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1 Introduction 

In ren·ut years much i11tcrest has becu focused to the applications of the rcnorlll<Liiza­
tion group (ft\fG) techniques which twned out to bP so fruitful ill crit.ical plwnolllena 
theory[!]. At sufficiently large Reynolds Jlumbers the statistical theory can be used 
to provide an accouHt of Uw properties of developed turbulence. Si1Jce 1977 several 
authors [2, :J, 4] have applied the RNC nwtl1od for the investigation of the fully 
devdoped t.urbulerHT of incompressible continuum described by the Navier-~;tokcs 
equation for velocity fluctuation Jield il under the influeucf' of cxtcma.l GausRia.n rau­
dom force P'. In this field of interest the H.NG is powt"rfull, gcll{~ral and systcmiltic 
method achi('ving n·markahl(• results with a. mininnun of plwnomcJJolor;ical i11put.s. 
The principa.l cxistenn· of t.lw stable fixf'd point (FP) correspondill[~ to cel(~bratcd 
Kolmogorov 1941 scaling, actually observed for a llUJnber of cxpf'rimcnta.l and ~:iJJl­
ulatioual studies, was ('SI.<tbli:dwd using tl!{' HNC. Later a large dfort. has been put. 
into th(' f•xtension of BNC techniqnes on <t computational prohletns of .stodJ<L~d.ic 
map;rwtohydrodynntnics (MHD) dt~scrihing t.he statistics of ekctric;dly condudiug 
iucornpressih!c flows. 

The randomly forc<'d stationary I\1IID turbulence studied h<'rr~ is described hy 
well known deterministic MilD equations for velocity and magnetic field b, which 
an• driven by {'XtPrnal hydrodyBarnic /~' ;wd Jll<IOWiic f' Gaussi<J.JJ forn•;.;. The H0Hi 
rakulat.ions based on t.he ( t~XpiLllsion [5, GJ connnonly pwdict th(' ('xistence of two 
~table FP corresponding to kinetic (1\oltnogon,v) a.nd magndir univen;a] critical 
regimes. For tlw purpos<' Lo p('tform HN<i it is convenient to introduce onr ]Jmhdc 
irrt:d1u:iblc Green funrlwn.'> I' Thcse functions, which are defined in u:mnl way ;n [9] 
provide a uscfull tool for study of H.NG problems since they considt~rahly dimini~:h 
the number of tenus in a perturbation series. 

As was shown in [6] only the following one particle irreducible Crcen two poiHt 

functions: 1'"'"0\ !'""' (l\ r'''(l\ 1'1''' (/:)and three point r"'"(k) function!\ (lkl ·~ /; 
iR waw number) possess the su perficialu ltraviold divergences in :~- d stochastic M II D. 
In this labeling convention il' and b' ar(' certain auxiliary vector incolllpressiblc fields 
which are consPquence of initial stochastic problcrn transformatim1 into the quantum 
field formulation. 

In the investigation Ron is has proposed the double expansion with simultaneous 
deviation 2f = d - 2 from the spatial dimension d, and also deviation 0 = 2 -·· A 
(following notation [8] 6 correspond to usual <'-) according from the powerlike form 
of the correlation function (lf'(k)l 2 ) .,..._,F-A-d = k2- 2(-1.fi ( we use the same notation 
for the fields and its Fourier components). The investigation [7] devoted to purely 
Navier-Stokes case is based on the fact that at, d = 2 a new class of divergent 
functions fv'v'(k) occur, according t.o which the final pr~diction for averaged C!wrgy 
dissipation composite operator is nontrivial. Of special relevance to the following 
investigation is the subsequent paper of Ilonkoncn and Nalimov [8]. They arguP that 
nonlocal term il(k) p-zfi- 2{ V'(k) cannot be renormalized multiplicatively b(~cause the 
counterterms obtained from the diagrams of corresponding theory are always local in 



space and time. The paper [8] contains not only criticism of the incorrectly applied 

non local kernel rcnormalization, but also dairn the give constructive natnral propos:tl 

how to correctly remove ultraviolet divergences by means of analytical counft'l' term 

v'(k) k' v'(k). 
lnt:~pired by the study [8] we present here an generalized treatment of the stochas­

tic MilD where the analogous nonanalitic term b'(k) Fa>.-dH(!-a) b'(k) ( free param­

eter a controls the power form of magnetic forcing) requires ttw introduction of thP 

adclitional analytical counter term proportional to b'(k) k2 b'(k) into the action. 

