


1 Introduction

The maximuni information entropy principle provides a very elegant access to many
of the concepts of thermodynamics where it is mostly applied to systems in thermal
equilibrium. The analysis presented here generalizes this principle unplementing it
into the classical hydrodynamic domain. This approach demonstrates the possibility
of constructing a sensible and consistent statistical theory of turbulence. The object
of the research reported here is reformulation of the approach of Wyld [1], which is
often used to describe strongly developed turbulence of incompressible fluids.

Attempts to construct appropriate distribution functions for randotn velocity field
have been made in the Wytd model [6, 7] as well as on the basis of independent statis-
tic assumption [9] where the extremal principle approach has bheen utilized. General
features of this approach are discussed in [11] (see also [12]). In the present paper
we consider a based on the principle of maximal randommess of the velocity field
atatistical model , which has been proposed by one of us {10] and restrict ourseif
to study statistical features of single-time velocity pulsations. Qur statistical ap-
proach is the closest one to that proposed in [6]. However, while in [6] the maximal
randomness principle is destined to select suitable perturbation approach within the
framework of the Wyld model, in present work this principle is the basis of a new
statistical approach. That is why the one-loop approximation exploited further coin-
cides neither with the analogous approximation in [6] nor with the direct interaction
approximation (DTA) in the Wyld model.

We have investigated the mentioned above statistical model by means of self
consistent skeleton equations in one-loop approximation. [t has been shown that
the equations are free from divergences and they have a solution with Kolmogorov
spectrum in inertial interval. However, this solution is non-physical for space di-
mension d = 3, because Kolmogorov constant is negative. Following the ideas [13]
we developed the alternative interpretation of obtained results where the modified
(fractal) understanding of dimension occurring in diagrams is assumed.

2 The statistical Model

The utilization of statistical hypothesis of maximal randomness seems to be natural
to construct the theory of the strongly developed turbulence. Just this assumption
was accepted by Wyld, following Kraichnan [14], in the paper [1] at the elaboration
of his well-known diagramatic technique. As Wyld has mentioned, it is desirable to
apply the principle of maximal randomness to the velocity field v{x), selecting the
proper statistics of random force f(x) which simulates the stochasticity of forcing in
the Wyld model. To realize this approach is technically difficult that is why Wyld
postulated it for the non-perturbated (excluding nonlinearity) velocity field v,(x)
or, equivalently, for the random force f(x) with Gaussian statistics. The use of the
artificial random force f may by avoided and the principle of maximal randomness



in its initial formulation, i.e. applied to the total velocity field vix), will be used to
construct the distribution function of velocity pulsations.

The Navier-Stokes equation for the velocity field of randomly stirred incompress-
ible fluid [ 3, v; = 0] is equivalent to an infinite system of equations for correlation
functions. The first simplest equation of this system in the considered stationary
case has to be of the form

1 . .
SOE (k) = —uk* (B, () - (1K) + Dy (k) = 0, (1)
where

Ejk) = wfkv,(—k),

and transfer is
, 1 , ,
Li(k) = 5 [oi(k)(v.8y0,) (=) + vi( k) (madavi)(k) ] -

Here, we use the same notation for fields and their Fourier components, therefore
v(k) = fd*xexp(—ikx)v(x) and traces over the repeated vector subscripts are
implied. Brackets {...) denote statistical ensemble averaging. In the homogencous
case all correlators of the form (v(k;)v(k;)) are proportional to &(k, +k;). We will
omit the é-functions further, implying the integration over the relative coordinates.
The quantities as £,;(k), energy transfer 7};(k) and spectral density of energy source
D;; are proportional to transversal projector (k) = 68, — kik; /&2,

The D,; is localized at the wave numbers k ~ /L (L is correlation tength) and
can be expressed using equation

_ﬁu{k) =£ Q(QW)d

& (k) Py(k), (2)

in the inertial interval k7 > 1. Here £ = 27'(2x)~ [ ¢k D;;(k) is the energy
injection rate,

