integrnl representation of i. transition amplitude. . , . 

The starting point i; the '$U(2) algebr~ with 'gener~t~;s 
\' ' ,, ,. . . . 

[Sz,S±] = S±, [S+S-l = 2s •. {1) 

The SU{2) coherent state is given by 

lz; S) = {1+ lzl2t 5 e
25

+ IS;-S), S_IS;-S) = 0, (2) 
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where SE N/2 is the representation index and z E SU(2)/U(l) = C1. The resoluton of unity. 
in the representation S with respect to the SU(2) invariant measure reads 

J 28+1 d2 z 
lz;S)(z;Sjd11s(z) = Is, dµs =----;;:-(I+ izl 2 ) 2 • (3) 

Consid,·r Ill<' coherent. st.ate matrix el<-mPnt 

Gs(zi, z2; T) = (z1 ; SIT c-i fo' ll dslz2 : S), 

wll<'rc 11 is an entire function in the SU(2) generators. 
For the reader' convenience \~c give here a brief account of the derivation of the continuum 

S/'(2) path i11tegral representation for a transition amplitude. Our final expression inrnlves 
boundary term and correct boundary conditions as against. that. of Kuratsuji 1992. This in turn 
enables us to prop,·rly treat the SU(2) continuum path integral. 

In order t.o express t.he transition amplitude by path integral. we di\·id,, thP time i11ten·al 
into N small intervals: < = T /N with N -> oo. Let us define 

-'k=<k, (k=((.sk), 0:Sk:S,\'. 

With the aid of the time discrct.izaiion together with relation (3) the propagator can L,,. writte1,1 
in th<' form 

N N 

Gs(z1,z2;r) = lim f ITd11k(z1l(N)((ol=2) IT((k/c-i<l/(s•)l(k-1). 
N-oo 

k=O k=I 
(·1) 

' 
where we have dropped the S label of the coherent st.ate and put d/lk = dJts((k). Pro<w·ding 
further we note that 

((.lc-itl/(,,)/(k-1) = ((d(k-1 ){exp{-if//((k. (1-'... 1; -<k)} + 0(f2} }. 

where 

To the same order in < 

If(' . . . ) - ((kj/J(.sd/(H) 
~k, ~k-1 , ·'k - ( • I . ) 

~k ~k-1 

N N, 

Gs(z1, z2; r) = Ji_!.! J IT d1,.(zil(N)((olz2) IT ((kl(k-1) exp{-idl((k, (k-1: .sd} 
k=O k=1 

(.'i) 

It ca.n b1· easily cll<'cked that. for any clPment of t.ll<' Hilbert. st.ate-spa.re of a sing!,· particl,· 
with spin S 

then~ holds 

I'm( z) 
.f(z) = (! + /z/2)S 

j(,,lz).f(z)d1ts(z) = .f(,,), ((i) 

where i',,. is an arbit~~ry polyncirnial of the drgre<' m :::; 2S (l',·relornov }9/{;'j ). This ,·nahl,·s 011<· 

to carry out. the intrgr<1.t.io1iovcr d/tN, dJto in (5) with t.hc n•sult 

i
(N==t N-1 N-1 .\' 

(;s(:-1, .::2; r) = Ji_!.1~. __ IT dJlk(.::,l(,v_1 )((1 l.::2) IT ((d(k-1) cxp{-i, L 1/((k, Ck-1)} ( i) 
(o--2 k=1 l·=2 k=I 
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Next, by using the difference bk = (k - (k-t we have 

log((kl(k-1} = s8k(k-1 - (kbk + O(b2). 
j + (k(k-1 

If bk becomes 0(,) in the limit of l-> 0, (7) is reduced to the form 

Gs(i1, z2; r) lim [1-N=z, 'ff dµk(ztl(N-1)((tlz2) 
N-'Xi }(o=z2 k=l 

{ 

N-1 - - N } bk(k-1 - (kbk . · ' . 
exp SL---- - u L II((k,(k-1isk)} 

k=2 J + (k(k-1 k=I 
(8) 

\~·here we neglect the order O(t2) and higher, which is allowed if the limit in eq.(8) exists (for 
details see, for example, Berezin 1980). It is clear that the variables (,v and (0 do not enter 
eq.(8) at all. In other words, The Euler-Lagrange equations'for (k and (k are accompanied by 
the boundary conditions (o = z2 and (,v = z1, respectively. The term • 

