


1 Introduction

In recent years much interest has been focused 1o the applications of the renormaliza-
tion group (RNG) techuiques which turned out to be so fruitful in ¢ritical phenomena
theory [1]. At sufliciently large Reynolds numbers the statistical theory can be used
to provide an account of the propertics of developed turbulence. Since 1977 several
authors [2, 3, 4] have applied the RNC method for the investigation of the fully
developed turbulence of inconpressible continuum described by the Navier Stokes
equation for velocity fluctuation lield « under the infucuce of external Gaussian ran-
dom force f*. In this field of interest the RNG is powerfull, general and systematic
method achieving remarkable results with a mininmum of phenomenclogical inputs,
The principal existence of the stable fixed point (FP) corresponding to celebraied
Kolmogorov 1941 scaling, actually observed for a number of experiinental and sim-
alational studies, was established using the RNG. Laler a Jarge effort has bheen put
into the extension of RNG technigues on a computational problems of stochastic
magnetohydrodynamics (MHD) describing the statistics of electrically conductiug
incompressible flows,

The randomly forced stationary M) turbulence studied here is deseribed by
well known deterministic MIID equations for velocity and magneiic field &, which
are driven by external hydrodynamic f” and magnetic ﬂ’ Gaussian forces, The RNG
czleulations based on the ¢ expansion [3, 6] commonly predict the existence of two
stable FP corresponding to kinetic (Kolmogorov) and magnetic wniversal critical
regimes. For the purpose Lo perform RNG iU is convenient Lo introduce one particle
irreducible (reen functions I' These functions, which are defined in usual way in [9]
provide a uscfull tool for study of RNG problems since they considerably diminish
the number of terins in a perfurbation series,

As was shown in [6] only the following one particle irreducible Green two point
functions: I'*(k), I (k), T¥(k), %' (1) and three point P8 (k) functions ([Ff = k
is wave number) possess the superficial ultraviolet divergences in 3-d stochastic MU,
In this labeling convention & and & are certain auxiliary vector incommpressible ficlds
which are consequence of initial stochastic problem transformation into the quantum
field formulation.

In the investigation Ronis has proposed the double expansion with simuftaneous
deviation 2¢ = d ~ 2 from the spatial dimension d, and also deviation 6§ = 2 — A
{following notation [8] & correspond Lo usual €) according from the powerlike form
of the correlation function (|f¥(F)[?) ~ &# = = k2=%=2 { we use the same notation
for the fields and its Fourier components). The investigation [7] devoted to purely
Navier-Stokes case is based on the [act that al d = 2 a new class of divergent
functions I () occur, according to which the final prediction for averaged energy
dissipation composile operator is nontrivial. Of special relevance to the following
investigation is the subsequent paper of Honkonen and Nalinwv [8]. They argue that
nonlocal term f)"(ic‘) k2262 iF’(E) cannot be renormalized multiplicatively because the
counterterms obtained from the diagrams of corresponding theory are always local in



apacc and time. The paper [8] contains not only criticism of the incorrectly applied
nonlocal kernel renormalization, but also claim the give constructive natural proposal
how to correctly remove ultraviolet divergences by means of anaelytical counter ferm
F(E) K2 (B).

Inspired by the study [8] we present here an gencra,h?ed treatment of the stochas-
tic MHD where the analogous nonanalitic term & () k23=¢+%1=2) F(k) ( free parani-
eter a controls the power form of magnetic forung) qumres th« introduction of the
additional analytical counter term proportional to b’( )Jc2 b’( ) into the action.

The following section we start from the functional formulation of the turbulence
prablem, which is suitable for the analysis on the RNG basis. In the further section
using standard Feynman diagram technique, the Wilson’s formulation of the RNG
flows [1] under length scales changes in coupling constant space, the formulation of
universality, fixed points and scaling have been extended to the stochastic MHD.
Finally, the conclusions are presented.

