


1 Introduction

The discovery of high-temperature superconductivity in the copper oxides
and related materials, which have small coherence lenghts comparable to a

few times of the lattice constant, gave a strong impact on investigation of

theories of superfluidity and superconductivity for strongly correlated fer-.

mion systems beyond the weak coupling limit. A better understanding of
quantum liquids of fermions is of relevance not only for strongly correlated
electron superﬂuxds such as superconductors the electron-hole system in se-
miconductors, liquid Helium, spin-polarized Hydrogen and Cesium, but also
for quantum liquids of strongly interacting fermions such as nuclear matter
and the quark-gluon system (see [1] for the corresponding references).

The general problem of a unified treatment beyond mean-field theory
including the crossover from the Bose-Einsteir condensation (BEC) to the
* Bardeen-Cooper-Schrieffer (BCS) pairing (2] was first attacked by improving
the equation of state which expresse's the total fermion density ng as a func-
tion of the temperature T and the chemical pot-entiai 4. Using a T-matrix
approach to the virial expansion, Noziéres and Schmitt-Rink [3] have taken
into account the contributions of correlations obtained from the ladder dia-
grams with free internal Green functions. As a consequence, the effect of
interaction between the bound states was not included in their formalism.
The chemical equilibrium between bound and ionized fermion pairs was stu-
died by Schmitt-Rink et al. [4]. In particular, they pointed cut that at
positive u a B'ose:type singularity arises in the Beth-Uhlenbeck formula. A

generalization of the Beth-Ehlenbeck formula with special emphasis on the

quasiparticle picture was derived by Schmidt et al. [5] which can be applied
also to fermion liquids at high densities. It has been shown that the singula-
rity occurring in the Bose distribution is exactly compensated by the Pauli
blocking factor (I — );1— f) as long as the temperature is above the critical
one. Disregarding this compensation due to introducing the quasiparticle
picture, the problem of the bosonic singularity at positive p was discussed
later on by Tokumitu et al. [6].

An essential problem is the inclusion of interaction between noncondensed
bound states in the equation of state as well as the gap equation, improving
the mean-field theory in a consistent way. For a two-dimensional Fermi su-
perfluid, Tokumitu et al. (7] have taken into account the repulsion among
two-fermion bound states which arises frem the exchange effect of constituent
fermions due to the Pauli principle. Haussmann [8] has solved the coupled
system of the Dyson equation for the single-particle Green function and the
Bethe-Salpeter equation for the two-particle Green function within the T- _
matrix approximation for the self-energy in a self-consistent way. The results
are given for the superfluid transition temperature, the chemical potential,
the fermion distribution functioﬁ and the complex effective mass of the fermi-
on pairs also in the crossover region for dilute fermion liquidé. However, to be’
consistent, the; Bethe-Salpeter equation should be improved not only by self-
energy corrections but also by vertex corrections [1] in accordance with the
Ward identities. The improvement of the self-energy approach by including
the corresponding vertex corrections will be denoted as cluster-Hartree-Fock
approximation, see Section 2.

Of particular interest is the investigation of thermodynamic phase stabi-



lity. The influence of hound state formation in fermionic quantum liquids

on phase instabilities has extensively been discusses in nuclear matter and in

partially ionized plasmas, see [5,9] for further references. On this background, -

‘'special attentlon will be given here to the questlon of phase instability at the

Bose condensatmn of bound pairs.

The fermion system to be considered will be described by the Hamiltonian

H= ):E a1a1+2 > V1212)a1a2a2fa11 (1)
121'2¢
with 1 = 5 0,; 5, denotes the momentum and ay - spin and further internal

' quantum numbers, E(1} = p?/2m, is the kinetic energy. The interaction
- potential is assumed to be spin independent and attractive, F urthermore
for strongly coupled systems the solution of the Schrédinger equation for the
two-particle problem (s-wave) should give at least one bound state.
For this system, the crossover from the strong coupling case to the weak
coupling case can be discussed in two different ways:
(i) A dilute Fermi Liquid with Hamiltonian of the type (1), but with varia-

ble coupling strength, is considered. At a critical coupling strength of the

attractive interaction, bound states are formed. For couphng strengths large ‘

comparéd with the critical one, the low temperature behaviour of the system
is dominated by the bound states, and the Bese-Einstein condensation is ex-
pected. For coupling strengths small compared with the critical one, Cooper
pairing may occur at low temperatures, The crossover between both limiting
cases of variable potential strength has been discussed, e.g., in [3 8,10).

