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Last years, motivated by a possible link with the electronic models of the new copper 
oxide superconductors, two-dimensional quantum antiferromagnetic models have been 
studied extensively by different analytical and numerical techniques (1, 2). As a result a 
good understanding of the Heisenberg model with the nearest-neighbor couplings on a 
square lattice has been reached. Many authors have demonstrated how precise analytical 
estimates of the ground-state characteristics of this model even for S = 1/2 can be 
obtained by the conventional spin-wave theory (SWT}. The so-called third-order SWT 
results for the ground-state energy (3], (4], magnetization (3), spin-wave velocity (5], spin­
stiffness constant (6), and transverse susceptibility (3) coincide very well with the most 
precise Green-function Monte Carlo and series expansion estimates. 

However, spin-wave expansions (or 1/S expansions) turned out not to be well-behaved 
aeries for other models. For example, the big 0( 1 / S) correction to the magnetization 
of the spin -1/2 J1 - J2 model, obt&iried in (7, 8, 9], discredits the predictions of 
the SWT for thi■ model. A simple analysis (4) shows that in the case of the frus­
trated J1 - J2 model the interaction opera.tor of the SWT contains a quadratic 
part, which vanishes in the limit of the Heisenberg model with the nearest-neighbor cou­
plings (J2 = 0). Moreover, it can be easily proven that just the quadratic pa.rt causes the 
large 0(1/ S) correction to the magnetization of the frustrated system. Therefore it is 
natural to try.to eliminate this essential part of the interaction. In the Ji - J2 model 
the quadratic term has been eliminated (10] by the procedure known as the Bogoli­
ubov principle of excluding the dangerous diagrams (11). Then, treating the residual 
spin-wave interaction as a perturbation, a very efficient scheme for the evaluation of the 
ground-state characteristics of this frustrated model has been constructed (10). 

A quadratic term exists in the interaction operator of SWT for many antiferromag­
netic model■. The Bogoliubov principle can be applied in these cases as well and thus 
some new general approach to the ground state of the quantum antiferromagnets can be 
proposed. The buic steps of such a type of approach for the ordered a.ntiferromagnets 
are presented in this communication. The Hamiltonians we will consider have the form 

H=}:J;;[s:s; + a(SfSI + SfSJ)] (1) 
<ij> 

where the ■um runs over the interacting pairs of spins on a square or cubic lattice 
and a is the exchange-anisotropy parameter, 0 :5 a :5 1. 

1. Bosonic representation. To deal with Hamiltonian (1), we use the Dyson-Maleev 
(DM) formalism. In the case of Neel or stripe ordering ( only these situations will be 
considered in the present work ) the system ( 1) can be regarded as a two-sublattice 
model, where A ( B ) sublattice contains the spins up ( down ). Then by standard 
manipulations we convert Hamiltonian ( 1) into the following DM Hamiltonian 

HoM = Wo + Ho + H2 + ll4 

where Wo is a constant; Ho is a diagonal quadratic term: 

Ho = L Ak(at ak + btbk)i 
k 

H2 is a nondiagonal quadratic term: 

112 = L Bk(atbt + akbk), 
k 
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(2) 

(3) 

(4) 

~ 
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and the quartic part H4 can be written as: 

ll4 = L .0.(1 - 2 - 3 + 4) ( f1ai a2bjb4 + f2ai a2a3b4 + f3atbfbfb4) (5) 
(12~4) 

where .0. is the Kronecker symbol and the wave-vectors k; run over the sublattice 
Brillouin zone. 

2. Canonical transformation. Next we perform the u -v transformatio~ in a form, 
taken from the SWT , namely: 

ak = Ukak - Vk/3t' bk = Uk/3k - Vkat. (6) 

In the SWT this transformation has been employed to diagonalize the quadratic part 
H0 + H2 of the Hamiltonian [see (3) and (4)]. This part is proportional to S and it 
dominates in the systems with large spins [ H4 ~ 0(1 )] . In quantum systems,however, 
an essential quadratic part is possible to appear from the H4 term after performing the 
transformation (6). Indeed , replacing in Eq.(2) the bare operators ak and_ bk by 
the operators a,. and f3k one may obtain the Hamiltonian in a form similar to that. 
in Eq.(2). Then we impose the basic condition of the Bogoliubov principle of excluding 
the dangerous diagrams: 

"-- (0 I HvM I 2) = 0, 12) = at f3t I 0). 

