


1 Int‘roductiﬁn'“ o
Recently, the path integral in the coherent state representation has been considered (Klauder
1978,1979, Berezin 1980; Blaziot and Orland 1981, Negele and Orland 1988) The path integral
in the generalized coherent state representation provides a natural and convenient device for
quantlzatlon of classical systems with nontrivial (nonﬂat) phase space. Note that the ordlnary
phasé space path 'integral can be thought of as’an 1ntegral in the Glauber coherent state
representation and is defined on' paths in C!, the ordinary complex plane. It is relevant to
boson oscillator-like'systems, whereas for spin systems it 1s more convenient, however, to use
a path integral defined on the compact nonﬂat manifold C extended complex plane which is
homeomorphic to the two- sphere Sz

From the group theoretical p01nt of view, coherent states can be assoclated with unitary
irreducible representatxons of Lie groups (Perelomov 1972, Gilmore 1972) The irreducibility as
well as the existence of the group mvarlant measure ensures that the resolution of unity holds in
the coherent state basis (Onofrl 1975, Klauder and Skagerstam 1985), which turns out to be the
most important property of the coherent states’ that ‘allows for the path 1ntegral construction.

The conventional Glauber coherent states are related to the UIR of the Heisenberg-Weyl
group, whereas the spin (SU(2)) coherent states— to the UIR’ of the SU(2) group (Radcliffe
1971, Arecchr et al 1972, Perelomov 1972). In the SU(Z) case integration is carried out over
paths in T~ S?, wh1ch can be identified with the SU(Z) homogeneous space, SU(Z)/U( )
(Perelomov 1985). The path 1ntegral in the SU (2) coherent state representation originally
appeared in the paper by Klauder 1979 as an integral on S2. Kuratsuji and Suzuki 1980 have
: represented it as an integral on paths in T". For recent and comprehensive review on the SU(2)
path integral and its applications see, Kuratsuji 1992.

As is generally a.pprecxa.ted a path integral serves as the most effective ca.lcula.tlonal device
either in getting the exact form of a propagator for, particular, Hamiltonians or. in deriving
pérturbation or semiclassical approximations to-the propagator for a general.problem. As
is known, the path integral in the configuration space has been successfully used for these
purposes both in the flat case starting from its invention by Feynman in 1948 and in the spaces
with curvature and. torsion, (For review see, for example, Schulman 1981, La.ngouhe et al 1988,
Kleinert 1992, and Inomata 1992).

There are, however, a number of unsatlsfactory points and mysterles when the path integral
in the coherent state representation is.concerned. By saying this, we do not mean the unsat-

“isfactory points concerning the definition of a, path integral itself as the formal limiting form
of the time-lattice approximation. These difficulties are the same for both the configuration
or coherent state path integrals. In the first place, we mean the so-called overspecification

~ problem (Klauder 1978;1979); i.e., that the:semiclassical expansion for' 2 path integral that
represents a transition amphtude between coherent states encounters a mystery: the number of
boundary conditions turn out'td'be twice of the equatlon of motion, The second point is that
the coherent state path integral fail to recover the exact spectrum even for'the solvable simple
models. Restricting ourselves to the’ SU( ) case we note that the spectium of the single spin
Hamiltonian

H =wS,

is recovered by the SU(2) path integral calculations with the shift byk 1/2 :(Kuratsnji and
Mizobuchi 1981, Enz and Schilling 1986). More worse, however, is that the semiclassics is not
exact in the case of dynamical symmetry as it must be due to the path integral generalization
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of the Duistermaat-Heckman theorem (Blau et al 1990). All this might obscure the physical
interpretation of the coherent state path integral and hinders its usefulness in apphcatrons

. On the other hand, when applied to the discrete time formulation the WKB expansron'

becomes exact and non of the above mentioned djfficulties arise (Funahashi et al 1994). Due
to this one might suggest that the discretized form of the coherent state path integral is to be
used rather than the contrnuum one. But thisin turn ‘would mean that the coherent state pat h
integral fails to put a continuous classical actlon into correspondence with a quantum svstenn.
- This would fall in an’ obvious drsagreement with the Berezin quantrzat\on scheme developed for
homogeneous Kahler manifolds (Berezm 1975) which, for example, c' belongs to.