(ii) A Hamiltonian with fixed interaction strength is considered. In the

zero-density limit, bound state formation is assumed to he possible. With

increasing density. due to the Pauli quenching these bound states will be
suppressed and disappear at a critical value of the density (Mott density).
For densities small compared with this critical value. at low temperatures a
transition to the Bose-Einstein condensation is expected. Above the critical
density, at low temperatures a transition into a BCS state can occur. The
crossover from strong to weak coupling is controled by the density. In the
density (np) - temperature (T) plane, a phase diagram for a system with
fixed intera-ct-ion strength can be considered, see [1.5,11].

In general, the macroscopic behaviour of the ‘system described by the
Hamiltonian (1) should be obtained from a non-equilibrium approach [1].
We concentrate here on the stationary state with possible singlet (s-wave)
pairing at zero momentum. Introducing the single particle density matrix
(ajal)t = §13n(1) and the off-diagonal single-particle distribution function
(pair amplitude) (asa1)’ = F(12,t) = e 24 F(1) with 1 = ~p. —0y,
wé find the entropy operator as S = H/T + Sy with H = H — Uy, S =
InTr exp(—fI/T); N = Qnp is the total fermion number, u the fermion

chemical potential, and

. 1 . . I
H = (EME(1) - plata; + 5 3 AME(1)erTuthy 1a; e
<

l\.JI —_ HM

Z Jafazayay — (MF), (2)
121! .
where

EMNL) = E(1)+ 3TV(12,12)en(2).

AMF(1) = FV(IL22F(2). (3)



The term (MF) denotes the subtraction of the mean-field terms aIr.ealxdy
contained in EMF, AMF and the index er denotes the antisymmetrized ex-
pression V(12,12) — V/(12,21).

Evaluating mean values with the statistical operator g = exp(-95), we
have to specify approximations to be performeci within many-particle theo-
ry. Neglecting two-particle correlatioﬁs the entropy operator is diagonalized
using a Bogoliubov canonical transformation. In equilibrium, the BCS solu-
tion for the thermodynamic propert:es is immediately obtained.

The neglect of fluctuations is not :ustxﬁed especially in the case whore

bound states are formed. To i improve the- mean-field approximation, one has

te include also the fwo-particle correlation function
<af'a;agrap> = 61065 n(1)nf2)ex + F*(1)F(1')0126y5 + clafafazay) (4)

and the corresponding higher correlation functions.
A self-consistent treatment of correlations can be performed by using the

formahsm of many-particle field theory with thermodynamic Green functions,

see Fetter and Walecka [12]. In shorthand notation, the single-particle Green

function is given by the Dyson equation, G1,2) = =z -~ BE(1) - £(1,2).
The self-energy can be represented by a cluster decomposition, & = TG +
T3GG +..., whereas the n-particle T-matrices are given by the Bethe-Salpeter
equations such as 7 = V + VGGTy, see [9]. This means that G has to be
determined self-consistently. The solﬁtio_n of the n-particle T matrix gives a
continuum of scattering states hut may also lead to bound states.

A commonly used approximation [3-7,10,11] to obtain a closed system

of equations is to truncate the cluster decomposition of E. Dropping ali 7-

matrices with particle number higher than 2, an equation of state will be
obtained {13} which reproduces the correct second virial coefficient (Beth-
Uhlenbeck formula). -

However, the truncation of the cluster expansion of & at 7% does not
provide us with a consistent treatment of the two-particle properties. In
the Bethe-Salpeter equation, besides improving the single-particle propa-
gator introducing the self-energy, we have also to improve the interaction
kernel by vertex corrections to be consistent in the same order of density.
Looking for all first-order terms in the clnster-cluster interaction, the cluster-
Hartree-Fock approximation has been given in [14]. In particular, the correct
low-density limit of bound-bound interaction in the Born approximation in-
duding all exchange terms is obtained [1]. The problem to find consistent
mean-field approximations from the exact static (energy-independent} part
of the mass operator has also been discussed by Schuck, see [15] and further
references given there. ’

Instead of using the Matsubara Green function technique, an alternative
approach can be given from a functional integral representation. Using this
approach for a system of interacting fermions, Drechsler and Zwerger {16]
have introduced the order parameter A via a Hubbard-Stratonovich trans-
formation. Integrating out the fermion degrees of freedom and expanding in
powers of A they obtained a Ginzburg-Landau theory. The improvement
of the ordinary mean-field theory by including fluctuations in evaluating
functional integrals is the subject of recent investigations, see [17] for the
Nambu~Jona-Lasinio model.