2 Functional model

QOur approach is the same as that applied by [6], where the formal equivalence of
the stochastic MHD) theory and quantum field theory has been recognized. Know-
ing the MHD equations and statistical properties of the Gaussian random forces in
coordinate £, t space
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with transverse second-rank projector P_,,(E) = &;, — k;k,/k* (ensuring incompress-
ibility required by V.f* = 0 and V.t = 0) all dynamics of the MU system is
governed by the field theoretical action
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which maps the classical Langevin stochastic formalisim into the quantum field prob-
lem. 1t is familiar from before that action containing nonanalitic terms proportional
to constants guig, geio need introduction of iwo new constants g,aq and gug. All these
dimensional constants controlling the amount of randomly injected energy {2) play
role of the conpling constants in the perturbative expansion. Their universal values
have been determined after the parameter & was choosen to give the desired power
forin of forcing.

The factors 1viug and vjul containing "bare” (also kinetic or motecular) viscosity
vg and "hare” magnetic inverse Prandtl number wy have been extracted for conve-
nience of calculations.

The most important measurable quantities in the study of a fully developed tur-
bulence are considered to be the statistical objects represented by correlation and
response functions of the fields. They are equivalent to functional averages - Green
functions commonly expressed as a terms of Taylor series in A's about A = @ by
means of generating functional

R i oo [SHATe Ay +A"b+ﬂ.°'b'] )
(,(A",A",A",A") = /D-Um’pbpb'e S (3}

where A, are source fields, DFDFDEDF denotes the measure of functional integra-
tion. One can derive anlimited number of identities for Green functions [rom this
expression, so the developed turbulence problemn can be formulated such as the cal-
culation of functional integral. Such functional {orinulation is advantageous since
the Green functions of the Fourier-decomposed stochastic MHD can be calculated
by means of Feynman diagrammatic technique.

3 Renormalization in one loop order, fixed points

Before discussing the main results, we summarize the salient points of the RNG
procedure which we have used. Details of applied RNG procedure and connected
perturbative techniques have been described clsewhere [9].

The model (2) is renormalizable by the standard power-counting rules, and for
limits € — 0,6 — 0, A — 2,d — 2 possesses the ultraviolet divergences which
are present in one-particle irreducible Green functions Al S R T S
and vertex function I, Now, we turn out our attention to the removal of these
divergences.

In the frame of the quantum field RNQ the computing of Feynman diagram n-
cludes: association vertexes {nonquadratic terms in (2)] with the diagram edges, as-
sociation of the free propagators [corresponding to the Fourier transform of quadratic



part of (2)] given by
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with superscripts vo’, b, v'v, b'b, bb and vv refering to the notation of internal di-
agram lines. Having in mind that we need to know only divergences and are not
interested in the finite parts of the one loop diagrams, we perforin the integration
over internal momentum space with noninteger dimension 2 + 2¢ (dimensional reg-
ularization introduced by the shift 2¢) and integration over internal frequency (us-
ing residuum theorem), and separation the divergent (for ¢ — 0,6 — 0) /e, 1/8,
1/( 28 + €) contributions according to the minimal subtraction scheme [10].

After the ultraviolet divergences have been temoved, the continuation back to
initial "physical” values ¢, — 1/2,6, — 2, A, — 0, d — 3 is possible. The parame-
ters A, and ¢, produce desired stochastic energy supply of 3-d system from infrared
range of k.

The ultraviolet divergences can be removed by adding suitable counter terms into
the basic action Sg which is obtained from (2) replacing

S - SB - S (CU —* (:p[E]) y € = (gvlsgvlygblagb21u1 V) (5)

where ;i is a scale setting parameter having wave number dimension, the renor-
malized parameters depending on u are labeled as ¢. We see that all parameters
Gv10+ §u20, G610, Ps20 having nonzero wave mumber dimensions [¢]: [g.10] = 4, [gu20] =
[gb20] = 7%, [gs10] = b (calculated from naive dimensional analysis) are trans-
formed to undimensional parameters gui, guz. gei, go2- The form of Sy implies the
additional counter term part