In the present paper we consider the self- contarned .SU(2) path integral representation for
the matrrx element of the quantum propagator in the SU(2) coherent state basis. 1t is essentially
based on the correct continuum’ expression for the classical actron which includes a boundarv
term.: ' This term arises due to the dlscontmulty of complex traJectorles at the end pomts It
should be remarked that the éxistence and importance of boundary terms in the coherent state
: path integrals have been stated by Faddeev 1975, Berezm 1980, Blazmt and Orland 1981. For

a very good review on this topic see Negele and Orland 1988. "Nevertheless, till now a very little
attention has been paid to the correct contmuum form of a path mtegral and all the drfﬁrultres
encountered are merely _assigned to the fact that a path integral is an ill defined obj Ject in itself.
"“" In the present paper, by the simple exampe of-the SU( ) coherent state path 1ntegral we
“argue that all the above mentioned difficulties can be safely avoided provided a correct form
of & continuous classical action w1th boundary term is taken into account. Thrs enables once to
consider the SU(2) path integral to be a convenient and useful device for quantlzrng classr( al

systems: This seemns to be‘true for any coherent state path integral, which will be discussed

elsewhere.” ‘All this indicates that using of the coherent state path integral does not imply
éncountering of any additional problems.as compared to those of the conventional configuration
space one.. But one should kept in'mind, however, that both of ‘these constructionis cannot be
in general thought of as integrals over certain measures, which means that in case of a troublc
. the recourse to the time-lattice approximation should be made. ’
" The plan of this paper’is as follows. In'the second section ‘we ‘write down the corréct cons
_tinuum SU(2) path: integral representatron for a transition amplitude (quantum propagator)
and show how it can be computed in case of dynamrcal symmetry. The next séction is devoted
to the application of the SU(2) path integral to a real spin system; quantum Heiserberg/'fer-
" romagnet. The main result of the paper constitutes section 4. It concerns the'evaluation of
‘the semiclassical SU(2) propagator. We follow the ideas by Levit'and Smilansky 1977, Buslaev
1980 and Kuratsuji' and Mizobuchi’1981-and express the final result in a closed form in tcrms
ofa total classrcal actlon and classical trajectories. Sectron Gisa conclusron

2 SU( ) pa'th'ihtegral forutrans,iti(‘)n'amplitud.eu

At the begrnmng of this sectlon we recapltulate the necessary 1ngred1ents for the SU(2) path
integral representatlon of a transrtron amphtude : iy .
" "The startrng pomt is the SU( ) algebra with generators

[S.,54] = S, [S+S-]=285.. (1
The SU(2 ) coherent state 1s glven by A , P v
S 15,5 = (1 + |z} )—S =Sy 15 =), s_|s;—5) =0, @

where & € N/2 is the representation index and z € SU2)/U(1) = T'. The resoluton of unity-
in the representation S with respect to thc SU(2) invariant measure reads

25 +1 d*z
2; 5z Sldps(zy = 15, dps="FHo0o— 2 : .
/| Wz Stdps(z) = s, dps  TF (3)
Consider the coherent state matrix element

Gs(21,237) = (z1; S|T e o 12, 6,

w h(‘r(' 11 is an entire function in the SU(2) gencrators.

Vor the reader’ convenicnce we give here a brief account of the derivation of the continuum
SU(2) path integral representation for a transition amplitude. Our final expression involves

boundary term and correct boundary conditions as against that of Kuratsuji- 1992, This in turn
cuables us to properly treat the SU/ (2) continuum path integral. :

In order to express th(‘ transition amplitude by path integral. we divide lh(' time mtel\al
into N small intervals: ¢ = =71/N with N = oc. Let us define

S = (k. CL— = C(-“k) 0 < k < N.