In the present paper, we apply the thermodypamic Green function ap-



proach to a zero-range interaction. Basic relations collected in Section 2 are
evaluated in Section 3 with special emphasis on the disappearence of bound
states at high densities due to the Pauli quenching {Mott effect). The low-
density strong coupling limit, particularly the thermodynafnic stability, is
considered in Section 4. The results are discussed and compared with other

approaches in Section 5.

2 Basic equations

 We briefly describe some relevant relations which are derived in a more ge-
neral form in Ref. {1]. Applying the Bogoliubov canonical transformation
a1 = b +uiby, a1 = uiby ~v,b7, with 1+(1 -:—t?%)"m equal to 2}u1|2. (upper
sign} or 2]v;|* (lower sign), respectively,
- Q)

1 - 2n(1)’
the mean values (byb,)* vanish. This way no off-diagonal single particle dis-
tributions occur in the b representatlon similarly to the case of the normal
state.

The entropy operator is transformed to
S = Sg +Zs(l)b by +1 5 Y. W(12,1'2)6} b by — (MF) + S°F. (6)
Uy
The off-diagonal term 5°F contains noncompensatmg numbers of the opera-
tors b, b*. It can consistently be dropped as long as we are considering the

cluster-Hartree-Fock approximation.

(5)

Within the Matsubara-Green function technique, the cluster-Hartree-
Fock approximation [14] is given by the Ty-matrix approximation for the
serlf-energy as well as the corresponding terms for the interaction kernel of
the two-particle Bethe-Salpeter equation. The latter can be related to the
two-particle wave equation determining the eigenstates with total momentum
P and internal quantum number n. see Ref. [9].

{(s(1) + 5(2) ~ Sup)onp(12) + SV (12, 1'2) (1= < b7y > — < bl by >)

112*
+ Z W (1234, 1'73'4C(3'4, 34)]6,2(1'2') = 0 (7

with

[‘V(1234. 1’2’3’4‘) = W(IS 1’3’)ex54l2642l + W(H 3‘2’)64!25“:
W (14,34 )6pmb31 + (1 — 2.3 — 4). (8)

and the correlation function

C(12,1'?) = Tr(e™® b*b*bz.blf)— < b by >< b by ey
= Zg ‘-nP)[onP énP( )'— 67:.}’(1)] nP(l )’) ] . (9)
Here 6,p(12) denotes the free-particle solution &y, 4p,, pup; and ¢{S,p) =

lexp(Snp) — 117?, the Bose distribution function.

With the self-energy (f(s) = (exps +1)"1)

(s(1) + 5(2) — Sap)* o112
2%[9 nP +f ] -.+S(.).) SnP I@np(].Z)l : (10)

the single-particle occupation < b]"bl > is evaluated with the help of the

spectral function, see [5], where a generalized Beth-Uhlenbeck formula is



derived. The diagonal single-particle density is given by

1
\,«";l + !)f

J'l(].) =

b =
B

(1-2<b7hy >). (11)

‘The equation for the pair amplitude F including the effects of two-particle

correlations is found as

AEM(L) = w)F(1) + ¥ V(1L VY)(1 = 2n(1))F(1)

= 3 V(3L 3¢ )c(e] ayapay, t) — (1 — 1) (12)
3341
with
C(G;a3:a4aa1, t) = Trfe_stt)a;'aya‘yal] — n{3)F(14' t)633r
-+ n(3)F(13',t)534r - -n(l)F(4'3', f)ém. (13)

Applying the Bogoliubov transformation, the r.hs. of eq. (12) is expressed

by the two-particle correlation function as

1%[1/(13, U3)C(US,13) - ¥ (13, U'3)Cm(1'8', 13)) - (1 1) (14)
Eixplicit expressions for s(1), W, ¥ are given in Ref. [1].