65 = fdﬁa’t[v(1—Zl)v;-VvaﬁLuu(l—Zg)b;V2b3+
1
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determined such as to cancel the surface ultraviolet divergences. Within the ultra
violet renormalization the divergences appearing in form of Laurent series in poles
1/€, 1/é6 and 1/(28 + ¢) are contained in the constants 7y, 73, Z4, Z5 renormalizing



the "bare” parameters ey and constant Zy renormalizing felds b, 5. The reraining
fields ", " are not renormalized due 1o the Galilean invariance of the model (2).
The counter term part (6} have the same form as the terms of the action (2).
ultraviolet divergences may be eliminated by redefining the parameters of the orig-
inal theory according to (5) which is the essential property needed to apply RNG.
Renormalized Green functions are expressed in terms of the renorinalized parameters

G = Guop L2y g = guop™ 212227,
@ = gop P ZZIET gy = grao u® VAVAV A A
v = ', u= 1o £y ' 7 (7)

incoming to renormalized action Sp = Sy — 85 connected with action (2) by the
relations of multiplicative renormalization

Sr(7, 6,0 8 ) = S(& BZM 7 82,2 ep).

)
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The action Sp and related Green funcions dependent on renormalized parameters

e(p) lead to the theory without ultraviolet divergences. The RNG is mainly con-

cerned with predicting anomalous dimensions 7, by use of 3~ functions, both defined

via operations

dinZz;
du

. dg .
Y= ot = ”(‘Ty'”’ with ¢ € {gu1,gu2. g1 g, u}, (8)

where subscript "0” refers that the partial derivatives are taken at fixed values of ¢q.
Using KNG rontine mentioned briefly the anomalous dimensions v,(g., ¢s. gu2)
can be extracted from a one loop diagrams.
Definitions {8) and expressions (7) for € = 2 + 2¢ imply

/iyvl = g (—26 + 27] + 72) 1 fﬁyv?- = Gv2 (2( + 271 + 7 - ‘74) .
Boor = gn(~2ab4+7 + 2% — ), Jose = g2 (2e + 1 + 2% — 3 — 95)
A = uly —m) (9)
The partial derivatives with respect to g in (8) generate ¢ and é — dependent

terms which cancel some "mixed” pales ¢, 8, 26 + ¢, as a consequence finite result
can be wrttten

_ l . 1 Gv —
T o= 3zq,r(ugy+9'b), =g w1’
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where substitutions g, = ¢.; + gu2, 96 = go1 + g2 are used. The calculations show
us that divergences of ["? do uot occur in one loop approximation {and therefore
v5 = 0) directly for d — 2.



The critical behaviour and universality of MDD statistics stems from the existence
of the stable FP. The continual RNG transformation {flow) is operation linking the
invariant paramueters gis) determined by the Gell-Mann Law equation

j—g](:"l =3, (g(s)) with §€ {F.1. 92 Gor+ o2 1} (11)
ns
where scaling variable s = k/p, s € (0,1) paramnetrizes the RNG flow with initial
conditions §l,=; = ¢ (the critical behaviour correspond to infrared limit s — )
and the expression of the 3(g{s)) function is known in the framework of the ¢, 6
expansion [see Eqs.(10} and also (9)]. A FP ¢7(s — 0) satisfies a system of equations
B,(g") = 0, while a stable I'P weakly dependent on initial condition is defined in
addition, by positiveness of the real part of matrix {04,/0¢)l,., or in other words
the FP is stable if all trajectories in the neighbourhood domain approach the FP.
In comparison with traditional ¢ expansion, using double expansion some new
facts occur. After the continuation ¢, -~ 1/2.6, -» 2.d — 3 we have obtained the
nontrivial stable kinetic FP of RNG with universal inverse Prandt]l number

VIT— 1

ut = —5 ~ [.A62 { ~ 1.393 iu usual ¢ — expansion)

and g7, and g, determined as
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with zero couplings ¢f, = gr, = 0 and anomalous dimensions
G b2

Ve = SR = e+ by = —%’% ~ 1707 (13)
The region of the kinetic FP stabulity is limited by the parameter @ < 1.42 ( whereas
a < 1.15 determines FP stability in the usual ¢ expansion). The anomalous dimen-
sions 7} ;4 determined perturbatively exactly settle on the previously found values
[5, 6], but +3, which has been determined up to order é is signifficantly different from
the value {—0.638) obtained earlier [5, 6, 11].