With the aid of the time discretization together with relation (3) the propagator can be w rlll(’l]
in the form

: N
Gs(21,2957) = Ilm /Hdllk 1lCN (Col=2) H (Gele™ gy, (1)
k=1

where we have dropped the S label of the cohexcnt state and put dpy = dps((x). Proceeding
further we notc that
{Cele™ MO0 1) = (Culuma M exp{=ie (G G i)} + O(e)). ‘
wliere .
(M (s)16k-1)

H(Cry Gty 58) = (Celen)
S Wk—1

To the same order in ¢

N
('5(21,21, = ]”n /Hdﬂk {z11¢n){Colz2) H (kl(k D exp{—1eH ({hu CGoori s4)) {5
k=1

It can be easily checked that for any clement of the Iilbért state- -space of a spigle particle
with spin- S

Pul(z)

TE) = T3 Ty

there holds L ,
/<n|z>f(z>du;;(:)=f(;n; o I

where P, is an arbrtrary polynorma] of the de sgree m < 28 (l’mvlom()v 1983). This enables one
to carry out the mt( gration over (l/tN,d/zu in (5) with the result

N=1 : N-t ' X '
Gs(zisyT) = ]]_..“3\/ Hll'm.( vy ((ri~z)H(Lr|(r 1)“-}’{‘“2”((1. Ch- r)} )]
(o=z2 k=2 k=1



Next, by using the difference 6 = (x — (4_1 we have
Skt — Cubi
14 GkCi

If 8x becomes O(e) in the limit of ¢ — 0, (7) is reduced to the form’

log{ClCe-1) = S + 0(6%).

- (v=g N1
Gslz,257) = lim / T sl k)

N—oc Co=22 iy
N-1 N
6k Cioy — SkGh-1 — G s ‘
exp{S kg 1 Gl — € él ][(Ckka—lvslr)}} (,8)

where we neglect the order O(€?) and higher, which is allowed if the limit in eq.(8) exists (for
details see, for example, Berezin-1980). It i$ clear that the variables ¢~ and (o do not enter
eq.(8) at all. In other words, The Euler-Lagrange equations for ¢x and (; are aecompamed by
the boundary conditions (o = z; and (y = 7, respectwely The term

(=1 I_CN—x>(C1 |22)

gives rise to the continuum bonndary term to be discussed below.
~ In the continuum limit (8) gives rise to the formal path integral expression

! E(r)=2

Gs(z1,257) = Dps(z)exp @, )

z(0)=z3

where we have replaced the integration variables by z(s) and 2(s). The total action ® includes

the boundary term I':

O =L+T,

S/ 1+ll2 /H‘(’zz | . | J(w‘) h

e en (1+2lz(r))(1+2(0)22)k
a “Slg[ 0+ [P + 1l ]

and Hg(%,z) = (2z;S|H|z;S): The formal functional measure Dugs is to be understood as
an infinite pointwise product of measures (3). The path integral is normalized by G lH=0=
{215 922; S). Representation (9-11) is the SU(2) particular case of the general coherent state
path integral representation for a transition amplitude which can be found in (Negele and
Orland 1988, Kochetov 1994a). )

Some general remarks are in order at this stage. The representation (9-11) is to be un-
derstood as a formal limiting form of the corresponding time-lattice approximation, (8). The
justification of the existence of such a limit is a rather nontrivial problem, for details see (Berezin

where

e g e

(11)

" 1971,1980). But even in case this limit does exist this would in no way mean that path integral

(9) appears as an integral over a certain measure. This in turn implies that all the formal

manipulations with the path integral, e.g., a change of variables, etc., should be understood

as being applied to the discretized pre-limiting form, with the limit being carried out at the

end of calculations. We believe following Berezin 1980 that in case the limit of the discretized

form of a path integral in which a change of variables has been made coincides exactly with

what one would get performing a formal change of variables in a continuum path integral, this ’
change of variables is allowed. However, we would like to-remark that in more simple situations

as those associated. with the Wiener measure a genuine integral calculus over contiuous paths

exists. For recent applications to quantum mechanics see, for example, Fischer et al 1992.