This brings us to the following equations for Uk and Vk 

uz - vi= 1, Qk(uk,Vk) = 0 (7) 

where Qk is the coefficient in the nondiagonal quadratic part of the transformed 
Hamiltonian. · 

Having the solution of Eq.(7) the DM Hamiltonian can be written in the form: 

HvM = W +ho+V (8) 

where Wis a constant; 

ho= L Ek ( at ak + f3t/3k) (9) 
k 

represents an ideal gas of quasiparticles, and the interaction is expressed by the following 
normal-ordered operator: 

V = L ~(1 + 2 - 3 - 4)[.p<1>a1a2/J3/34 + .p(2laf at /3t /3i + .p(3laf a1a2/J4+ 
(1234) 

+.p<4>at /3t /3i /33 + .p<5l /3i /33/3401 + .p<5laf at f3t a2+ 

+ .p<7l /3t /3i /33/34 + .p<s) af at a1 a2 + .pM at a3f3t /33] • (10) 

3. Self-consistent equations. The Hamiltonian can be written in the form Eq.(8) only 
if a solution of the equations (7) exists. These self-consistent equations reduce to 
equations for a few scalar quantities. For example, in the case of the stripe order_ of 
the J1 - J2 model the relations for two scalars read: 

Z2 
a= Z1' 

3 

b= Z3 
Z1 

(11) 



where 
Z1 = S - R1 + R2, Z2 = S - R1 + R3, Z3 = S - R1 + R4. 

The quantities R; are defined as 

2 
R1 = - ~ v2 NL__, k, 

k 

2 
R3 = NL T/kUkVk, 

k 

2~2 
R2 = NL__, Vk cos kx, 

k 

2 
R4 = N L UkVk cos ky, 

k 

. ~+Ek_· . {?-Ek 
T/k = cos kx cos ky, Uk= -

2
--, Vk = s1gn(Ck) --, 

· Ek 2Ek 

ref . Ji 
Ek= Vi - nf' ck= bcos_ky + 2aVT/k, Dk= b-1 + coskx +2av, V = 11. 

It can be shown that the quasiparticle energy is given by the expression 

(12) 

Ek = 2Z1 JD% - C'f,. Therefore the parameters · a and b are nothing but renor­
malization parameters for the spin-wave spectrum Ek . In the classical limit we 
have a = 1 and b = l . These values correspond to the SWT formulas. In 
some cases (nearly isotropic spin chain, quasi-one-dimensiona1 antiferromagnet ) there 
is not a solution of the self-consistent equations. Hence, i_n these systems H2 cannot 
be eliminated by the transformation (6). Other methods, maybe nonperturbative, or 
another type of transformation should be employed for investigation of HvM in these 
cases. 

The solution of the self-consistent equations can be found numerically. In a number 
of systems the obtained parameter values differ significantly from the SWT ones. This 
had to be expected because an essential part of the interaction between SWT magnons 
is incorporated into the zero-order Hamiltonian ho considered here. 

4. The zero-order theory. The Hamiltonian HvM can be treated employing per­
turbation theory, the residual spin-wave interaction V being the perturbation. The 
quadratic part h0 [see Eq.(9)] describes a gas of noninteracting spin waves. The 
magnetization of such a noninteracting gas is expressed as 

mo= S-R1. (13) 

The zero-order value of the ground-state energy E0 is given by the constant term W 
in (8). For the collinear phase of the 11 - 12 model we have 

Ea= N ( Z{ - ZJ - 2vZi)-

It is easy to obtain formulas for the other ground-state characteristics as well. 
In isotropic systems, frustrated or nonfrustrated, the description based on ho , 

turns out to be equivalent to the description of ordered phases, obtained earlier by 
Takahashi's modified spin-wave theory (MSWT) [12, 13] and Schwinger-boson mean­
field theory(SBMFT) [14, 15, 16]. The predictions of these theories are close to the most 
precise numerical estimates. In strongly anisotropic systems our zero-order theory yields 
the exact results for the energy, magnetization and susceptibility, known from the series 

4--

J 
) 

~ 
r 

expansions above the Ising limit. Therefore, the Hamiltonian h0 might be regarded as 
a good starting point for perturbation-type calculations. 