(ztl(N-1 )((1 lz2) 

gives rise to the ~~ritinuum boundary term to be discussed below. 
In the continuum limit (8) gives rise to the formal path integral expression 

•i(r)=i1 

Gs(z1,z2;r) = j Dµ 5 (z)exp<I>, (9) 

z(0)=z2 

where we have replaced th<; integration variables by z(s) and z(s). The total action <I> includes 
the boundary term f: 

_<I>= L+r, 
·where 

L = s 1T 22 -I zl:ds _ i 1T lls(z, z)ds, 
o I+ z o 

(10) 

I'= Slo [(! + i1z(r))(I + z(0)z2)] 
g (1+lz112)(1 + lz2l 2) 

(11) 

and Hs(z, z) = (z; Sllllz; S). The formal functional measure Dµs is to be understood as 
an infinite pointwise product of measures (3). The path integral is normalized by G IH=o= 
(z1; Slz2; S). Representation (9-11) is the SU(2) particular case of the general coherent. state 
path integral representation for a transition amplitude which can be found in (Negele and 
Orland 1988, Kochetov 1994a). ' 

Some general remarks are in order at this stage. The representation (9-11) is to be un
derstood as a formal limiting fo'rm of the cor~esponding time-lattice approximation (8). The 
justification of the existence of such a limit is a rather nontrivial problem, for details see (Berezin 
l!J71.1980). But even in case this limit does exist this would in rio way mean that path integral 
(!J) appears as ah integral over a·certain measure. This in turn implies that all the formal 
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manipulations with the path integral, e.g., a change of variables, etc., should be understood 
as being applied to the discretized pre-limiting form, with the 'limit being carried out at the 
end of calculations. We believe fpllowing Berezin 1980 that in case the limit of the discretized 
form of a path integral in which a change of variables has ·been made coincides exactly with 
what one would get performing a formal change of variables in a continuum path integral, this 
ci1ange of variables is allowed. However, we would like to,remark that in more simple situations 
as those associated. with the Wiener measure a genuine integral calculus over contiuous paths 
exists. For recent applications to quantum mechanics see, for example, Fischer et al 1992. 

The next important point is that variables z( s) and z( s) are to be considered to be in
dependent. This stems from the fact that z(s) and z(s) are associated with the discre.tized 
variables displaced by one time step, z(sk) and z(sk-tl, respectively (Berezin 1980, Blazoit and 
Orland 1981). The integration" variables z(r) and z(0) entering boundary term (10) are in fact 
nothing but z( T - 0) and z( +0), respectively. The end-points z( r) = z1 and i(0) = z2 do not 
enter eqs.(10,11) at all. Due to.this, the Euler-Lagrange equation b<I> = 0 yields the contin_uous 
classical trajectories ( extremals) zc( s ), 0 < s :S ,;. and zc( s ), 0 :S s < r 'specified by the different 
boundary conditions zc( T) = z1 and zc(0) = 22, as it should be. Consequently, the overspecifi
cation problem disappears. Note that variation of the f-term eliminates the boundary terms 
coming from the variation of L, which results in the correct form of the equations of motion. 
In the section 4 we shall perform a regular expansion of <I> armmd extre~als. 

The relative shift of the arguments of. z. and_ z functions. means nothing but ·a particu
lar definition of the time-ordering product of operators at coinciding arguments as a normal 
product. Actually, this prescription follows from the chosen quantization scheme (Negele and 
Orland 1988). This turns out to be important in calculations. For example, even in the trace 
calculations of the coherent-state path integral where no bqundarY, terms appear the shift of 
arguments should be kept in mind 'to ensure the correct result .. , ' ' ;1, . . . _. . 

. We are now ready to consider the first important 'applicatio~· of the SU(2). path integr~l, 
the exact evaluation of the propagator for a system g~vern~d by ~ Hamiltonian belon'gi~g to 
the SU(2) algebra. This is referred to as the case of a dynamical sy~m~tiy. As_ is known 
the propagator in a closed form could' be obtained by usiri'g the Wie-Nonnan disent'angling 
procedure (Wieand Norman 1963) which is to be applied directly to th~ operat~'r . , , . 