The two-particle wave equation (7), the single-particle density (11} and
the equation for the pair amplitude ( i2) should be solveci in a self-consistent
way to describe the stationary state for a superfluid system including two-
particlé correlations at given temperature T and total fermion density np =
Q' Ein(l). Neglecting all two-particle correl.ations, C(12,1'2) = 0, we
obtain the BCS approximation. '
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3 Model calculation

We consider a quantum liquid of fermions (1) with spin 1/2 which interact
via a spin independent potential. The evaluation of egs. (7), (11), (12) is
simplified for a zero-range interaction potential V(12,1'2') = ¢onst. To avoid
not well defined divergent expressions, we take the zero-range limit of a finit

range interaction.

Particularly, we consider a separable interaction where the solution of
the T3-matrix for the isolated two-particle system can immediately be given.
Having introducing the total (P = p, + p,) and the relative (p = (p; — p2)/2)

momentum, the Yamaguchi-type interaction
V(12,12") = —xw(p)w(p'}op,pbay 0y 805,000 (15)

with w(p) = (A*p?/me ++%)7! and X = 8=xy(1 +7)2Q_1(ﬁz[me)3/2e yields at
zero density a bound state, the binding energy being Eyp = —¢ + h*P?/4m

and the wave function
$o(p) = ez + 1) (= ++7) 7, (16)

where ¢ = 8ry(7 + 1)°Q71(A*/me)*? and = = (h*/me)"/?p. With e = E/e,

the scattering phase shifis result as
tan §(E) = 2ver(IL+ /(P + )’ = (1 + ) (v* - ). (17)

The ‘limiting case of a zero-range interaction to be considered here is
obtained in the limit ¥ — oo, but ¢ = A% /ma% taken as a fixed value, where

ar denotes the scattering length for the two-particle interaction (cf. [1] for

11



arbitrary v ). In this limiting case, the Hartree-Fock shifts of the single-
particle states vanish, EMF(1) = E(1), whereas AMF(1) = A is momentum
independent. For the sake of 51mp11c1ty, in the following we will use a system
of units where %, m, ¢ are equal to unity.

Neglecting all correlations, we obtain the mean field sélution where the

superfluidity transition is found from the equation (P - principal value)

1
1= /_
Re Zupes + — / P pp — 2!—‘B g elP*/2-pres)/T 4 17 (18)

Together with the fermion density in Hartree-Fock approximation

1 g pidp

MEBCS = =7 [ T w1 (19)

we find the critical values ppcs(T), npncs(T) where the transition to the
superfluid state in the mean field approximation occurs, see Fig. 1.

Egs. (18), (19) represent the zero-gap solutions of the well-known mean-

field relations

e T) = 5 [ty - EEE G amem) o)

"where E(p) = [(p?/2 - 1)? + A%Y? contains the gap parameter A(g, T) to

be determined from

=_.,f 2 p[zE )ta.nh(E(p))—I%]. (21)

However, the mean-field approximation (19), (20) to the equation of state
which relates the density to the chemical potential and the temperature is
not always applicable. At low temperatures (T < 1 ) and not too high

densities, the formation of bound states becomes of importance. Two-particle

12

_ contributions are obtained by solving the Bethe-Salpeter equation. In the

quasiparticle approximation. i.e. by neglecting the correlation function €' in

the wave equation (7), the two-particle T-matrix in the normal phase has the

form
1
T(P.zy = Hﬁl— —~+P34m%fd3 —_—
1 1 -4 ,
* A Err e T 1 T P AT 1)} - (2

Poles at = = E,j‘(P, i, T) < P*/4 describe bound states. In particular.
the shift of the bound siaie, with total momenium F = 0. due io the Pauii
blocking by free quasiparticles is obtained from the solution of

— Rev E 7 1
1 = RE‘\ E + - [ Ff E‘(P BINT ¥ l

From the solution of eq.(21) with £, = 0,

= | ey (24)

we find a quasiparticle density ng o {T) corresponding to relation {19) above
which, due to the Pauli blocking. no bound state with # = 0 is formed. This
Mott line is also shown in Fig.l. It separates a low-density region wherc"
bound states can exist from a high density region where they are partially
blocked out, depending on their total momentum, see also [11].

