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1 Introduction 

The maximum information entropy principle provides a very elegant access to many 

of tht> concepts of thermodynamics where it is mostly applied to systt>ms in thermal 

equilibrium. The analysis presented hen• gC'm~ralir.es this principle implementing it 

into tht• classical hydrodynamic domain. This approach d<•rnonstrates the possibilit_y 

of comtructing a sensible and comistent. statistical theory of turbulcncf'. Tlte object 

of the research rf'ported lwrc is reformulation of the approach of Wyld [1], which is 

often wwd to describP strongly developed tnrbulence of incompressible fluids. 

Attt·mvts to construct. a.ppropria.tc distribution functions for random velocity field 

ha.Vf' bet·n made in the Wyld model [6, 7] as wdl as on th(' basis of independent :.tat is­

tic MMumption [9] when~ the extremal principle approach has h<'en utiliz('d. Gf'neral 

featun·s of this approach ar(' discus:wd in [11] (s~e also [12]). In the present paper 

we eousidcr a based on the principle of maximal ra.ndonmess of t.hl' v<'locity tle\d 

stati!ltiud modt>l , which has been propos('d hy one of us [10] and restrict ourst>lf 

to study statistical featm('s of single-time velocity pulsations. Our statistical ap­

proach is tlw closest. on(' t.o that proposed in [6]. However, while in [6] the maximal 

randomm·ss principle is destined to select suitable perturbation approach within the 

fraiiiework of the Wyld modeL in present work this principle is the ba..<>is of a rl('W 

statistical approach. That is why the one-loop approximation exploited furtht'r coin­

cides neith<'r with thf' analogous approximation in [6]nor with the direct interaction 

approximation (DIA) in the Wyld model. 

Wt> have investigatt~d the mentioned above statistical model by means of St'lf 

consiMtt·nt :.kekton equations in otw-loop approximation. IL hcts b('t~n shown that 

the equations arf' free from div<'rgcnces and they have a solution with Kolmogorov 

spectrum in inertial interval. However, this solution is non-physical for space di­

mension d = 3, because Kolmogorov constant is negative. Following the ideas [13] 

we developed the alternative interpretation of obtained results where the modified 

(fractal) understanding of dimension occurring in diagrams is assumed. 

2 The statistical Model 

The utilization of statistical hypothesis of maximal randomness seems to be natural 

to construct the theory of the strongly developed turbulence. Just this assumption 

w .. accepted by Wyld, following Kraichnan [14], in the paper [1] at the elaboration 

of his well-known diagramatic technique. As Wyld has mentioned 1 it is desirable to 

apply the principle of maximal randomness to the velocity field v(x) 1 selecting the 

proper statistics of random force f(x) which simulates the stochasticity of forcing in 

the Wyld model. To realize this approach is technically difficult that is why Wyld 

postulated it for the non-perturbated (excluding nonlinearity) velocity field V 0 (x) 

or, equivalently, for the random force f(x) with Gaussian statistics. The use of the 

artificial random force f may by avoided and the principle of maximal randomness 



in ih initial formulation, i.e. applied to the total velocity field v(x), \vill he wwd tu 
construct the distribution function of velocity pulsations. 

The Navier-Stokes equation for the velocity field of randomly stirn'd iwompn'ss­
ible fl.uid l a} VJ = OJ is equivalent to an infinitf' system of equat.ions for correlatioiJ 
functions. Tht~ first simplest equation of this system in the comidt·n·d stationary 
case has to be of the form 

1 ' 
2a,(E,,(k)) ~vk'(F,,(k)) - (1',j(k)) + 7i,Akl = o, (I) 

where 

F,,(k) v;(k)v,( ~k), 

and transfer is 

1i,(k) = ~ [ v;(k)(v,D,v,)( ~k) + Vj( ~k)(,,d,v;)(k)] 
Here, we use the same notation for fields and their Fourier components, therefon' 

v(k) = J ddxexp( ~ikx)v(x) and traces over the repeated vector subscripts are 
implied. Hrackets ( ... ) denote statistical ensemble averaging. In tht' homogeneous 
case all correlators of the form (v(ki)v(k2 )) are proportional to ?Jd(k 1 + k;,d. We will 
omit the 6-functions further, implying the integration over the r<"la.t.iv(' coordinates. 
The quantities as Ei1 (k), energy transfer Tij(k) and spectral df~nsity of etwrgy sourc<' 
15i1 are proportional to transversal projector Pi1 (k) = {!,1 ~ k,k;/k 2