The important outcome of our recent paper [11] is the statement that in ran-
domly driven MHD the Kolmogorov &~''/? scaling holds not. enly for the one time
pair correlation function (‘UJ{E)‘UJ(_E)) but also for function (1Jj(E)bJ(~E)). Now we
recongnize the scaling properties in the case of doahle expansion.

The renormalized function (bJ(E]bJ(—E));g satisfies the basic equation of RNG

J d d - -
(#b; + Zﬂgag “meat “z"s) (b, (k)o,(~k))r=10
g



which lies beyond perturbation theory and expresses the independence of the un-
renormalized theory on the scaling parameter u. The solution of this equation can
be written in the form

dx

AR R =7 K R () oo [ 2 (ul-2ulgaD} 09

where factor v*£7% has been obtained from the zero order propagator by means
of integral fdeﬁﬁ-(k,w), [ see (4)]. The scaling function R(g,,) which can be
computed as power series in g, (s) is up to one loop order proportional to g,, (s). The
importance of further analysis follow from the detail that the trajectory generated
in the space of invariant couplings (11) has infrared asymptotics
Eb](s) —* ."._73‘+26(l-_u)1

which may be calculated solving Eqs.(9,10,11) for linearized §ni{s) around the fixed
Fe1 = 95, = 0. The knowledge of s— dependence of g;, gives

H(G,) ~ Gy (s) = s -0 = goll=e} oy {—/ d—m'y;] for s—0. (15)
1T

and consequently after setting of just obtained R(g,,) into Eq.(14) we have

(B =B~ o 20 e { [T (g (0] = 37— e @)D}

In the infrared limit the subtraction 43(7)—775 vanishes and in the last expression only
the dependence on the anomalous dimension 7, remains. The correlation function is
given by

{b;(E)by(—k)) g ~ k-2 + 2 (1-0)=45/3 gor ), (16)

For the mostly acceptable value of free parameter @ = 1 [results from FP stability
and dimensional arguments in (2)], correlation function (b_,-(g)bj(—f;)) is compatible
with the standard Kolmogorov prediction £~/ as it has been oblained earlier {5]
in usual ¢— expansion.

From (2) we see, that in contrast to earlier development of RNG on stochastic
MHD, there exist different ways how to introduce a forcing. Because the renormal-
izable MHD) action contains the addition of terms and counter terms proportional to
field structures ¢'¢' and B'¥, our simple suggestion is to lump these terms together
into the effective forcing. In the reverse order formulation the renormalizable action
(2) can be constructed directly starting from the reformulated variant containing
sum

S = f d¥Ey dun &Ky dus |7 (f* Feq @ + B (P Do | + terms linear in fields @, &



with random force pair correlator

-
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representing more detailed intrinsic statistical picture of forcing [here <>~ denotes
the Fourier transform of correlation function is taken in the kinetic FP (12)]. There
are now two principal - low (k << k.) and high-wave-number scale kinetic forcings
separated by transition region near the value k. = g [g7,/g5,]"% ~ 1.224] close
to the ultraviolet cut off . According to (17) a dominant contribution to high-
wave-number forcing is from wave numbers near k. and thesc wave numbers are
also responsible for the initialization of the inverse cascade, where the inverse energy
transfer is maintained by the k? forcing, since the dissipation of energy in the inertial
range is not assumed. In the language of claasicall hydrodynamics it corresponds to
appearence of a large eddies convected by active small eddies with size close to 2n /..
From the RNG standpoint, more complex action {2} seems to be a paradigm how to
describe the inverse cascade mechanism. Note, that in conventional closure theories
the inverse cascade is accompanied with negative maodified viscosity.

The results which lias ‘been obtained for magnetic FP { where system tends to
u* = 0 ) are fundamentally different from those of [5, 6] and we have reached the
surprising conclusion that double expansion leads to unstable megnelic regime.