Together with the in-medium scattering phase shifts p( E; g, T') obtained
from the T-matrix (22), in the normal phase an equation of state ng{u,T)

can be derived in the form of a generalized Beth-Uhlenbeck formula [5]

ne = g S IE - w/T)

13



2 e

* g8 % (g((E{(P} = 2u)/T) - g((P*/4 ~ 2u)/T)) (25)
2 dE d

- 5Lf — FpIUE + P*/4 = 2u)/T)(6p(E —ésin(zép(E))},

Ey = E(1) = Ty V(12,12)C(1'2',12) denptes the quasiparticle energy as
obtained from (10). |

With the mean-field result ppcs(7) from eq. (18), according to Noziéres -

ar‘zd Schmitt-Rink [3f the improved value ngysa(T) = ne{ppes, T) for the
transition to superfluidity can be given which is alse shown in Fig. I. In con-
trast with [3]. where a simple Beth-Uhlenbeck formula was used, we take the
generalized Beth-Uhlenbeck formula (25) derived by Zimmermann and Stolz
(13] which can alse be used at high densities where the chemical potential
. becomes positive [3].

The improvement in evaluating the equation of state (25) instead of (19)
gives a modification for the phase transition temperature to superfluidity
particularly below the Mott line. The low-density limit is correctly described
where at low temperatures the system consists of bound pairs. These nearly
free bosops undergo a Bose-Einstein condensation if the chemical potential
takes the value 4 = —1/2, what also follows from the condition (18) for the
transition to the superfluid state. According to Nozitres and Schmitt-Rink, a
crossover from the Bose-Einstein condensation of noninteracting bosons with
binding energy —1 (np pec(T) = 2((3/2)(T/7)%? in Fig.1) to the Bardeen-
Cooper-Schrieffer pairing is obtained, see also [5,10]. h

. An open problem, however, is the correct low density behaviour where the

interaction hbetween the bound states is the dominant process. Obviously, in

14

the BCS equation for the critical value of the chemical potential (18) as well
as in the T-matrix {22) or the equation (23) for the bound state energies, the

influence of the medium is considered in the quasiparticle picture as seen from

the occurrence of Fermi functions, However, the inclusion of correlations is

of importance at least in the strong coupling limit. We will evaluate the
infiuence of correlations in the following Section for the low-density limit of
a strongly coupled system.

-~

4 The Iow-dénsity strong coupling limit

The solution of the self-consistent system of equations (7), (11}, (12) that
contain the effect of in-medium correlations on the formation of bound states
as well as the transition to the superfluid state is simplified in the limit
of low temperatures (T" < 1) and low densities (np € 7FMow)- In this
case, the dissociation of bound states is low, so th;it the contribution of free
éuasiparticles to the density can be neglected. The two-particle correlation

function is given by the ground state contribution
C(12,1'?) =3 o((Ba(P) - 21)/T)$p(12)6p(17). - (26)
P

The binding energy Ejy(P) and the normalized wave function ¢p(12) have to
be determined from the two-particle wave equation (7) as performed below.

Furthermdre, in the low density limit we assume that n(l) < 1. Particu-
larly, only the lowest orders with respect to the correlated densities will be
considered. With n{1) < 1, for the coefficients of the Bogoliubov transfor-
mation we have |u;| = 1 — F2(1)/2, |w| = F(1).

15



The two important equations for the pair amplitude (12) and for the

two-particle states (7), respectively, can now be given in the form

2(E(1) F(1)+ZV(1111 )1 = 2n(1))F(1")

=23 V(34,3¢ )C‘ 34, 34)(85, + 64,4 )F(1), (27)

34374/ .
(E(1) + E(2) - Ey(P))ép( (12) + 3 V(12,1'2)(1 - (1) = n{2)) ¢ (12"
= 2, V(34,34)C(3',34) (65,1 + 64.2)8p(12). (28)

EYEOY

Here C(12,1 2') = C12,1'2) + F*(12,}F(1'2, ¢ t) contains the correlatioris

of the two-particle states with total momentum P # 0 and the possible
condensate at P = 0.