The maximal randomness or uncertainity demand itself has no definite physical
content until the physical conditions of the search of extreme are not fixed. If one
wants to get a reduced description of the physical system, il is necessary to fix
the mean values of quantities which are crucial for its interaction with thermostat.
In such a way the equilibrium Gibbs ensembles correspond to the fixation of the
mean energy and mean number of particles. In the description of the homogeneous
isotropic turbulence averaged flow represented “termostat’. The velocity pulsations
interact with this flow. Following the ideas of Kolmogorov, let us suppose, that
the most substantial characteristic of this interaction is the mean spectral energy
flux with the source localized at the small wave numbers & ~ 1/L. The distribution
function p (v) with normalization [ Dvp(v) = 1 (Dv denotes functional integration
measure) can be constructed from the demand of information entropy

~(inp) =~ [ DV} Inp(v)
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maximum with satisfied condition (1). Introducing the Lagrange multipliers A (k)
and passing to the unconditional extreme problem
d?k

<1UP(V)+ (QT)d»\u‘ (k) (vk? h'fj(kHTeJ(k))) =0.

dp(v')
one obtains the "quantum field” model

1
= -—exp 5§
’7q

with the normalization factor () and "action”

‘ ik ]
S = _/W[Vﬁ‘zz\u(k)b;j(k){-
+X; (k)vj-(k)(v_,a,v,)(—k)] , 3)

where the X;, multipliers can be found from (1) and symmetries Eii(k) =E;(-k)
and T, (k) =7;;(~k) = vi(k)(v,8yv;){—k), which imply A;(k) =A;i(—k) have been
assumed.

For further manipulations it is convenient to separate a A;;{k) part proportional
to P,(k} through a k independent coefficient:

M) = £ Py(le) + As(k). ()

The vertex term of action (3) multiplied by the constant yo/2r becomes total deriva-
tive in the coordinate representation (the consequence of energy conservation at
v =0} and therefore it can be omitted. In order to obtain the self consistent equa-
tions the action (3) will be rewritten into a more convenient form. For this reason
an unit operation [ [] Du;6( ui(k) — Ai;{k)v;(k)) and auxiliary field u; is introduced
in & standard way. The functional §-function 6{u — Av) can be expressed in Fourier
representation by means of an auxiliary field f (and then ¢f — f) so we obtain

/ﬁDuJa (uj- — ijnvn) = /fIDu, / Df, exp [fjuj - f_,-;\jnv,,

That allows to introduce the "distribution function” p(v,u, f) of the three transversal
fields - v, u, f by the relation p(v,u,f) = (1/Q)exp S, where

S = _/ddx[— %WO (B0 — v(Byus)(Byv) +
+ (Bjui)vgrfj — f,‘:\,‘_,-vj -+ f;u;]. (5)

The action is written in the coordinate representation, X is an operator with kernel
corresponding to A(k) in the wave number representation.
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To clarify the physical meaning of the auxiliary field f we use the Schwinger
equation in form
(i 65/6u;y = 0. {6}

Taking into account the transversality of v, one obtains:
Vk?(EtJ(k» = (wi(k)(v,dyu;)( k) + {vik)f,(—k}) = 0.
The relation (1) determines the ‘cross’ propagator

(k) = (v k) f;(=k)) = D, (k) (7}
proportional to power of stochastic energy forcing. The relation (7) formally coincides
with the corresponding relation in Wyld theory, but in the presented the field f
interacts with the v and therefore the statistics of f is non-Gaussiau,

3 Self-consistent equations

The derived velocity field distribution function has the form of standard quantum
field theory of three transversal vector fields with quasilocal action (5). Therefore. the
self-consistent equations may be obtained in a standard way, using the Dyson matrix
equation for total (non-perturbated) propagators (or correlation functions) .
The special feature of the presented model is that one of these propagators (/" is
fixed by relation (7). This relation is a condition allowing the determination of the
unknown A quantity in action (5).