The unstable fixed points of the presented model have systematically been deter-
mined:

(i.) g2,=0,9,=0,g, =0, g5, =0, {u* is free parameter),

(ii') 9;1 = 0> 9:2 = 716(177'-1 951 = 0: 9’:;2 =0, u* = 0)

(iii.) g7, = 166,m, 97, =0, 95, =0, g5, = 0, w* =0,
(iv.) g5, =0, g3y = ~64em, giy = 0. g5, = —64eym, u* =0,
(v.) g5 =0, g}y = 16e,7/11, g5y = 0, g5, = 96epn /1L, w” =0,
(vi.) g = [B(1 — VIT)6,(26; + 3.0 ] {985 + ¢p)},

ai = (8 — VBIT)&Zm/(9(6, + €,)),

an =0, 95 =0, v = —(1+V17)/2,
(vil.) g7, = [(1162 4 2486, + 4€2)7) /{8, + &),

gia = (58, + 2¢,)*x] /(6 + ),

a5 = 0, g, = B(56, + 2¢,)m, u* =0,
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(viii.) g7, = [-8(538) + 15662, + L338,€5 + 54w ] /(2T(6, + ,)?),
gia = [(5048, +432¢, — (3203)/(6, + €,)%)7] /27,
e =0,
gha = (3366, + 2886, — (3262)/(8, + ¢,))7] /9,
uh= =T — e, /by,

(ix.) g3, = [86,(538, — 1620, + 1TLa*e,, — 51a%6, — 6e, + 18ac,)7] /(27(~14+a)(6,+
eplhs
gry = [(504 + 32/(—t +a) — 936a + 132a4)82x} J(27(8, + €,)).
gy = [(336 + 32/(~1 + a) — 288a)é,7) /9, g7, = 0, u* = =7 + 6a, a #1,

(x') G =0,
g0y = [B(=38ad, — 8l¢, + 9(20a*6] + T6adye, + 81¢2) 1] /11,
iy = [16(—26aé, — 45e, £ 5206207 + T6abye, + SIEOTINITE
g5, =0, u* =0,

(xi.) gly = 368,7 — Radym — [(-5+ 2a)2621)/(6, + ¢,] |
Goa = [(=5 4 2a)*82x] (8, + ¢3),
go = 8(5 — 2a)bpm, gy, = 0, u" =0,

4 Conclusions

In the presented comparative study we have shown that RNG analysis applied to
stochastic MHD is quite sensitive in many points to the type of expansion. The main
results of a presented MHI) version of the initia) theory [8] are: (i) classification of
the FP - we have found only one stable FP corresponding to k=!1/3 scaling, {7i) alter-
natively formulated description of the inverse cascade of energy, (ii1) the Kolmogorov
k=''% scaling for the one time pair correlation function (8,(F)8,{—k)): the investi-
gated asymptotic properties of velocity and magnetic field correlation functions are
consistent with traditional three-dimensional analysis and Kraichnan's hypothesis
[13] about equipartition of energy among velocily and magnetic Fourier modes, (iv)
significantly new value of the inverse Prandtl number (/17 — 13/2 in the kinetic
FP. Unfortunately only the higher order calculations or the appearence of another
suitable calculable scheme should help us satisfactory clarify contradictions arising
from some pathology of perturbative RNG in the turbulence theory.

The another importaint question is the relevance of the presented theory in
physics. The conflicting results achieved using different expansional methods led
us to a speculative deduction that double expansion applied here is physically close
to description of the quasi two dimensional (2 < d < 3) turbulent flows. The real-
izability of such flows seems to he difficult although not impossible in view of some
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recent approaches in statistical theory and geometry: fractal and anisotropic systems
show effectively behaviour of systems with noninteger dimensionality. This statement
is also supported by the new value of the inverse Prandtl number which represents
certain decrease of effective conductivity in a guasi two dimensional turbulent flows.

The fact that inverse cascade processess can be expected in nearly 2-d turbulence
[12] perhaps supports the idea of the alternative and interesting association of inverse
cascade mechanisms with description {17). This aspeet. which is divect consequence
of inclusion of more couplings and condition that 2-d stochastic MHD should he
multiplicatively renormalizable, is absent in traditional formulation of the stochastic
hydrodynamics.
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