Te-if; Hd,_ 

• , • , I '" 

This results in the rep'resentation of the T-expon"ent by a'finite prod~ct of exponential ·operat~rs 
whose number is equal to 3 = dim SU(2). This is suflici~nt for expHcit computaFon of the 
propagat~r. Bein~a p~relr algebr~ic procedure, the Wei:N_qr~f~--~~tfod, ~~w<;ver, req1_1ires a 
lot. of ted10us calculations. One might hope to reach the goal m a simpler way by makmg· an 
appropriate change of variables in a path integral. Let us show how it goes in'the SU(2) case. 

Consider the Hamiltonian · · ' 

JI= 2A(t)S. + f(t)S+ + ](t)S_, _ . 
. ,, ,··,,:: (12) 

which is relevant to the system of a single spin in a fluctuating magnetic field. It may also 
n;present some kind of an effective interaction; the c-functions A and /, f being the· dynamical 
variables. This is the case in the next s~ction. , 

By using the explicit form of the SU(2) coherent states (2) we get 

_ 1 - lzl2 . • z' - z 
Hs(z, z) = -2S A(t) 1 + lzl2 + 2S f(t\ + lzl2 + 2S f(t\ + lzl 2 • (13) 

5 



Let tis take a general SU(2) element in the form 

g = ( u_ ~ ) E SU(2). -vu 

The group SU(2) acts in ?J1, by the following canonical (projective) transformation 

uz +v 
z->---. 

-vz+u 
(11) 

We then change the integration.variables in (9) by means of the substitution (14), parameters 
u and v heing time-d~pendent. The integration measure in (9) remains invariant. The SU(2) 
parameters are fixed by demanding the terms linear inf and Jin <I> vanish after the substitution 
has bee~ made. As a result Gs is simplified t<? 

G (- . ) _ [a(r)- b(r)z2 + b(r)z1 + a(r)z1z2]
25 

s z1,,z2,T - .. (l+lz112)S(l+lz212)S ' 

where functions 

a(t) = u(t)ii(0) + v(t)v(0), b(t) ;= v(t)u(0)-:-- u(t)v(0) 

are the solutions to the first-oder differential equations 

a= -iAa+ ifb 

b = -iAb- ifa 

(l:i) 

(16) 

with the bound~ry co~ditio~s a(0) = 1, b(0°) ~ 0. ;fhis coincide~ exactly with what .has 
been obtained by Ellinas 1992 i~ th~ time-lattice approach, which ju;tifies the change (14) in 
the' cb~tinuum SU(2) p'':t~ integral. It is _quite clear that in gener\11 c:ase the G-motion of a 
phase· space is t6 be. used as an appropriate cliange of integration variables. Concluding this 
section, we would' lik~ to p~i1~t oi'.it that the group. theoretical approach is not only useful for 
cohe~e~t st~te path integrals but is ;also successfully used in Feynman's path i11tegral (Junker 
1989, Inomata 1992).' r. · · .• 

3 SU(2) path .integral for.Heisenberg model 

As an instructiv~ example'oftl1eSU(2) path integral's applications, we c~nsider the quantum 
Heisenberg ferro~agri~t. Th~:partitiori function for the quantum Heisenberg ferromagnet 

\. ,, ; ,: ' 

,\j, . " 1 - -
Z = Tr exp( -'(JH), H = - 2J,jS,Si, 

where the summation over repeated indices is assumed and J,j is the positive definite symmetric 
matrix of the exchange inter.action (J;; = 0), can be written as (Liebler and Orland 1981) 

z 

> t. /3 ' ' ,' ii 

f fJ. n,f'. I*'" H / ,f,( t)J,;J1(t)d,)' 

x Tr [Texp (-:--l ,$,(t)S,(t)dt) l (17) 
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In deriving (17). the well-known Hubbard-Stratonovich identity has been used. 
The partition function of noninteracting spins in an external fluctuating field i;,( t) can be · 

writ.ten as the SU(2) path integral" 

7.o(J) " T, [r~, (-l ;,(t)S,(l)dt) l 
J ( 1:i o.,n, - o;o, IT O11s(n,)exp S I 12 di 

. 0 l + o, 
n,(O)=<>,(ii) ' 

+s 1j,/0>~dl - S ~di - S ~di . (18) i
11 :1 • I 12 i/3 .. %3 - . ) 

I + ln,12 
0 1 + ln;J 2 

0 1 + ln;l 2 

where we havP put~··=!/•,.+ ilj,y, t/• = ,;•,. - i~\ and ij,(o) = 1/•, . .\'ote that o stands hnc for the 
integration variable with tlw periodic boundary conditions, which results in no boundar~· term 
in tll<' act.ion. This should come as no surprise, for one should clearly discriminate b<'twccn the 
casps of a transition amplitude and of a density matrix and its trace. Statistical mechanics is 

different. from quantum dynamics. 
Integral (18) can be evaluated by the change (14) with the result. 