• 

The 15ij is localized at the wave numbers k ,...._, I j L ( L is correlation length) and 
c&n be expressed using equation 

- - 2(h)' d 
D,,(k) = c -d-b (k) P,,(k), 

~ 1 (2) 

in the inertial interval k L :::P 1. Here l = 2- 1 (27r)-d J ddk 75n(k) is the energy 
injection rat~. 

The maximal randomness or uncert.ainity demand it.s<'lf has no <h,finite physical 
content until thf' physical conditions of the search of ex1.rf'me are not fixed. If one 
w&nb to get a reduced description of the physical system, it is necessary to fix 
the mean values of quantities which are crucial for its interaction with tlwrmostaL 
In such a way the equilibrium Gibbs ensembles correspond to the fixation of the 
me&n energy and mean number of particles. In the description of the homogeneous 
isotropic turbulence averaged flow represented 'termostat'. ThP velocity pulsations 
interact with this How. Following the ideas of Kolmogorov, kt us suppose, that 
the most. substantial characteristic of this interaction is the mean spectral energy 
flux with thf' source locali?.ed at the small wave numbers k'""" If L. The distribution 
function p(v) with normalization J /Jvp(v) = 1 (Dv denotes functional integration 
measure) can be constructed from the demand of information entropy 

~(lnp) = ~ j Dvp(v)lnp(v) 
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maximum with satisfied condition (1 ). Introducing the Lagrange multipliers ).ij(k) 
and passing t.o the unconditional extn~nw prohlern 

one obtains the "quantum field'' model 

I 
p = Q expS 

with the normalization fador Q and "action" 

S = - j (~:~d [vk 2 .\,(k)E,,(k) + 

+ .\,1 (k )v, ( k )( v,a, v,)(- k)] , (3) 

where the -\,1 multipliers can be found from (1) and symmetries Eii(k) =Ei1 (--k) 

and T,,(k) ='1;,(-k) = v,(k)(v_,a,v1)(-k), which imply .\,1 (k) =.\1,(-k) have been 

assumed. 
For further manipulations it is convenient to separate a A1j(k) part proportional 

to Pi1 (k) through a k independent coefficient: 

( 4) 

The vertex term of action (3) multiplied by the constant 1.Po/2v becomes total deriva­

tive in the coordinate representation (the consequence of energy conservation at 

v = 0) and therefore it can be omitted. In order to obtain the self consistent equa­

tions the action (3) will be rewritten into a more convenient form. For this reason 

an unit operation f fl Du,8( u,(k)- ~,,(k)v1 (k)) and auxiliary field u, is introduced 

in a standard way. 'J'he functional 8-function 8( u - \v) can be expressed in Fourier 

representation by means of an auxiliary field f (and then if----+ f) so we obtain 

That allows to introduce the "distribution function" p(v, U 1 f) of the three transversal 

fields- v, u, f by the relation p(v,u,f) = {1/Q)expS, where 

S - j d'x[- ~'l'o (a1v,)2
- v(a1u,)(81v,) + 

( 5) 

The action is written in the coordinate representation, ~ is an operator with kernel 

corresponding to ~(k) in the wave number representation. 
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To clarify the physical meaning of the auxiliary field f Wf' usc t hf' Schwing<'r 
equation in form 

(v, 8S(8u,) = 0. (61 

Taking into account the transversality of v, one obtains: 

vk'(R,,(k))- (v,(k)(v,o,v,)( -k)) + (v,(k)/,1 -k)) = 0. 