The inverse matrix (7' of the fields v, u, f correlators corresponding 1o the
model (5) are considered in the representation of wave numbers

) pok? = X pk? _mve ]
G™ = | wkroyw _pm : (8)

A -1 U

where all matrix elements are proportional to F;; and 2 are the self-energy functions
of model (5). The absence of the field f in the non-quadratic part of (5) also leads to
absence of self -energy functions ¥ in the matrix elements (%) corresponding 1o field
f. In one-loop approximation for non-vanishing & elements the following is valid:

(%)



where graphic representations are introduced for the symmetrized vertex of interac:
tion and for the total propagators:

t

8
-—Q—& - %]’I“J(f)ih” + ()Jh,s)us, —  —< v =G,

7

e = v = G +—t =< uu =G

The inversion of matrix (8) yields

l A wh? M
WXELE'H

) A A A —vk? + B0y —
(=aw —pgk? 4 TV . (1)

pk? v ;\(_ykz + Euu)__ ‘ o Ukz + Ezwl’z_

AN —t,an2 + Yev 7\_:1‘1;{»90 k? _ Sl'!')

where

(G = -~ Det{(1)7" = gpk? — B — A20™ 4 X (2vk® - 8™ - X)L (1)

The propagators G, G** and G** are coupled to each other with the relations
G = AG" and G** = 3G, which follow from the definition of the field u = v
Consequently, it is sufficient to obtain a closed set of equations for the propagator
G* and function A{k). The relation (11} becomes the first equation of this set.
Substituting G/ from (10) into (7) vne obtains the second equation:

CukEGY 4 G (zw + AL) +D=0, (12)

where expressions on both sides are proportional to F,;. The viscosity ¥ may be
neglected in the inertial interval, then from (11} and (12} follows:

(Guu)ﬁl = g kz —y i!zuu Y (Euu + Evu) , (13)
G (L + )12““) +D=0. (14)
In statistical rmodels of developed turbulence the power-like form Dj,(k) ~ Pj(k) k™

corresponding to d— dimensional case is widely used [3, 4, 5. If we write §%(k) -
function in the power-like form

84 (k) = 1 lim ¢k, {15)

o e—0F
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then using equation (2) we obtain

2(2m )t 2elf

= € k!id 2 1 = =
D,(k) = Dyeck ¥ P, k), with Dy d-Ts ST T

(i6)
where 8 is the surface of d—dimensional anit sphere. Note that this energy in-
jection form leads to an expression for turbulent energy fux used in [15]. Solving
the self-consistent equations {13) and (14) creating the closed system for €™ and A
determination for given (16) and taking the imit « — 07 one reconstructs the ne-
cessary information about the amplitudes [sce helow). The solution will he searched
to have the form

(k) = e (EDYR R P (k)
Ak) = X (ED0TN R (K, (17)
with real unknown amplitudes Ay, ¢y and numerical factor K== (47)7 %2 introduced
for further convenience. From (1) and (17) using identity

~573 Srfkd_l

— (g
E(k) =G 22y

(k)
we find relationship between the amplitude ¢ and Kolmogorov constant ('

(d —1)8; D2
W 1)oeDy

(7 = R

(18)

The power form of solution of Eq. {17) exists only if the corresponding integrals
are convergent. Of course, these integrals have natural physical infrared (171} and
ultraviolet (A) cut-offs. But the basic problem how to found the Kolmogorov spec-
trum in inertial interval is to prove the existence of finite limits for 1/ and A tend
to zero and infinity, respectively (see [6, 7, 8].e..).

Let us discuss the convergence of the integrals in (9), which give contribution
into the equations (13), (14), near the Kolmogorov value 2y = 2/3 4+ d, 2y = d.
The strong infra-red (IR) singularity of the propagator **(2y > 3) leads to the
IR divergence of diagrams ¥¥* £ 354 All these are proportional to L3 It can be
easily shown that the coefficients of the divergent parts of ¥** and L3 are the same,
and they differ from that of X* only i sign. As a result the IR divergences cancel
each other not only in the balance energy equation (14), as it is expected [6, 7], but
also in the equation (13).