- - sinh(S + ½l .t(i1,<0
> + ~-•;z;)dt 

.%'0 =expL(I/•), L(1/•)=Llog . 
1 0 \ 0)', (19) 

; smh 2 J0 ( ~•; + ~-,z;)dl 

where the function z = u/v depends upon I/· via the Hiccati t•quatio;, 

i - ip(O)z - (v,/2)z2 + 1/1/2 = 0, z(O) = z(!-J). (20) 

The part.it.ion funct.ion thus becomes 

;I,= j JJ,lexp(-8(¢)) (21) 

- 11- ,- -S(lj,) = - 2 ip,(t)J;i ,t,i(l)dt + L(lj,) (22) 

Representation (21,22) is a starting point. for the systematic mean field expansion. 
Let the stationary mean field $ be.chosen in the:; direct.ion: <t = (0, 0. <l>;). Th(' saddk-

po.int equation 
fiS 

--- lo=0 
fiif•j(t) 

(the subscript. lo denotes a quantity at. t.h<' st.at.ionary point.) reads 

<I>= Jo b((J<l>), (2:l) 

where b(x) = SB5 (8x) and /38 (x) is the Brillouin function. To cl<'riv<' (2:1). we ha,·,, put 
J

0 
= Lj J,j and <l>, = <I> assuming translation invariance· for t.h<' syst,•111. Expa11di11~ S( t-:) 

around <I> up t.o t.hc spcond order, om· arrives at (i'i = I/~ - 4~ lo) 

J {., r/3 . . 
h = exp{-S(<I>)} lJ11exp -2 lu 11/

0
>(t)(.Jrf~:ln);_;(l .. s)17\°\,)t!td.s 

I f 1 

} - 2 Jo iJ;(l)(J,-:-1~,,,);;(t,.,),Jj(-')dld.s • (21) 
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the effective inverse longitudinal and transverse interactions being given by 

( Jef~;ln)ij( t, S) 

( Jej~,tr)ij( t, S) 

82 L 
J- 18(t - s) - ---,-,--;-----=------ lo 

iJ o1p/O\ t )o,p)O)(.~) 

J;"; 1o(t - s) - b'({3<P)8;j, 

82 L lo 
J;--,;1o(t - s) - 2 oip;(t)ou,,(s) 

·oz;(t) I 
J-:lo(t - s) - 2b({3<P) oipj(s) 0. •J 

By taking the functional derivative of eq. (20) one finds 

d oz;(t) 1 . 
(dt - <I>) oipi(s) lo- -l,18(t - s), 

oz;(t = 0) oz,(t = fJ) 
oi/Jj(s) lo~ oi/Jj(s) lo, 

which results in 

2b(fJ<P) oz,(t) I = ~(TS:-(t)S+( ·)) •'()o 2 , 1 so u>/Jj s 

= O;jbexp(<P(t - s)) {n~0(t - s) + (1 + n~)0(s - t)} = G\~)(t - sl<P), 

the temperature Green function for noninteracting spins with the Hamiltonian II 
<I> I;Sf''; n~ = (e'1~ - JJ-1. 

Turning back to eq.(26 ), one finds 

(J;/1,tr);j(t - s) = J;--,;1o(t - s) - ci~)(t - sl<I>). 

In the energy-momentum representation this reads 

J(q) 
JeJJ(wn, q) = 1 _ J(ij)G(O)(wn)' 

In view of eq.(28), the Dyson equation for the whole propagator 

G = Go + GoJejfGo 

gives (Go(wn) = b/(iwn + <I>); Wn = 21m/{3) 

G(wn,q} = b({J<P) , 
lij+ iwn 

w(1cre 
lij= b(f3<P)(J(O)- J(ij)) 

(2.'i) 

(26) 

(27) 

Hu= 

(28) 

(29) 

(30) 

(31) 

is t.hc t.crnperaturc-dcpcndent. energy of the spin wave excitation.· Path integral (24) is easily 
calculated t.o yield a contribution to the partition function coming from the Gaussian fluctua
tions around the mean field. Tlw result coincides exactly with that of Liebler and Orland 1981. 
What is illlport.ant. is that our approach does ~ot invoke any Fermi (Bose) oscillator-like rep
rcs,•nt at ions for the spin operators which .would perturb the original problem and complicate 
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calculations (Manousakis 1991). A further poinUs that this formalism provides convenient 
expansions for the Green functions around the mean field in powers of the effective intera.ctions 
J1n;eff and J,,,eJJ (Kochetov 19946). 