The average occupation n(1) of single-particle states is Vobtained from

the entropy operator (6). Constidering Ay(1) (r.hs. of eq. (27)) as a small

quantity, according to (3) and using (27) we have _
A= =2(B(1) - ))F1)/(1 - 2n(1)) + Ag(1), (29)
o that (5) 9y = (A ~ Ay(1))/(E(1) - ) and

s(1) = (E(1) - p)? + A% + 0(A2(1)). (30)
The evaluation of < 515, > can be performed by standard methods [5]
evaluating the spectral function from the self-energy (10). Up to terms of

higher order in the densities of the bound states and the condensate, we have

by analogy with (25)

<bibr >= f(s(1)) + 3 o((Es(P) - 2u)/T)|¢p(12)]? (31)
P2 '

16

and from (11)

n(1) = ;- 1 (1=2£(s(N+ Y o (Ex(P)-20)/T)ép(12)]2
2 2 V1442 1) — u)? P2
HE(L) )
Expanding for F(1) < |, we have the equation of state
np(p.T) = 207 F28p 000, +2Q7' Y g((Enp = 20)/T)
nP
= 201§ ¢12.12). (33)

where in the superfluid state F{il) = Fo{1i} is related 1o the order para-
meter A according to A = (/&x/QF. Eq. (33) coincides in the low density
limit with the results known from the theory of weakly interacting Bose gas,

see [8,12], where the noncondensed density in the mean-field approximation

is given by

2 a e 1 L= Ep '(34)
nprn_:dePEPﬂpEP/T - 2Ep —]

with Ep = [(P/4)? + 22P*F} QY2 ep = P[4 + dnF2/Q. Expressions
(32}, (33) for the density can be used to show explicitly the modification of
the two-particle wave equation {28) due to the density effects in first order.

(E(1) + E(2) - Eo(P)én(12) + 3 V( (12 12)6n(172)

123

+ S 1B P') = 21)/T) + F28p1,0)| 68+ (34)[2(83,1 + b12)
<{B(P) + E{P') = E(1) — E(2) - B(3) ~ E(&)]6s(12) =0. (35)

where the interaction potential has been eliminated by applying the Schrodinger

equation.

11



For the zero-range interaction. the energy shift of bound states due to the
interaction with bound states in the medium is given in the cluster-Hartree-
Fock approximation by the Pauli blocking as seen from the overlap integral
of the wave functions. With the ground-state wave function (16), for the

shift. AE(P) = Ey(P)+ 1 — P*/4 of the bound state energy perturbation

theory gives

- AE(P) = 07 SIg((Ey(P') ~ 20)/T) + F6p )0 (36)
Pf

Y4+ (P - P)3/16°
In the low-temperature limit (P' = 2v/T), we expand the last term in

(35) with respect to P'. The summation over P’ gives the fermion density,

4r
1+ P2/16°

The behaviour at small P-values can be accounted for by intreducing an

AEy(P) % np (37)

effective mass m* according to

P2 _ PZ _7FP2
dmjm ¢ 1

so that m™ = m(1 + 7np + ...) in accordance with [g].

(38)

A similar consequent low-density expansion for the gap equation (27)
ylelds
AB(1) ~ W) F(1) + 3 V(L VL) F(1)
‘ll’
- 342;'[9_((51;(13') = 20)/T) + F28p1]lpp (30" )(83,1 + 84,)/(1 + 6p1)

x[Es(P) + Ey(P') - E(1) - E(1) — E(3) — E{(4)]F(1) =0, (39)

The perturbative expansion yields a shift in the chemical potential in the

superfluid state according to

Hef = -—1/2 + 2?!‘1’11:* — 27['F2/Q (40)

18

Within a more sophisticated approach, expanding near the mean-field

result with respect to small fluctuations due to correlations, the chemical

potential follows as
i = pee + 4707 Y g((El(P) — 20)/T) (41)
. F

what coincides with (40) in the limiting case under consideration.

Looking for the critical density where the pair amplitude varishes, FF — 0,
the shift in the chemical potentiél is compensated by the shift of the gromid-
state energy (0 a 1. Compared with the Boge - Einstein
condensation of a noninteracting gas, the only effect we obtain is a negative
shift of the ideal Bose-Einstein condensation. temperature at fixed fermion

density due to the effective mass
Ta-o(ne) = Tpec{ns}(1 — mng) (42)

in accordance with Haussmann [8}, see Fig. 2.
Having the shifts of the bound states (36) and of the chemical potential
(40) at our disposal, we solve the equation of state (33) to find the chemical

potential for given 7" and np. In the normal phase we have

mea(tn ) = 53 [o exp|(—1 + 6475 o/ (16 + P?) + P2 /4 — 2p)/T] - %
_ ' 4

as shown in Fig. 3. Above the critical density npa—o we find solutions for

np, p at given T, A? = 87 F?/Q, according to (40) and

ng = nga(pst, T) + 2F?/Q, (44)