The following section we ~tart from the functional formulation of the turbulence 
problem, which is suitable for the analysis on the RNG basis. In the further section 

using standard J<Cynman diagram technique, the Wilson's formulation of the RN(; 
flows [l} under length scales chan.e;es in coupling constant space, the formulation of 

universality, f1xed points and scaling have been extended to the stochastic MilD. 

Finally, the conclusions arc presented. 

2 Functional model 

Our approach is the same as that applied by [61, where the formal eqnivalcnce of 

the stochastic MilD theory and quantum field theory has heen recognized. Know­
ing the MHD equations and statistical properties of the Gaussian random forces in 

coordinate :£, l space 

(/"(i,t)) 

( J,"(i" tt)J;('i,, t,)) 

( JJ(t" t1JJ:(x,, t,J) 

( JJ(x" tt)J:(x,, t,)) 
where the kernel 

0, ( /'(i, t)) = 0, 

9vlO Uo Vo
3 Dj11 [it, l1, 12, t2, d, >.] 

9bwu~vo3 Dj~~[Xt,t,,i2,t2,d,a>.+2(I-a)] 

0, 

( 1) 

with transverse second-rank projector P13 (k) = bjs- k1k3 fk 2 (ensuring incompress· 

ibility required by \l.f--, = 0 and v.P = 0) all dynamics of the MilD system is 

governed by the field theoretical action 

S = ~ j ddit dt1 <f'-X2 dt2 { 9vto Uo Vo3 vj(i,, tt) Dj~ [X,, t,, i2, t2, d, >.] v~(i2, t2)+ 

9bwu~v03 b~(it,tl}D13 [ihtl,i2,t2,d,a>.+2(1 -a)] b~(i2,t2)} + 

J ddi dt {- ~ Uo vg (9v20 v; V 2
vj + Uo 9b20 b; \7 2 b~.) + 

( iJv, 2 av, iJb,) ' 
-at+ Vo V Vj- V 11 ax~~+ b3a;: Vj + 
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+ (2) 

which maps the classical Langevin stochastic formalism into the quantum field prob­
lem. It is familiar from before that action containing nonanalitic terms proportioual 
to constants 9vw, Ybto need introduction of two new constants gv2o and gb20 . All these 
dimensional constants controlling the <tmotmt of randomly injected energy (2) play 
role of the con piing constants in the perturbativc Pxpansion. Their universal values 
have been dctcrminrd after the paramdf'r b was choosen to give the desired power 
form of forcing. 

The factors JJJu0 and vJuci containing ''bare" (also kinetic or molecular) viscosity 
v0 and "hare" magnetic invNse Prandt.l number Hu have been extracted for conve­
nience of calculations. 

The lllOst important measurable quaJltities in tlw study of a fully devdojH~d tur­
bulence arC' considcrt·d to be the statistical objects rPprt•f>ented by corr<'lation and 
respons(' functious of the fields. They are equivalent to functional averages Green 
functions commonly expressed as a tPrrns of Taylor sPries in !l's about A :::;: 0 by 
means of generating functiona.l 

where 11
1 

a.rt• sourc(' fields, D1"1Dii'DbDh' denot('s t.hf~ rrwasurt• of funct.ional integra­
tion. One can derive unlimited number of identities for Green functions from Lhis 
expression, so the dcw•lopt~d turbulence problem can be formulated such as the cal­
culation of functional integral. Such fuJJctional formulation is advantageous since 
the Green functions of the FouriN-(h•composcd stochastic MilD can be calculat('d 
by nu~ans of Feynman diagrammatic technique. 

3 Renormalization in one loop order, fixed points 

Heforc discussing the main results, we summarize the salient points of the RNG 
procedure which we have used. Details of applied RNG procedure and connected 
perturbative techniques have been described elsewhere [9]. 