The next important point is that variables 2(s) and z(s) are to be considered to be in-
dependent. This stems from the fact that Z(s) and 2(s) are associated with the discretized
variables displaced by one time step, z(s;) and z(s¢_1), respectively (Berezin’ 1980 Blazoit and
Orland 1981). The integration variables z() and Z(0) entering boundary term (10) ate in fact
nothing but z(7 —0) and z(+0), respectively. The end-points z2(7) = z; and Z(0) = Z; do not
enter eqs.(10,11) at all. Due to this, the Euler-Lagrange equation §& = 0 yields the continuous
classical trajectories (extremals) z.(s), 0 < s < 7 and z.(s), 0 < s < 7 specified by the different
boundary conditions Z(r) = % and z.(0) = 23, as it should be. Consequently, the overspecifi-
cation problem disappears. Note that variation of the I-term eliminates the boundary terms
coming from the variation of L, which results in the correct form of the equations of motion.
In the section 4 we shall perform a regular expansion of ¢ around extremals.

The relative shift of the arguments of :z. and z functions means nothing but a particu-
lar definition of the time-ordering product of operators at coinciding arguments as a normal
product. Actually, this prescription follows from the chosen quantization scheme (Negele and
Orland 1988). This turns out to be important in calculations. For example, even in the trace
calculations of the coherent-state path integral where no boundary terms appear the shrft of
arguments should be kept in mind to ensure the correct result. ‘: '

We are now ready to consider the first important a,ppllca,tron of the SU( ) path 1ntegral
the exact evaluation of the propagator for a system governed by a Ha.mrltoma.n belonglng to
the SU(2) algebra This is referred to as the case of a dynamrca,l symmetry As is known

_ the propagator in a closed form could' be obtained by using the Wre Norman d1sentanglmg

procedure (Wie and Norman 1963) which is to be applied directly to the operator
T e~ N Hds_

This results in the representation of the T-exponent by a finite product of exponential operators
whose number is equa.l to 3 = dim SU(2). This is sufﬁc1ent for explicit computation of the
propagator. Being a purely algebraic procedure, the Wei- Norma.n method however requires a
lot. of tedious calculations. One might hope to reach ‘the’ goa.l in'a s1mpler way by making an
appropriate change of variables in a path 1ntegra,l Let us show how it goes in ‘the SU(2) case.

Consider the Hamiltonian

CH=2408.+ S8+ FO)S-, . (1)

which is releva.nt to the system of a single spin in a fluctuating ma,gnetlc field. It may also
represent some kind of an effective interaction, the c—functlons A and f, f being the dynamical
variables. This is the case in the next section. ;

By using the explicit form of the SU(Z) coherent states (2) we get

LN
ok + 2SO + 25O o

Hs(7,7) = 25 A Jr—2 (13)

1+Hf



Let us take a general SU(2) element in the form

uv i
g:(_ﬁ a)ESU(2).
The group SU(2) acts in c by the following canonical (projective) transformation

uz+v

Z_'_—_——vz-i—u (14)

We then change the mtegrat:on variables in (9) by means of the substitution (14), paramecters
u and v being tlme—dependent The integration measure in (9) remains invariant. The SU(2)
parameters are fixed by demanding the terms linear in f and f in ¢ vanish after the substitution
has been made. As a result G is simplified to

o [a(r) = B(r)ze + b(7)7 + a(r) 5z
» Gs(z1,2057) = = ‘: 0+ IZI-P)S(I FyMBE y : (15)

where functions .

a(t) = u(t)a(0) + v(1)5(0), b(t) = v(t)u( ) = u(t)v(0)

are the solutions:to the first-oder differential equatlons ; v
) } . L . , - a=—tAa+ifb .. v :
S o : b:—mb—ifa : : T (16)

with the boundary conditions a(O) = 1 (0)
been obtained by Ellinas 1992 in the time-lattice approa.ch which justifies the change (14) in
the’ contlnuum SU (2) path mtegral Tt is quite clear that in general case the G-motion of a
phase space is to be. used as an appropnate change of lntegratxon variables. Concluding this
sectlon, we would hke to polnt out that the group theoretical approach is not only uselul for

coherent state path 1ntegrals but i s also successfully used in Feynman s path integral (Junker
* 1989, Inomata 1992).