19



where now

‘ PP
exp{{—4mnp P2/(16 + P?) + P/4 + an F2JQ)JT] — 1
(45)

An improved equation of state which can be applied at low tempera-

1 =
nF,n(nqu: T) = ;5]0

tures also at higher densities is obtained by using the mean-field result

np = nea(pter, T) + nur(A, T), where

1 o,
”F,n(ﬂsf,T)=ﬁj; Pip (46)

- p? _16771‘31:‘:"‘_'._ 16AZ o,
6+p2 TIey o/t

In the low-density case under consideration, eqgs. (45) and (46) coincide.

Whereas in the normal phase {A = 0) we can take T and p to evaluate
the density np = np (s, T) + neme(p, T) (43), (20), in the superfluid phase
we can start with A, T, find the solution py from eq. (41) with pye(A,T),
eq. {21), and then evaluate the densities (46). This procedure is siroplified
in the low density limit where, after solving eq. (45), the density and the
chemical potential are obtained from (44) and (40}, respectively. The normal
phase is described by (43).

In Fig.3, the resulting equation of state is shown i:or T = 0.05. The-
e are regions of density_ where the solution for the chemical potential as a
function of the total fermion density at fixed temperature is not unique. Fur-
thermore, the condition du/dnglr > 0 for thermodynamic stability is not
always fulfilled. This indicates instability of the homogeneous solution with
respect to phase separation. Applying the Maxwell construction, the densi-

ties np,;, npz of equilibrium phases at the first order phase transition are also
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shown in Fig. 3 (notice that the criterium of equal areas holds not in the lo-
garithmic representation). The instability region in the density-temperature
plane where in the low density region the first order phase transition from

the normal state to the superfluid state occurs is also shown in Fig.2.

5 Discussion

The inclusion of interacting bound states already given in Ref. [1] is trea-
ted for a zero-range interaction in the low-density limit where their influence
on the équa.t.ion of state is dominant. Compared with Haussmann (8], the
improvement obtained in the general formalism by inciuding in addition to
the self-energy also vertex corrections. see Sec. 2. becomes inoperative in
the limit of the zero-range interaction. Indeed. only exchange terms {Pau-
Ii exclusion) survive where the interaction can be eliminated a.pplying the’
Schrodinger equation. In the low-density strong coupling limit, the results

given in [8] can be reproduced within the cluster-Hartree-Fock approxima-

-tion. In general, however, considering the low-density limit, the self-energy

and the vertex corrections contribute to the two-particle properties in the
same order [9,14] corresponding to the Ward identities.

We emphasize that the self-consistent T-matrix treatment given by Hauss-
mann {12] as well as the cluster-Hartree-Fock approximation given here do
not represent the exact solution of the interaction between two bound states.
Instead, on the level of bound states the interaction is treated only in the
Born approximation. For the full solution, we have to iterate the Bom ap-

proximation which corresponds to the full solution of the four-particle Green
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function or of the four-particle T-matrix. Only in this way the correct se-
cond virial coefficient on the level of bound states will be obtained whick
corresponds to the fourth virial coefficient on the level of the elementary
fermions.

The thermodynamic stability is inspected. As a new result. a first order
phase transition from the normal state to the superfiuid state is found in the
low-density strong coupling limit . Instead of applying the Maxwell construc-
tion to the equa:mtion of state p(ng, T), we have also considered the free energy,
which leads to identical results for the region of instability. In contrast to
{8], we find an extension of the region of superfluidity to temperatures abo-
ve Tppc. However, as is well-known, the Hartree-Fock type approximations
overestimate the instability region. The full treatment of the cluster-cluster
interaction would improve also the results for thermodynamic stability.