The relation (I) dekrmine~ the 'crofls' propagator 

r;:j(k) ~ (v,(k)/,1-k)) = D,,(k) (7) 

proportional to power of stochastic energy forcing. The n•latio11 ( 7) fonnn.Jiy coiJJcidPs 
with the corresponding relation in Wyld theory, but in thP pn•st'JJtcd t lw field f 
interacts with the v and therefore the statistics off is non-Gaussian. 

3 Self-consistent equations 

The derived velocity field distribution function has the fortll of st.andard quantum 
field theory of three transversal vector fields with quasi lora! ad ion (;) ). Thf'rt•fore. th(' 
self·consistent equations may be obtained in a standard way, using t.lw Dyson matrix 
equation for total (non-perturhated) propagators (or correlation functions) (/. 
The 111pecial feature of the presented model is that one of tht>se propagators G"i is 
fixed by relation (7). This relation is a condition allowing the deterrninatiou of the 
unknown A quantity in action (fl). 

The inverse matrix (;~t of the fields v, u, f correlators corresponding to t.he 
model (5) are considered in the representation of wave numbers 

(H) 

where all matrix elf'!rnents are proportional to Pi1 and ~ are the ~wlf-energy functions 
of model (5). The abst>net• of the field fin the non--quadratic part. of (.i':i) also leads to 
absence of self -energy functions L; in the matrix elements (8) corrf•sponding to field 
r. In ont•-loop approximation for non-vanishing E clements the following is valid: 

(9) 
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where graphic rrprl'sentations are introduced for the symmetrized vertex of interac.­

tion and for tlw total propagators: 

'/ 

~ J 

-t--~ =< /.''ll >:::: (;1!", 

TlH' inv1·rsion of matrix (I",) yil'lds 

(~' = n•·v 

----=< Vl! >:::::: G'l"', 

-+---i-=< UU >=::: (,•uu. 

vk 2 
- ~''" --

-X~"" 
~,_,,p + l:"")­

-tpok'2 + Evv 

vP- ~""- _\( -vk2 + l:vu)- I - vk'2 + ~·~t-·12-
-X~·w -tpoP + ~vv -~"u("PoP- ~'''') 

( 10) 

The propagators c;v••, r;vu and r;uu are coupled to each oth{'f with the f('lations 

G"" = ).cvu and G"u = X2 G'"', which follow from the definition of the field u = ~v. 

Consequently, it is sufficient to obtain a closed set of equations for the propagator 

cvv and function X(k). The relation (II) becomes the first equation of this set. 

Substituting c;uf from (10) into (7) one obtains the second equation: 

- vk' G"" + G"" ( l:"" + ~E"") + I5 = 0 , (12) 

where expressions on both sides are proportional to P,J. The viscosity v may be 

negleded in the inertial interval, then from ( 11) and ( 12) follows: 

(Gvv)~l = i.f'O k2 _ E"v _ ,\ZE"" _). (Euv + ~"u) 

G"" (E"" + ~E"") + I5 = 0. 
( 13) 

(14) 

In 11tatistical models of developed turbulence the power-lik(' form D J~(k) .-.... P,;(k) k-d 

corresponding to d~ ditn('TlRional case is widely used [3, 4, 5]. If Wf' write Dd(k) 

function in the power-like form 

o' (k) = 5
1 

lim I k'-d' 
rft->0-+ 

( 15) 
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then using Pquation (2) Wt' obtain 

'2rrd/"2 

s., = iTi/:il · ( 16) 

where sd is the surface of d-dimensional unit sphere. NotP that. this ('flf'rgy In­
jection form leads to an expression for t.urbulPnt t'rwrgy flux usPd in [J.r")j. Solving 
the 8elf-consistent Pquations (J:J) and (H) q('ating the dosed syst.Pill for (,'"v and,\ 
determination for givell ( 16) and taking the lintit ( _____,. o+ OTH' n·cortst rurt s I It(' I\P­

cessary information about dlf' amplit.ud<'s (scf' tH'Iow). Th<' sol11tion will lu• :wardwd 
to have thf' form 

( ,·~~v ( k) 

,\,, ( k) 