The model (2) is renormali~ablc by the standard power-counting rules, and for 
limits f ------+ 0, /) ----+ 0, A ----+ 2, d ------+ 2 possesses the ultraviolet divergences which 
are present in one-particle irreducible Green functions rvv', rv'v, rw, rb'b, rb'b', l'v'v' 

and vertex function l'v'bb_ Now, we turn out our attention to the removal of tht'se 
divergences. 

In the frame of the quantum field RNG the computing of Feynman diagram in­
cludes: association vertexes [nonquadratic terms in (2)] with the diagram edgC's, a.._<;­

sociat.ion of the free propagators [corresponding to the Fourier transform of quadratic 



part of (2)] given by 

"'"( k. Ll.,3 - ' -w) = 
-iw + 110 k2 ' 

bb' .... 
Ll.,, (k,w) Ab'b(-k - ) = J',,(k) 

t..J,.J3 ' w . k' , -zw + Uo llo 

k-26-2. + 
3 k' g,w g,,o p ( k) 

Uollo I . + k'l2 JS , - lW IIQ 

" . Ll.,.(k,w) 
k -2a5-21 + 

2 3 e· 9bw 9b20 P (kJ 
«o Vo I . + k' 12 J3 ' - zw uo vo 

(4) 

with superscripts vv', bb', v'v, b'b, bb and vv refering to the notation of internal di­
agram lines. Having in mind that we need to know only divergences and are not 
interested in the finite parts of the one loop diagrams, we perform the integration 
over internal momentum space with noninteger dimension 2 + 2( (dimensional reg­
ularization introduced by the shift 2t) and integration over internal frequency (us­
ing residuum theorem), and separation the divergent (for ( -t O,b --t 0) 1/(, ljb, 
l/( 2b + t:) contributions according to the minimal subtraction scheme [10]. 

After the ultraviolet divergences have been removed, the continuation back to 
initial "physical" values fp -----+ 1/2, bP -----+ 2, Ap -----+ 0, d -----+ 3 is possible. Tlw parame­
ters >.P and tp produce desired stochastic energy supply of :1-d sysf.t·rn from infrared 
range of k. 

The ultraviolet divergences can be n•moved by adding suitable counter terms into 
the basic action 88 which is obtained from (2) replacing 

( 5) 

where JL is a scale setting parameter having wavP numlwr dinwnsion, the r<•nor­
malized parameters depending on Jl are labelt>d as t'. We sPe that. all parametPrs 
9vto.9v2o,9bH>.9b20 having nonzero wave number dimensions [tl [g,w] = J1 2

b, [g,20 ] = 
[9b2o] = p- 21

, [Ybto] = p 2a8 (calculated from naiw dimensional analysis) arP trans­
formed to undimensional parameters g,1, 911z, Ybl, 9b'l.· The form of SH implies t.ht> 
additional counter term part 

(6) 

determined such as to cancel the surface ultraviolet diw~rgt>ncPs. Within the ultra 
violet renormalization the divergences appearing in form of Laurent seriPs in polf•s 
1/t, ljb and l/(2b +f) are contained in tht' constants Z1, Z2 , Z4 , Z5 renormalizing 
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the "bare" parameters f'o and constant ZJ rcnormalizing fields h, b'. Thf' remaining 
fiPids ti', ji are not n·norrnalized due 1.o t.lw Cali!f'all invariatl<'(' of the modf'l (2). 

The counter term part (6) havf' the sanw form as the tPrms of the action (2). 
ultraviolet divergences may be eliminated by reddining thf• parameters of the orig­
inal t.lwory according to (5) which is the essential property needed to apply HNG. 
Renormalizt>d Creen functions are exprt'ssed in terms of the renormalized pararnPters 

9vl 9vl0 jl-
20 Z{ Z2, 9v2 = .9t·W !1

2
' z~ Z2Z; 1' 

9bl 9&1o/1-
2

a
6 7.\Zjl:\ 1• 962 = 9&2uf..l2( Z,?.;Z;1 Z;; 1

, 

v (7) 

incoming to renonnali:..:ed action Sn = .• .. ;H -- !JS' con11rcted with actiou (2) by the 
relations of multiplicative n•normalization 

,, ( • ,· ~ b.' ) ''( • b.Z 112 _, b-,,/_ 112 ) •""'H '1!, J, II • t' = ,-., 1', :J , I', h 3 , Co . 