5. Corrections caused by the residual spin-wave interaction. Treating the interaction 
term V by th~ second-order perturbation theory one can obtain the first nonvanishing 
corrections to energy, magnetization and other characteristics ( there are no 0(V) cor­
rections). The correction to the ground-state energy has a form: 

6. E = -4 L 6.(1 + 2 ..,_ 3 _ 4) ,p{ll(1234),p{2l(3412) 
(1234) E1 + E2 + E3 + E4 • 

(14) 

The correction to the magnetization has a more complicated structure similar to that of 
the 0(1/ S) correction in the nearest-neighbor Heisenberg model. 

The numerical evaluation of the six-dimensional integrals involved in these formulas 
is by no means a simple task, especially in the case of isotropic systems. In this case 
the integrands have a discontinuity at the points where one or more k; = 0 . These 
singularities reflect the well-known singular behavior of the Uk - Vk transformation 
at k = 0 . A correct treatment of the Umklapp processes is also needed in these 
calculations. 

The corrections 6.E and 6.m have been evaluated by the method used previously 
in our paper[4] for the calculation of the 0( 1 / 5 2 ) correction to the ground-state energy 
of the Heisenberg model. We have obtained small 6.E and 6.m in the 11 - 12 [10], 
11 -12 - 13, XXZ and spatially anisotropic models. The results for the last models 
will be published elsewhere. The obtained small corrections show that the effects caused 
by the residual spin-wave interaction in these systems can be evaluated successfully in 
the framework of a finite-order perturbation theory. It should be noticed that in some 
cases the small corrections change qualitatively the zero-order results. For example, in 
the second-order approximation we have found for the spin-1/2 11 - 12 model[lO] a 
narrow window between the Neel and collinear phases instead of the MSWT overlap. 

To conclude, the basic steps of the new approach to quantum antiferromagnets have 
been presented. By a canonical transformation we have eliminated the quadratic part of 
the interaction operator. Treating the residual spin-wave interaction as a perturbation we 
have calculated the second-order corrections to the energy and magnetization and showed 
the efficiency of the proposed theory for a number of two-dimensi_onal antiferromagnetic 
models. Our approach resembles the oscillator representation method developed lately 
by Efimov and co-workers[l 7] for the polaron problem, anharmonic oscillator and some 
field models. 

We would like to thank N.Plakida, G.Efimov and V.Yushankhai for discussions. This 
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fotteB 11., ro11eBa A. El?-94-330 
HOBhlll MeTOJI, B Teopnn KBaHTOBhlX aHTHQ)eppoMarHeTHKOB 

11cnOJih3y"sl: 6oroJIIOOOBCKHH npHHIJ,Hil HCKJIIOlleHHSI onaCHbIX JJ,HarpaMM, 

Mbl pa3BHBaeM HOBblll MeT0JI, BbltJHCJieHHSI xapaKTepnCTHK OCH0BH0I"O C0CT0SIHHSI 

KBaHT0BblX aHTHQ)eppoMarHeTHKOB. CyIIJ,eCTBeHHaSI 11aCTh B3aHMOtiettCTBHSI 

Me)KJl.y Mal'H0HaMH BKJIIOlleHa B raMHJibT0HHaH HyJieB0I"O npn6JIH)Kemrn. Haii­

JJ,eHhl nonpaBKH, o6yCJIOBJieHHble 0CTaT0lJHblM CilHH-B0JIH0BbIM B3aHM0-

JJ,eHCTBHeM, H Il0Ka3aHa 3Q)<peKTHBHOCTb npeJJ,JIO)KeHHOH cxeMhl. 

Pa6oTa BhlnOJIHeHa B Jia6opaTOpHH TeopeTHttecKoii QJH3HKH HM. H.H.Boro­

JIIOOOBa 0115111. 
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