(oV )'/>,- •t• •.-~-. I' (k) Co '- rl 1\ ·I II 'J • 

I 17) 

with rt>al unknown amplitudes Ao,Co and numerical factor A.:c~ -.:: (-·br)-d/l introdu('f•d 
for further ronveniPnce. From (1) and (17) using id~·ntity 

we find relationship between Uw amplitude c0 aud Kolmogorov (·ort.stant ('~: 

( 18) 

The powf'f form of solution of Eq. (17) f~xist.s only if the corresponding intt>grals 
are convergt>nt.. Of coursf', Uwse integrals havf' natural physi('al infrawd (1/L) and 
ultraviolet(/\) cut-offs. But the basic problem hO\v to found tlu~ Kolmogorov sp<'<"­
trum in inertial interval is to prove th<' existf'no· of fiuitt·limits for 1//, and A tend 
to zero and infinity, re."if..H'<·t.ivt·ly (see [6, 7, 8]J'.g.). 

Let us discuss the convergence of the integrals in (9), which givf' contribution 
into tht> t>quatious (13), (11), near the Kolmogorov value '21· =--: '2/3 + d, '21] =d. 
The strong infra-n'd (IR) singularity of the propagator G''"(21 > :!) leads to th<' 
IR divergence of diagrams I:"U, E"v, 1:2". All the~w an~ proportional to IJ It can be 
easily shown that. the c<wfficients of the divergPnt parts of 2.: 1

"' and L:~v are the same, 
and th(•y differ from that. of~"" only i11 sign. As a result tlw IR diwrgences cancel 
ea.ch other not only in the balance t·nergy equation ( 14), a.s it. is Pxprded [6, 7], but 
also in the equation (I:l). 

In the ultraviolet (l'V) rangf' only the diagrams ~Jv and I:~v proportional to 
;\ 11 / 3 (A- the UV cut-off parameter) are dangerous. Anyway, t•xternal momentum 
square may he factored out of integral in the sum of the diagrams and therefore the 
divf'r8f'nt part of E 1

"' becomes to be"' F/\. 5 1-1. According to [10] this is a common 
propt"rt.y of all contributions t.o ~vv because in modd U">) each external v-line of 



any one-particle irreducible diagram is proportional to an external momentum 1..~. 

Con8f"qtwntly, the divergent part of ~vv has the same form as the term tpo k2 in ( 13L 

and may hP elirninat('d by a suitable choice of the parameter tp0 . 

From the previous text follows that the system of equations (13) and (14) is 
divergence-frt>(' aud the calculations can be carried out by the dimensional regular­
ization, resulting in 

l:~," ( k) 

l:~,"(k) 

(;~ (tDd)4/3KY3 k'l+d-4-y pij(k) AUI.<' 

Ao c~ (lDd) 1° KY:J k2 +d+ 2
' 1-

4
" P;J(k) Auv, 

~:;'(k) -- A~ c~ (EVd)2/3 K.:!/3 k2+d+4ry-4" pi)(k) A"", 

(19) 

where the rtmplitudes A'"', Au" and A 11v are expressed through r functions defiued 

by tnt"ans of combination of standard I'- functions: 

, _ !'(xt)f(x,)r(x3 ) 

I [x 1 ,x2 , x3 ; x 4 , x 5 , x6 ] = !'(x,)l'(xs)l'(x
6
). 

Calr:ulatinp; thf' Feynrnan diagrams Wf~ find 

A""[l,~,d] (((d-l)(d/2-,)'y-(2(d/2-1)'1)/(l+d-27))x 

X f'[d/2- 1, d/2- 1, -d/2 + 21; 

I+ 1· I+ 1, I+ d- 21])/2 

A""[l,~,d] ( -((d-1)(1-~))/2+((d/2-1h)/(l+d-21+'1)) x 

X \'[I + d/2- 1 + ~' d/2- 1, -d/2 + 21- ~; 

I + 1- ~.I+ 1, I+ d- 21 + ~] 