Going over to higher densities, the systematic expansion with resﬁect to
small fluctuations near the mean-field solution would be of interest. In par-
ticular; the derivation of a Ginzburg-Landau equation should be possible as
done, e.g., by Drechsler and Zwerger [16] using the functional integral repre-
sentation of interacting fermions. Furthermore, the self-consistent treatment
[8] including the contribution of free particles will be the sﬁbjec:t of further
work to solve the equation of state in the entire temperéture-density plane,
Exploratory calculations have been done in [1) by using simplifying assumpti-
ons such as the rigid shift approximation for the single-particle energies and
the neglect of the motion of two-particle states. Nevertheless, in contrast
with the strange behaviour of the NSR solution \;fhere near the Mott density

different critical temperatures are possible, see also Ref. [1],the inclusion of
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Fig. 1. Phase diagram for a fermionic model system with zero-range interac-
tion (15), ¥ —* co, binding -energy €. Tempe-rature and total particle density
are given in reduced units T* = T/e,n* = n(h%/me)*%. Bound states are
blocked out for densities above the Mott line. The critical temperature for
the transition to the. superfluid state according to Noziéres and Schmitt-
Rink (NSR) [3] neglecting the inte'r_a.ction.with correlations in the medium is
shown. Furthermore, the solution of the Gorkov equation for vanishing gap

(BCS) and the Bose-Einstein condensation of noninteracting bound states

(BEQC) are presented.

23



BEC

temperature (T)

000 1 13 t 1 1
-25 -21 —17 -1.3
density (log nr)

Fig. 2. Phase transition in the low-density strong coupling region. The

Bose-Einstein condensation (BEC) for noninteracting bound states is com-
pared with the critical line (A = 0} at which the gap for the interacting
fermion system vanishes, eq. (45). Furthermore, the critical densities ny, N

for the first order phase transition to the superfluid phase are shown.
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Fig. 3. Equation of state p(ng,T) for the fermionic model system with
zero-range interaction showing the region of thermodynamic instability. The
first order phase transition is determined by the Maxwell construction.
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correlations in the medium seems to give a smooth critical temperature as
presented in [1].

1 wish to thank Thomas Alm, Rudolf Haussmann and Peter Schuck for
helpfult discussions. especially Holger Stein for help in evaluating the NSR

curve in Fig.1.

References
[1] Répke, G2 Ann. Physik (Leipzig) 3, 145 (1004)

(2] Leggett. A. J., in: Modern Trends in the Theory of Condensed Matter,
edited by Pekalski A. and Przystawa J.. Berlin: Springer 1980, p.14

(3] Noziéres, P., Schmitt-Rink, S.: J. Low Temp. Phys. 59. 159 (1985)

(4] Schmitt-Rink, S., Varma, C. M., Ruckenstein, A. E.: Phys. Rev. Lett.
563, 445 (1989)

{5] Schmidt, M., Rﬁpke. G.; Schulz, H.: Ann. Phys. (N.Y.) 202, 57 (1990)
(6] Tokumitu, A., Miyake, K., Yamada, K.: Phys. Rev. B 47. 11988 (1993)

[7] Tokumitu, A., Miyake, K., Yamada, K.: J. Phys. Soc. Jpn. 60, 380 .
(1991)

(8] Haussmann, R.: Z. Phys. B 91, 291 (1993): Phys.Rev. B 49. 12975
(1994}

{9] Kraeft, W.D., Kremp, D., Ebeling, W., Répke, G.: Quantum Statistics
of Charged Particle Systems. Berlin: Akademie-Verlag 1936

25



[10] Sa de Melo, C. A., Randeria. M.,- Engelbrecht. J. R.: Phys. Rev. Lett.
71.3202 (1994)

(1] Stein, H., Schnell, A.. Alm. T., Répke, G.:preprint 1994, see also in :
Griffin, A., Snoke, D, W., Stringari, S. {eds.) Bose-Einstein Condensa-
tion, CUP, New York 1094

[12] Fetter, A. L., Walecka, J. D.: Quantum Theory of Many-Particle Sy-
stems. New York: McGraw-Hill 1671

(13} Zimmermann, R.. Stolz, H.: phys. stat. sol. (b) 131, 151 (1985)

(14] Répke, G., Seifert. T., Stolz, H., Zimrﬁermann, R.: phys. stat. sol. (b}
100, 215 (1980); Ropke, G., Schmidt, M., Miinchow, L., Schulz, H.:
Nucl. Phys. A 399, 587 (1983)

[15] Kriiger, P., Schuck, P.: Europhys. Lett. 27, 395 (1994)
[16] Drechsler, M. » Zwerger W.: Ann. Physik (Leipzig) 1, 13 (1992)

(17] Schrnldt S., Blaschke, D., Kalinovski, Y. L.: Phys. Rev. C 50, 435
(1994)

Received by Publishing Department
on October 10, 1994,

26