'3 SU(2) path integral for Heisenberg model

‘As an lnstructxvc example of the SU(2) path mtegral’s apphcatlons we consider the quanturmn
Helsenberg ferromagnet The partxtlon functlon for the quantum Hexsenberg ferromagnet.

e 2= Trexp(ZBH) H = _5J.»jsis,-,
where the Summation over repeated 'indices is assumed and J;; is the positive definite symmetric

inatrix of the exchange interaction’ (J.. = 0), can be written as (Lxebler and Orland 1981)

' . 3 [ ¥
UM I | v

W /Hm;,(t exp —'—/wt .,W):

L X Tr {Texp /z/),(t)S (Odt:) L, (17)

ThlS coincides exactly thh what has

In deriving (17). the well-known ITubbard-Stratonovich identity has been used.
The partition function of noninteracting spins in an external fluctuating field (1) can be -
written as the SU(2) path integral”

8 .
7o) = Tr {Texp|— / Gi(0)Si(ydt -
’ 0
A (h,(\,—(\,‘(f\.
= / H 1)115(0() exp (S/(; _]-f—_](—],let
af0)=a,(3) .
3 s
,(0)1 Jail? 1—6/ o _Sf it dt). 18)
+5/ YT e 1+Iml2 o 1+l &

where we have put Y=Y 4 iy, P = Y — iy, and ¥ = ¢,. Note thal a stands here for the
integration variable with the periodic boundary conditions, whlch results in no boundary term
in the action. This should come as no surprise, for one should clearly discriminate between the
cases of a transition amplitude and of a density matrix and its trace. Statistical mechanics is
different from quantum dynamics. ‘

Integral (18) can be evaluated by the change (14) with the result

Bl 4 iz,
Zo=exp L), LD = 10w smhmslf f: y,((ol)’) " H) 2, (19
where the function z = /v dcpvnds upon ¢ via the Riccati oquahon t
3 — Wz — (9/2)7 4 /2 =0, 2(0) = z(#). (20)
"The partition function thus becomes .
Z= /l)zﬁexp(_s@)) : (21)
S = =5 [ B0 A0+ L) (22)

Representation (21,22) is a startmg point for the systematic mean ficld expansion. .
Let the stationary mean ficld @ be chosen in the z direction: &; = = (0,0, ®;). 'The saddle-
point equation .

55’
—=— fo=10
&y;(1)
(the subscript |o denotes a quantity at the stationary point) reads ‘
o = Job(A0), 23)
where b(z) = §Bs(Sz) and Bs(z) is the Brillouin function. To derive (23). we have put
Jo = E Ji; and &; = @ assuming translation mvarmn((' for the system. Expanding S5

around @ up to the sccond order, one arrives at (7= T, lo)

7= (ﬂ(p{ S( d))}/l)n(‘\p {——-/ 1],(0)( )(./r_f]f:,n),'.,'(f.s)r]}u)(s)(llds

: 1 g . v .
'—3/ w0 (!!;lr)ij("w"')Uj("")d"ls}-' : (2h
0



the effective inverse longitudinal and transverse interactions being given by

8L
“Uo Vet s) = JIM6(E—s) - —————
(J://;lﬂ) J( S) J:] ( S) 61,‘)'(0)( )61/)(0)( ) i
= Ji;l‘s(t —5) = b(B®)6 ij (25)
8L
J L Yi(t,s) = Jos(l-s) — 20—
{ ef futr J( s) ij { 5) " Sb:(0)60,(s) lo
bz
= 56t = 2080) 4 . (26)
By taking the functional derivative of eq. (20) one finds
d 62i(t) 1 s bz;(t = 0) bz, (t = f)
T = —=§;6(t — s), = ,
@™ Vg 0= T Ty = T
which results in
8z 1
26(30) £ o= 5157 (] (o
= 8iibexp(®(t — 5)) {naB(t — s) + (1 + na)0(s — 1)} = GOt — sjo), (27)
' the temperaturc Green functlon for noninteracting spins thh the Hamiltonian = Hy =

(1)29, s Ny = e’,m-—])
Turning back to eq.(26), one finds

Uzdalt=9) = J5'6t—s) - GO —sle) (28)
In the energy-momentum re.prcsentation this reads

J(q)

e ny =TT I Ao 2
Jess(wn, @) = 7= 76 () (29)
In view of eq.(28), the Dyson equation for the whole propagator ’