The action .S'R and related Cn•en fuwions dependent on renorrnalizt~d parameters 
e(f..l) !Pad to tlw theory without ultraviolt't. divergences. The HNG is mainly cou­
cerrwd with predicting anomalous dimensions r1 by use of {3- functions, both defined 
via operations 

(8) 

where subscript "0" rders that. the partial derivatives are taken at. fixed valut>s of r:: 0 . 

tlt~ing RNG rout.i1w mentiont'd hridly the anomalous dimensions "'rJ(9v• gb, .Qv 2 ) 

can be (~xtracted from a one loop diagrams. 
Df•fiuitions (8) ami t>Xpr<'ssions (7) ford= 2 + 2( imply 

fi,", g,, ( -28 + 2,, + ,,) , ;J,,, ~ g,, (2< + 2,, + J'l _,,)' 

ji,b, 9b! ( -2a8 + 11 + 2,.,- 'led, !i,bZ ~ 9b2 (2< + /1 + 2,,- /e- /o) 

(9) 

The partial dt>riva.tives with respect to ll in (8) gPncrat(' ( and 6- dt'pt>ndt•nt. 
terms which cancel some "mixed" pol('s f, b, 26 + 1, as a const>qHt>nce finite result 
can be written 

,, /2 = 

(I 0) 
I 

16Jr(9b- g,)' 

where substitutions .Qv = Yvl + .Qv2, 9b = 9bl + .Qb2 are ust·d. Th<' calculations show 
us that. divergence.s of I'b'b' do not occur in one loop approximation (and therefore 
i.5 = 0) directly for d --+ 2. 



The critical behaviour and universality of MHD stati:,tics stems from t lw t·xistence 

of the stable FP. The continual RNG transformation (flow) i~ O(Wration linking the 

invariant parameters g(s) df'termined by the Geil-\fann Law equation 

ag(.<) ·J (~( )) .tl ~E {~ ~ ~ ~ ~} 
-d} = f g g 8 WI 1 g g,, 1 ,gu2 ,g61 ,gb'l' 11 

ns 
(II) 

where scaling variable,.;= k/11, s E (0.1) par;und1·izes the H\"G flow with initial 

conditions 9ls""l :::;; g (the critical behaviour corn•spond to infrared limit ,.; -----+ 0) 

and the expression of the ;3(g(s)) function is known in thf' franwwork of the t,ll 

expansion [see Eqs.(lO) and also (9)]. A FP y*(.~-----+ 0) satisfies o systf'rll of t·quations 

f39 (g*) = 0, while a stable FP weakly dqwnd(·nt on initial condition is dt·finf'd in 

addition, by positivf'ness of the real part of matrix (IJ/iy/fJ_q)l 9 •, or in other words 

the FP is stable if all trajectories in tlw nPighhourhood domain <1pproach thf' FP. 

In comparison with traditional ~ PXpansion, using double expansion sonw lli'W 

facts occur. Aftt·r Uw continuatio11 ("-----+ I/'2./JP ··--> '!.d --+ J w~· h<1w' ohtaiTwd tlw 

nontrivial stable kiufl1c FP of HNG with univers<1l inv('rst' ProTrdtl Irurnlwr 

Vf7~ I 
u· = --

2
- ~ 1..162 ( ,......, t.:J9:1 in IISIInl t - t·xpansion) 

and g~ 1 and g~2 detf'fmined as 

6h b,(2b,+:lr,) 
9u• 8P+(P 

• fi1r. ;,; 
9v'l. = g,~- fp +hi, 1 12) 

with Zf'ro couplings gi,1 = gi,2 = 0 and a.nornalous dimensions 

'lb 
i"=2(c +h) 'n·=~-P_"' --1.707. 

4 P P , . J u"' (I :J) 

The region of the kinetic FP stability is limitf'd by I h<> paralllt'tf'r a < 1.'1:2 ( w bt'rt'as 

a< 1.10 d<>termines FP stability in tlw usuo.l t t>xpansion). Tbe anomalous dinwn­

siom 1i 2 4 determined perturbativdy ('xactly set.tle on the pr('viously found values 

[5, 6], b;1t /:j, which has been dPtermined up to ordf'r b is signifiicantly difft~rent from 

the· value ( ~0.6J8) obtained earli<'f [.1, 6, II]. 