· As has been shown in this section, the SU(2) path integral provides us with a new method· 
for studying the thermodynamics of the quantum Heisenberg model. The very same technique 
for the path integral over coherent states associated wfth more complicated groups could be 
easily developed. The U(2ll) supergroup relevant for the Hubbard (t- J) model provides quite 
a n"Ontrivial example of this kind (Wiegmann 1988). 

4 Stationary phase expansion 

This section constitutes the main result of the present paper, the derivation of the SU(2) prop
agator in the quasiclassical region S » 1 in a closed form. Our final result is expressed in 
terms of classical trajectories and provides a convenient formula for the quasiclassical propa
gator of spin systems. It is in a full accordance with the path integral generalization of the 
·Diustermaat-Heckman theorem which states that WKB is exact when dynamics leaves a metric 
tensor invariant (Blau et al 1990). ' 

The semiclassical motion of .quantum system is described by the approximation 

<I> ~ <I> le +~02 <I> le, o<P le= o (32) 

with the boundary conditions z (0) = z2 and z (T) = z1. The subscript "c" denot~s quantity 
along the extremals 

We introduce variations 

which satisfy 

2Sz = -i(l + lzl2 )28,H, z(O) = z2, 

2Sfi = i(l + lzl2)2o,H, z('1) = z1 .. 

1J = Z - Zo , fj = Z - Zo, 

1J(0)=0, 1J(T)'=0. 

The phase function <I> is then expanded up to second order in 7J and ij, which results in 

(33) 

Gs(z1,z2;T) ~ G,ed exp<I>c, (34) 

The reduced propagator is given by (Ti= 1) 

G,ed = j D11Dijexp [~o2<Pc(1J,7))] 

82<Pc = 17

(~1}- ~1])ds -i 17

(1]2A + ij2C +2fi11B)ds, (35) 

where 

[
(l + lzl

2l2 a,H] , 
A= a, 2s c 

C = a- [(l + lzl2)2 8-H] 
z 2S z e 

and 
1 [ (1 + lz/2)2 -] B = 2 a, 

25 
a,H + z ..... z e. 

9· 
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In view of eq.(46) we arrive at 

I( 
Del Ko 

1 + lzc(O)l2 exp(-i 1T Bdt)(azc(0))-1 
1 + lzc( rl2 

0 8i1 

I+ lzc(r)l2 exp(-ilr !3dt) (8zc(r))-1 
I+ lzc(0)l2 

0 8z2 

To end up the derivation, let us compute 

82<1.>c 
8z18z2 · 

(50) 

It is worth noting that we take the derivative of the total classical act.ion including boundary 
term. It is the total action <I>c that enters the final answer. The calculation is straightforward 
and yields 

82<1.>c I [ 2S , 8zc(r) 2S oic(0)] 
8i18z2 = 2 (1 + lzc(r)l2)2 8z2 + (I+ lzc(0)l2)2 az. 

(.'ii) 

Combining eqs.(50) and (51) one finally ends up with 

(D k)-•=(I+lzc(T)l2)(1+lzc(O)l2) 82<1.>c ('1TBd) 
elf' 2 c <>- a exp l I , 

io ,J OZt Z2 o 
(52) 

which yields for the SU(2) semiclassical propagator 

Gs(i1, z2; r) = exp(<I>c + ~ 1T Bdt) [(! + lzc(r)l2)(1 + lzc(O)l2) a2<I>c ] 
1

/

2 

2 0 25 8z18z2 
(53) 

Thus we have expressed the SU(2) semiclassical propagator in terms of the total classical 
action and classical orbitals, the factor 

(! + !zc(r)l2)(1 + !zc(0)l2) 
2S 

revealing nothing but the curved nature of the phase space. Note that the B-term dependence 
is pun~ly of a kinematic nature and simply plays the role of a normalization. This term with 
the help of the Euler-Lagrange equations can also be expressed through the extremals: 

i ( . . 
B = 2 a,z - a,z) le . 