G= Go + GgJe//Go ‘ (30) !
gives (Go(wn) = b/(twn + ®); wn = 27n/f)

b(9)
Wn,q) = 31
Glens) = 2, (31)

where

7= b(A®)(J(0) - J(9)) .

is the temperature-dependent energy of the spin wave excitation.” Path integfa] (24) is easily”

calculated to yield a contribution to the partition function coming from the Gaussian fluctua-
tions around the mean ficld. The result coincides cxactly with that of Liebler and Orland 1981.
What is important is that our approach does not invoke any Fermi (Bose) oscillator-like rep-
resentations for the spin operators which .would perturb the original problem and complicate

calculations (Manousakis 1991). A further point.is that this formalism provides convenient
expansions for the Green functions around the mean field in powers of the effectlve mteractlons
Jiness and Jiepy (Kochetov 1994b). e

As has been shown in this section, the SU(Q) path integral provides us w1th a new method*
for studying the thermodynamics of the quantum Heisenberg model. The very same technique
for the path integral over coherent states associated with more complicated groups could be
easily developed. The U(2]1) supergroup relevant for the Hubbard (t — J) model provides quite
a nontrivial example of this kind {Wiegmann 1988). i

4 Stationary phase expansion

This section constitutes the main result of the present paper, the derivation of the SU(2) prop-
agator in the quasiclassical region S 3> 1 in a closed form. Our final result is expressed in
terms of classical trajectories and provides a convenient formula for the quasiclassical propa:
gator of spin systems. It is in a full accordance with the path integral generalization of the

‘Diustermaat-Heckman theorem which states that WKB is exact when dynamlcs 1eaves a me‘mc
. tensor invariant (Blau et al 1990). ‘

‘The semiclassical motion of quantum system is described by the appr0x1mat10n
o=o |c +§62(b lca é@ Ic: 0 (32)

with the boundary ‘conditions z (0) =: 22 and' 2(r) = #. The subscript "c” denotes quantity
along the extremals

282 = —i(1 + |2*)28:H, 2(0) =2y,
252 =i(1+ |28, H, 2r)=12., (33)
We introduce variations '
n=z-2, ﬁ;f—-ig,
which satisfy \
7(0) =0, 7(r)=0.
The phase function @ is then expanded up to second order in 7 and 7, which results in
GS(21722;T) =~ Grcd €xp Qt:, s T ; (34)

The reduced propagator is given by (k =1)

1,
Gred = /DﬂDﬁ e€xp [562¢6(ﬁ11’)]

80, = / (nm — 17)ds — i/ (n*A+ 7°C + 2qmB)ds, (35)
0 0
where (1'+ | 1232 . (1 + | 12)2 r
V4 V4
A=4, [—————25 (LH]C, C=20; [————25 OZH]C
and

1o (1412’
bt pLssE

6H+z«—>z] .

c



In view of eq.(46) we arrive at

pere o LHIOF érp(*" /O Bdt)'(ahw‘))_l‘

K, 14 |z (7]? 0z
1+ |zc('r |2 /' Oz (r)\™"
= Bdt . 5
T+ z(0)P exP( ', PO (50)
To end up the derivation, let us compute
920,
621822 ’

It is worth noting that we take the derivative of the total classical action including boundary
term. It is the total action @, that enters the final answer. The calculation is straightforward
and yields

Py 1[( 25 9z () 25 "’26(0)] (51)

95,022 2 |1+ |z(P))? 9z2 © (1+ |z (0)]2)? 0%

Combining eqs.(50) and (51) one finally ends up with

I - z.(7)|? z(0)[%) d*®. 7
(”’7%) afw (ﬂ;g+4 (“)aaan(mNZA Bdy), (52)

which yields for the SU(2) semiclassical propagator

T ‘ 2 N a2 1/2
L4z (r)2) (L + |2(0)]?) J*@. ] (53)

i 7 [
Gs(zl,sg,T)—exp(®9+2/o Bdl)[ i 95 07,0z,

Thus we have expressed the SU(2) semiclassical propagator in terms of the total classical
action and classical orbitals, the factor

(L4 [ze(n))(1 + |2(0)1%)
28

revealing nolhmg but the curved nature of the pha.se space. Note that the B-term dependence
is purely of a kinematic nature and simply plays the role of a normalization. This term with

" the help of the Euler-lagrange equations can also be expressed through the extremals:

B=2(0,5-8.3)]..
2 -

Here we remark that Kuratsuji and Mizobuchi 1981 have made an earlier attempt to derive
the WKB formula for the SU/(2) propagator in the SU(2) path integral technique. Unfortu-
nalely, they have not taken account of the boundary term, whereas it is the total action ¢ that
enters the final result (53). This as well as using of an overspecified set of the Euler-Lagrange
equations have made them impossible derive a correct final formula.