The important out.conw of our recent paper [II] is th(' stat.e1nent that in ran­

domly driven MilD U!(' Kolmogorov A-·-llf:l scaling holds not. only for the one time 

pair correlation function (vJ(f)vJ( --f)) but also for function (b1 (k)b1 ( -f)). Now we 

recongnize the scaling propertit·s in the cast' of douhlP ('Xpansion. 

ThP renormalizPd function ( b1 ( k )bJ (- k)) H satisfies t.lw basic equation of RN G 
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which lies beyond perturbation theory and expresses the independence of the un­
renormali7.ed theory on the scaling parameter 1-L· The solution of this equation can 
be written in the form 

(14) 

where factor v 2 k- 2
' has been obtained from the zero order propagator by means 

of integral J dw.6.~~0;;,w), [see (4)]. The scaling function /l(gb1) which can be 
computf'd as power series in fj61 (5) is up to one loop order proportional to gb1 (5). The 
importance of fmt.her analysis follow from the df'tail that the trajectory generated 
in the space of invariant couplings ( 11) has infrared asymptotic:.:; 

which may be calculated solving Eqs.(9,10,ll) for lineari7.ed 9bt(8) around the fixed 
961 = .Qi,1 = 0. The knowledge of s- dependenn~ of g61 gives 

and coHst:quently after setting of just obtained R(gb1 ) into Eq.(14) we have 

In the infrared limit the subtraction ')'3 (9)-!3 vanishes and in the last expression only 
the dependence on the anomalous dimension l't remains. The correlation function is 
given by 

for k -> 0. ( 16) 

For the mostly acceptable value of free parameter a = 1 [results from FP stability 
and dimensional arguments in (2)], correlation function (bj(k)bJ( -k)) is compatible 
with the standard Kolmogorov prediction k- 11 13 as it has been obtained earlier (5] 
in usual t- expansion. 

From (2) we see, that in contrast to earlier development of RNG on stochastic 
MHD, there exist different ways how to introduce a forcing. Because the renormal­
izable MHD action contains the addition of terms and counter terms proportional to 
field structures V'V' and lYb1

, our simple suggestion is to lump these ierms together 
into the effective forcing. In the reverse order formulation the renormalizable action 
(2) can be constructed directly start,ing from the reformulated variant containing 
sum 
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with random force pair correlator 

U;'(k1 ,wt)J.;'(k2 ,w2 ));ff = u·v'i<P,,(k) x 

8(f, +k,)o(w, +w,) [g:1 m' 
0, ( 17) 

representing more detailed intrinsic statistical picture of forcing [here<>* denotes 

the Fourier transform of correlation function is taken i11 the kirwtic FP (12)]. Ther<' 

are now two principal- low (k << k.) and high-wave-number sc<:tle kinetic forcings 

separated by transition region near the value k. = J.L [g~ 1 jg~J 1 1 5 -:::::. 1.22J.L] dose 

to the ultraviolet cut off fl· According to (17) a dominant contribution to high­

wave-number forcing is from wave numbers ncar k. and these wave numbers are 

also responsible for the initialization of the inverse casnult:, where the inverse CIH'rgy 

transfer is maintained by the P forcing, since the dissipation of energy in th<' inertial 

range is not assumed. In the language of classicall hydrodynamics it corresponds to 

appearence of a large eddies convected by active small eddies with size close to '27r / k •. 
From the RNG standpoint, more complex action (2) seerns to be a paradigm how to 

describe the inverse cascade mechanism. Note, that in conventional clmurc thc'Ories 

the inverse cascade is accompanif'd with rwgative modified viscosity. 