In the uitraviolet (UV) range only the diagrams %% and L% proportional to
A3 (A - the UV cut-off parameter) are dangerous. Anyway, external momentum
square may be factored out of integral in the sum of the diagrams and therefore the
divergent part of £™ becomes to be ~ k*A*3. According to [10] this is a common

property of all contributions to X* because in model (%) cach external v-line of
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any one-particle irreducible diagram is proportional to an external momentum .
Consequently, the divergent part of X' has the same form as the term g &% in (13),
and may be eliminated by a suitable choice of the parameter (.

From the previous text follows that the system of equations (13} and (14) is
divergence-free and the calculations can be carried out by the dimensional regular-
ization, resulting in

E:f_,u(k) = (;S (& Dd)"/-?K::{ﬁ k2+d-4wﬂj(k) A
X:.;u(k) — A(] (.":2] (E.-Dd)l/.} K;/S k2+d+21}—4‘7HJ(k) Auu , (19)
E::'(k) = )\3 Cg (tT’Dd)Q/B K;/B k2+d+4n*4'va (k) A™

where the amplitudes A", A* and A*" are expressed through T functions defined
by means of combination of standard ' - functions:

r [€1, T2, 233 T4, 25, re] = : (II)F(:CE}F(;EQ -

INEAINEINEY

Calculating the Feynman diagrams we find

A%y, = (4= 1)(d/2 =)y = (22 = 7D/ +d = 2)) x

x T[d/277,d/2—7,—d/2+27;
1+7.1+v,1+d-—27])/2
(= ((d=1y =m) /2 + (@2 =41/ (1 +d =2y + 7)) x
x T[l+df2—v+n,d/2~7,~d/2+2y—n,
T4y —ml+v1+d=2y+7]
(1+d—‘2*r+217+

+ ((d*1)(TI*'J’)2)/(2+d—4’Y+4n))X

x T[1+d/2—y+nl+df2—y+n,-d/2+2y~ 2
T+y—mlty=—n2+d=2v+2) - (20)

- ((-1+2mE v+ +

+ (d=1)(=2+(y - 20)(2+d/2 -2y +27)) +

+ ((df2-—NE2—v+2+ (=1 +d)(~d+3y 7" —

— 2+ 2ym)) (1 +d =2y + 2n)) x

x T[l+djz—v+2m,df2-7,-1 - d/2+2y—2n;
Lty ey = 2,1 +d = 2y + 29]}/2.

Au“‘{—y!q’d]

A"[y,n.d]

Equating the powers in the equations (13), (14) the k-dependent terms have been
excluded using (20} and (21). As result we find
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Table 1:

Cy d Ao

1.5 2442 -1.856
2,328 -0.942

25 2221 -0.636

2+ 3d — 2
W o=d—e 27=_+“T_f" (21)

Since ¢ — 0% we find Kolmogorov exponent 2y = 2£3. Rewriting (13),(14) with
help of (21) we obtain two equations for amplitudes

M (A 424" LA™Y 41 =0, Acd (A™ 4 A™) 4 - 0. (22)

The solution of this system has the form

_ l Ze _oamsfc 43 .
Yo = oz (f )(—'0+ T (Z)e—.m ’ (23)
where
{d) = —A™[(2+ 3d)/8, d/2,d] — 2A* (2 + 3d)/6,d/2,d] —
— A [(‘2+3d)/6,d/2,d] , (24)

z(d,e) = A™[(24 3d - 2¢)/6,(d ~ €)/2,d] +
A2+ 3d — 26)/6,(d — €)/2,d] .
Using the first order "Hospital rule for calculation of the limits

_ Oz,

et Be

Ze

€

e—0t

can be calculated. This relation follows from the fact that for ¢ — 0 the mean energy
transfer (I;;} ~ ¢ vanishes [16] in the inertial interval of wavenumbers. The above
defined z(d) function presents the following properties

is negative for d > d, = 2.55695

is positive for 2 < d < d, ’ (25)

z(d) = {
and

Z . -
—‘l is positive for d > 2,

€ «—0

Then the solution {17) of the equations (13) and (14) for d = 3 (with Kolmogorov
indices) leads to non-physical (negative) ¢y and Cy. From many examples we know
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that curicus behavior mentioned above, can be nothing but an artifact of the method,
which should nol have any physical significance. Nevertheless, the aspect of (7
positiveness [see eq.(25) and table 1] should have the central role in preliminary
reformulation of theory.