As a simple test example consider

H=wS,.

12

P

As is easily seen B = w and the solutions to eqs.(33) read

ze(s) = zoexp(—iws) Z(s) = zyexp(—iw(r —38))," . ¢ i - (54)
which in turn results in

@ = 1Swr + 25 log(1 + 51226_ii“%5~— Slog(l + lgllz.)‘— S‘log(l + |22|é)

1

S L A
. ) 821822 - (1 + 21226_‘“’7)2

i

Formula (53) yields o S =
Gs(Z12957) = exp(I> A : s (55)
According to-the path integral generalxzatlon of the Diustermaat- Heckman theorem the
WKB expansion is exact, provided a metric of the underlying’ pha.se space is mvarlant under
classical dynamics (Blau 1990) This is just ‘the case for H = wS,. The same conclusmn follows
directly from the time-lattice calculations’ (Funahash1 et al 1994). 'All this means that ( 5) is

" exact, which is nothing but the consequence of the SU(2) dynamical invariance of H. Moreover

the dynamical invariance, i. e., the fact that H belongs to the SU(2) algebra results in

Gred = 1, Cregris it ogulaf B
which is of importance in deriving the generalized Bohr-Sommerfeld quantization condition.
In the end of this section, let us bneﬂy comment on the semlclasslcal quantlza.tlon condltlon
for the SU(2) path 1ntegral In the case of statlonary bound, states, quantum system “evolves
along the closed path which lies on the constant energy surface 'H(z,z) = E. Single-valuedness
of the semiclassical wave function implies (Keller 1958, Kuratsuji and Mizobuchi 1981)

’S/1+|P

where z and z are solutions to eqs.(33) and n = 0,1,...25. The integration in (56) is carried
out over the period of motion 7 and the index v stands for the number of singularities of the
semiclassical propagator G,eq along the classical orbit.

. In the case

= (2n+ v/2)r, ' ' (56)

=wS,
we have 7 = 27 /w and z(s) = ze™™*, 3(s) = z( ). Equation (56) takes the form

S, =8 —n,
which means that the energy of the system is given by
E=wS,=wm, m=-5-S+1,..,5-1,8.

Note that Kuratsuji and Mizobuchi 1981 have obtained the above expression with the value

- of m being shifted by 1/2. The difference originates from the fact that G,eq = 1 implies that

v = 0, whereas Kuratsuji and Mizobuchi derived that v = 2. Note also that thelr result is not
WKB exact, which contradicts the Diustermaat-Heckman theorem.
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5. Conclusion

Wehave presented the SU(2) coherent state path integral representation for a transition am-
plitude which involves boundary term and correct boundary conditions. This enables us to
develop self-consistent calculational schemes both in getting the exact form of a propagator for
particular Hamiltonians as well as in deriving semiclassical approximations to the propagator
for a general problem. By comparing our calculations with those in the time-lattice approach we
have argued that the SU(2) motion provides a change of variables that compute path integral
in the case of the SU(2) dynamical symmetry. Being formally equivalent to the Wie-Norman
disentangling procedure, this method, however, turns out to be much more effective and conve-
nient when applied to spin systems.in a fluctuating external field. This has been demonstrated
by the example of the Heisenberg ferromagnet. .

' We'hé\re zilso“su’c'ceeded in deriving a closed formula for a quasiclassical SU(2) propagator
starting ‘fromut}:ller SU(2) coherent state path integral. The result is expressed in terms of
classical trajectofies and a total action only. Tt agrees with the Distermaat-Heckman theorem
and fecovers the spectrum of the WKB exact models.

‘
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