A""[!,~. dJ (I + d- 21 + 2~ + 

+ ((d-l)(rJ-1)')/(2+d-41+4~)) X 

x f[ I + d/2 - 1 +~.I + d/2 - 1 + ~. -d/2 + 21 - 2~; 

1 +1-~,1+,-~,2+d-2-y+2~]- (20) 

(u-1 + 21)(2 - 1 + 2ryJ + 

+ (d -1)(-2 + b- 2ry)(2 + d/2- 2, + 2ry)) + 

+ ((d/2-1)(2-1+2ry+(-1+d)(-d+31-1'­

- 2~ + 21~)))/(1 + d- 21 + 2~)) X 

X F[l+d/2-,+2~,d/2-1,-1-d/2+2,-2ry; 

1 + 1, I + 1 - 2~, 1 + d - 2-y + 2~ I) /2 

Equating the powers in the equations (13), (14) the k-dependent terms have been 

excluded using (20) and (21 ). As result we find 
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Table 1: 

c, d Ao 
1.5 2.442 -1.856 
2 2.328 -0.942 
2.:) 2.221 -0.636 

2ri=d-r. 
2 +3d- 2r 

2-y = 3 . (21) 

Since t---+ o+ we find Kolmogorov exponent 21 = ¥· Rewriting (1:3),(14) with 
help of (21) we obtain two equations for amplitudes 

The 80lution of this system has the form 

where 

z(d) 

z,(d, r) 

I (z') >.o - -- -
- z t , ..... o+ ' 

-A"" [(2 + 3d)/6, d/2, d]- 2A"" [(2 + 3d)/6. d/2, dJ -
-A"[(2+3d)/6,d/2,d], 

A"" [(2 + 3d- 2<)/6, (d- r)/2, d] + 
A""[(2+3d-2r)/6,(d-r)/2,d]. 

Using the first order !'Hospital rule for calculation of the limits 

z, I az, I 
~ , ..... a+ = 8f. ,_.

0
+ 

(2:l) 

(21) 

can be calculated. This relation follows from the fact that for f ---+ 0 the mean energy 
transfer (1iJ) ""' t vanishes [16] in the inertial iuterval of wavcnurubers. The abow 
defined z( d) function presents the following properties 

(d) = { is negative for d > d, = 2.55695 
z is positive for 2 < d <d .. 

(2.)) 

&lld 
:C I is positive for d > 2. 
f {--+0 

Then the solution (17) of the equations (13) and (14) ford=:! (with Kolmogorov 
indices) leads to non-physical (negative) Co and(\. From many f.'Xamp!t's we know 
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that curious t>f'havior mentioned above, can bf' nothing but an artifact of I lw method, 

which Rhould not ha\T any physical signifirnnce. Nevf'rthcless. tlw aspect of ('k 

positivem•ss [see <'q.(~.t)) and table 1] should have the central rolt' in pn•liminary 

reformulation of theory. 

Tht> partial answers on question of destabilization we t.r_y to found in the litf'r­

ature. The <TOSSOVf'f dimension d = sj:3 "' 2.67 bellow which intcrmittenq· dis­

appears and Kolmogorov theory bt·corru•s exact had previously been suggested by 

Nelkin [17]. At this point of discussion a quf'stion had been raised: Could the tht'ory 

highly simplifi<'d by homogeneity and isotropy hypothesis describt' tlw int<'rmittf'nt 
system? Even Kolmogorov [It!] t.rif'd t.o explain t.he int.ermitte11cy effect conrlf'ctf'd 
with inhomogeneous rt'distribution of Prwrgy dissipation i11 the cascadP proct'ss on 

the phenonwnological levt'l. lnt.ermitt.<•ncy modf•ls generally cnrrt'spond to fra.ctal de­

scription of turbulenn', which opt'T\s cu1 art'a for altt·rnat.ivP geometrical formulation. 

The historically significant. t lwordical <'X planation of interrnit.t.t'll<"Y which i~ called 
in the lit£•rat.ure thf' /J rnodt·l has hf'f'll propo~t'd [19]. 