The partial answers on question of destabilization we try to found in the liter-
ature. The crossover dimension d = 8/3 ~ 2.67 bellow which intermittency dis-
appears and Kolmogorov theory becomnes exact had previously been suggested by
Nelkin [17]. At this point of discussion a question had been raised: Could the theory
highly simplified by homogeneity and isotropy hypothesis describe the intermitient
system? Even Kolmogorov 18] tried to explain the intermittency effect connected
with inhomogeneous redistribution of energy dissipation in the cascade process on
the phenomenological level. Intermittency models generally correspond to fractal de-
scription of turbulence, which opens an area for alternative geometrical formulation.
The historically significant theoretical explanation of intermittency which is called
in the literature the 3 model has been proposed [19].

In the explanation presented here the redistribution of turbulence energy among
modes is characterized by certain fractal dimension dp which is a global measure of
system spatial activity.

In the present work we show that there could be some close relationship between
our model stabilization and {ractal aspects of turbulence. Here we will try to bring
together fractal and maximum randomuness concept. The relationship between turbu-
lence and fractality studied by Mandelbrot [20] has become increasingly important in
the past decade when the turbulence investigators have become concerned with how
this formalism employ on the phenomenological level of turbulence deseribtion. The
monofractal and multifractal approach based on more complex scaling form has be-
come a paradigm to describe a large variely of complex systems. But the traditional
developments in this field of interest link mainly phenomenology and experiment for
the present. The direct link between the Navier Stokes equation (which is defined
for integer dimensions only) and fractal nature of turbulence is still rather unclear,
although there is no doubt that simulations made on massive computers show the
roots of fractality which can be found in strongly nonlinear Navier Stokes dynamics.
In this we introduce an argument different, to the our knowledge, from other phe-
nomenology, although in another context and with many still open aspects. We have
consider turbulent system is characterized by the occurrence of very complex spatial
structures which can be described by a new order parameter - dp. The analytic con-
tinuing of Feynman diagrams in Euclidean dimension d allows in principle calculate
them not only for the whole k — space with d%k measure, but also over the "smaller
objects” with measure k:_dp A% k (where k4 is dissipative microscale) of dimension
dr < d [20]. For each d the formal correspondence rule ¢ (is unknown function) can
be constructed

@ d — dp = pl{d), (26)



where ¢ is particularly determined by the constraint
Cildp) = Cy(pld)} > 0. (27)

It is clear that reformulation (26) and (27} is not satisfactory, especially in con-
nection with the following arbitrariness: in the study limited to inertial range of
spectra there are no knowledge or evident reasons how 1o fix the free parameter - dy
to its physical value. Therefore, at this stage of theory only reverse determination
from known experimental values of () is possible.

For comparison with experiment it is natural to restrict the following considera-
tions on the d = 3 case. Our theoretical expectations on the fractality as a source of
turbulence stability are correct in the context of predictions [13] and [19] suggested
the regions of largest dissipation in homogeneous turbulence are confined 1o a fractal
set with fractal dimension 2 < dp = @(3) < d = 3. For experimentally acceptable
values of (' [see table 1] we have found the fractal dimensions dp ~ 2.5 close to [13]
and [19].

4 Conclusion

The statistical model of strongly developed homogeneous isotropic turbulence of in-
compressible fluid in d-dimensional case has been investigated. This model has been
deduced as a consequence of the maximal randomness principle of velocity pulsations
utilizing energy spectral flux stationarity condition. The important model property
is absence of infrared and ultraviolet divergences in sclf-consistent equations. This
fact is closely related to energy conservation law. The main prediction of the pre-
sented model is value of Kolmogorov constant dependent on Euclidean dimension.
The negative value of this constant for d = 3 (the scaling solution becomes to be
unstable) and positive values near d ~ 2.5 led us to speculations about structural
connections of fractal geometry and field-theoretical models of turhulence.
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