Herc we remark that Kuratsuji and Mizobuchi 1981 have made an earlier attempt to derive 
the WKB formula for the SU(2) propagator in the SU(2) path integral technique. Unfortu
nately, they have not taken account of the boundary term, whereas it is the total action <I> that 
enters the final result (53). This as well as using of an overspecified set of the Euler-Lagrange 
cq11,1tions have made them impossible derive a correct final formula. 

As a simple test example cori'sider 
lf = wS'2 • 
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As is easily seen B = w and the solutions to eqs.(33) read 

zc(s) = z2 exp(-iws) ic(s) = i1 exp(-iw( T - s)), - (54) 

which in tum results in 

<I>c = 1Swr + 2S:log(l + i1z2e_;wTj'- Slog(;+ lz1l2) - Slog(l ;t- !z212) 

'a2<I>c 2S e_;WT 

8i18z2 = (1 + z1z2e-;w7 )2 

F~rr~ula (53) yields 
Gs(i1z2; r) = exp <I>c, (55) 

According to the path integral generalization of the Diusterrnaat-Heckman1 theoremU{e 
WKB expansion is exact, provided a metric of the underlying phase space is in;a}i'ant ~~dei
classical dynamics (Blau 1990). This is just'the case for H = wS,. Th~

0

sam.e conclu'sio~ follows 
directly from the time-lattice calculations (Funahashi et al 1994 ). All this means that (55) is 
exact, which is notliing but the consequence of tlie SU(2) dynamical invariance of H. M01:eover; 
the dynamical invariance, i. e.,_the fact that H belongs to the' SU(2) algebra, results in · 

Gred = I, ·:1 i..· .,.; -· !c< .. l.;. 

which is of importance in deriving the generalized Bohr-Sommerfeld quantization condition. 
In the end of this s~ction, let us briefly comi:ne~t on the semiclassical <J,Uanti;~tio'n c9:1dition 

for the SU(2) path integral. In the case of stationary bound,stat,es, quantum system evolves 
along the closed path which lies on the constant energy surface'H(z;

0

z) = E. Single-valuedness 
of the semiclassical wave function implies (Keller 1958, Kuratsuji and Mizobuchi 1981) 

- iS1T zz-1 zl:ds = (2n + v/2)1r, 
0 1 + z 

(56) 

where z and i are solutions to eqs.(33) and n = 0, 1, ... 2S. The integration in (56) is carried 
out over the period of motion T and the index v stands for the number of singularities of the 
semiclassical propagator Gred along the classical orbit. 

In the case 
H=wS, 

we haver= 21r/w and z(s) = ze-;w•,z(s) = z(s). Equation (56) takes the form 

S, = S-n, 

which means that the energy of the system is given by 

E = wS, = wm, m = -S,-S + 1, ... ,S-1,S. 

Note that Kuratsuji and Mizobuchi 1981 have obtained the above expression with the value 
· of m being shifted by 1/2. The difference originates from the fact that Gred = 1 implies that 

v = 0, whereas Kuratsuji and Mizobuchi derived that v = 2. Note also that their result is not 
WKB exact, which contradicts the Diustermaat-Heckman theorem. 
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5 · Conclusion 

We·have presented the SU(2) coherent state path integral representation for a transition am
plitude which involves boundary term and correct boundary conditions. This enabl,,s us to 
develop self-consistent calculational schemes both in getting the exact form of a propagalor for 
particular Hamiltonians as well as in deriving semiclassical approximations to the propagator 
fo-r a general problem. By comparing our calculations with those in the time-lattice approach we• 
have argued that the SU(2) motion provides a change of variables that compute path integral 
in the case of the SU(2) dynamical symmetry. Being formally equivalent to the Wie-Norman 
disentangling procedure, this method, however, turns out to be much more effective and conve
nient when applied to spin systems in a fluctuating external field. This has been demonstrated 
hy the ex~mple ~(the Heisenberg ferromagnet. .• 
' We'have also_succeeded in deriving a closed formula for a quasiclassical SU(2) propagator 
starting from .the SU(2) · coherent state path integral. The result is expressed in terms of 
classical traject~rie~ a11d a totalaction onlj(It agrees with the Distermaat-Heckman theorem 
a~d recovers the 'spectrum of the WKB ex'.1ct models. 
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