In the t>xplanat ion pn·st·nt.cd lwr(' t.lw rf'distrihution of I mbulcnce energy among 

modes is cha.ra.ct('rizt·d by ccrt a.in fradal dinwnsion dF which is a gloha.l measttrf' of 

system spatial activity. 
In the pn·:·wut work Wf' show that t.lwn• cot1ld he some close rela.tionship between 

our model stabilir,ation and fractal a.spect.s of turbulence. Here Wf' will try to bring 

togetht•r fractal and maxirnurn randolll!l<'ss concept. The n·lat.ionship lwiWf'f'll turbu­
lence and fradality stud it'd by Mandf'lbrot. [20] has become incrPa.singly important in 

the pa.~<t dt·cadt' when the turhul('net• invPst.igators have become coBn•rned with law.· 
this formalism employ on t.lw pheJJonwrwlogical level of t.urbuleiH"f' descrih1 ion. Tht> 
monofractal and multifractal approach based on mor(' complex scaling form has be· 

come a paradigm to describe a large variety of complex systems. Rut the traditional 
developments in this field of interest link mainly phenonwnology and experiment for 

the present. The direct link between the Navier Stokes equation (which is defined 

for integer dirnt•nsions only) and fractal nature of turbulencf' is still rather unr!car, 
although there is no doubt that simulations made on massive computers show the 

roots of frad.ality which can bf' found in strongly nonlinear Navier Stokes dynamics. 

In this W{' int.rodun~ an argument dilfer('nt, to the our knowl('(lge, from ot.ht•r phe­

nomenology, although in another context and with many still opf'n aspects. W(' haw• 

consider turbulent system is characterized by the occurrence of very complex spatial 

structures which can be described by a new order parameter - dF. The analytic con­

tinuing of Feynman diagrams in Euclidean dimension d allows in principle calndate 
them not only for the whole k- :;pace with ddk nwasure, but also over t.hf' "smal\C'r 
objects" with measure k~-dF ddFk (where kd is dissipativ1' minoscale) of dimension 

dF < d [20]. For each d the formal correspondencf' ruk ..p (is unknown function) can 
be constructed 

<p: (26) 
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where if' is particularly detPrrnined by Uw constraint 

C\(dF) = (\(c,J(d)) > 0. (27) 

It is dear that reformulation ('26) and (27) is not satisfactory, f'SJWcia!ly in con­
nection with t.be following arbitrariness: in the study limited to iuf'rtial range of 
spectra there an• no knowledge or evident rf'asons how to fix the fret• para.nwtPr - dF 
to ita physical value. Therefore, at this stagf' of theory only n·vt•rse ddf•rrnination 
from known Pxperirnent.al valtH'S of ('k is possible. 

For comparison with expt>riment it is natural to n•st rict t h(' following nmsidera­
tions on the d = 3 case. Our theoretical exp<•ctat.ions on t.hl' fractality as a sour<'<' of 
turbulence stability are correct. in the context of pn·dictions [I :Jj and [ 19] suggest<'d 
the regions of largest dissipation in homogeneou:o. turbulenc(' arf' confiw·d to a fractal 
set with fractal dimension 2 < dF = i.p(3) < d = 3. For Pxpninwnta.lly acn•ptabl(' 
values of C~c [see table 1] we have found the fractal dinwnsions d,. ~ '2 . .5 close t.o [l:i] 
and [19]. 

4 Conclusion 

The statistical model of strongly developed homogeneous isotropic turbulf'nce of iu· 
compressible fluid in d-dirnensional case has bPen investigated. This modf'l has been 
deduct>d as a consequence of the maximal randomness principle of V('locity pulsations 
utilizing energy spectral flux stationarity condition. The important. model property 
is absence of infrarf'd and ultraviolet divergences in sclf-consistf'nt equations. This 
fact is closely related to energy conservation law. The main prediction of the pre­
sented model is value of Kolmogorov constant dependent on Euclidean dirn('nsion. 
The negative value of this constant for d = 3 (the scaling solution becomes to be 
unstable) and positive values near d ':::::' 2.5 led us to speculations about structural 
connections of fractal geometry and field-theoretical models of turbulence. 
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