Thf~ results which has 'been obtained for magnetic FP ( wlwre system tends to 

u• = 0 ) arc fundamentally different from those of [5, 6] and we havf' reached the 

surprising conclusion that double expansion leads t.o un.'itablr magnr:!ic rfgimL 

The unstabl!- fixed points of the presented model havP systematically be('IJ df'ter­

mincd: 

(i.) 9: 1 = 0, g:2 = 0, gb1 = 0, gi,2 = 0, (u• is free paranwter), 

(vi.) g;1 = [8(1- J\7)8,(28, + 3t,)Jrj /(9(8, + <,)), 

9;, = (8- v'si7J8;"/(9(8, + ,,)), 
g;1 = 0, g;, = 0, u• = -(1 + J\7)/2, 

(vii.) y;1 = [(118; -t 248,,, + 41;)"] /(h, + t,), 

g;, = [(58,+ 2t,) 2 1r] /(h, + ,,), 

9b1 = 0, gb2 = 8(;)bP + 2tp)7r, u• = 0, 
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(viii.) g~ 1 = [-t~(.):u,; + I56b;tp + J5:Mp(Z + .r:.4t~)7rJ /(27(bp + tp) 2 ), 

g;, ~ [UilH6, + 1:!2,,- (:!26~)/(b, + •,)'I~] /27, 

9~1 = 0, 

g;, ~ [1:!3o6, + 2ss,,- (:m;J/(o,, +,,,II~] /9. 
ll'" = -7- 6fp/1Jp, 

(ix.) g;, ~ [86,.(!i:J8, -162ab,. + 17Ia''o,,- .i1a'6,- fit,+ 18a<,,)~J/(27(-Ita)(b,t 
•,) ), 

g;, ~ [Ui01 + :32/( -I +a)- 9.1fia + ~:l2a')o;~J /(27(6, + <,)). 

g;, ~ [(:l:!fi + .12/( ·-I+ a)- 288a)6,~J/9, g;, ~ 0, u• ~ -7 + 6a, a of I. 

(x.) g,:, ~ O. 

g;, ~ [8( -:l8ah, - 81<, ± 9(20a'h; + 76ab,,,. + 81 <;)'I')~ ]/11, 

gi,1 = [16( -26ahP- 15tP ± 5(20a 2 ~,: + 76aliptp t Hlt~) 1 1 2 )7r] /11, 

gi,'l = 0, u* = 0, 

(xi.) g;, ~ :!66,,-- Sao,~-[( .. -.)+ 2a)'6;~)/(6, + ,,,], 

g,:, = [I -.1 + 2a)'o,~,-J /(6, + ,,), 
g;, ~ 8(5- 2a)b,.~. g;, ~ 0, u· = 0. 

4 Conclusions 

In the presented comparative study we have shown that RNG analysis applied to 
stochastic MHO is quite sensitive in many points to tht· type of expansion. The main 
rrsults of a presented MHD version of the initial theory [8] are: (i) classification of 
the FP- we have found only one stahlr FP corresponding to k- 11 /3 scaling, (ii) alter­
nativdy forrnulatPd description of the inverse cascade of energy, (iii) the Kolmogorov 

k- 11
f:l scaling for the one time pair correlation fundion (b;(k)bJ(-k)); the investi­

gated asymptotic properties of velocity and magnetic field correlation functions are 
conRistent with traditional three-dimensional analysis and Kraichnan's hypothuoi."i 
[l3J about equipartition of cnrr!Jy among velocity and magnetic Fourie1' modr.o;, (iv) 
significantly new value of the inverse Prandtl number ( JT7 ~ 1 )/2 in thf' kinetic 
FP. Unfortunately only the higher order calculations or the appearence of another 
suitable calculable scheme should help us satisfactory clarify contradictions arising 
from some pathology of perturbative RNG in th(' turbulence theory. 

The another irnportaint question is the relevance of the presented theory in 
physics. The! conflicting results achieved using differPnt Pxpansional mPthods led 
us to a speculative deduction that double expansion applied here is physically dose 
to dt•sniption of the quasi two dimensional (2 < d < :J) turbulent flows. The real· 
izability of such flow:. seems to be difficult although not impossible in view of some 



recent approaches in statistical theory and g<~omct ry: fractal and f-lllisotropic systems 

show etfPctively behaviour of systf'ms with nonintegl'r dinwnsionality. This st.aknwnt 

is also supported by the new value of the invcrsl' Prandtl Jlllllllwr which rt·pn•s<'IJI.s 

certain dt>crea.se of pff<.'dive couduct.ivity in a qna.si I wo dinwnsional11Jrbnknt flows. 

The fact that inw•rs(' cascade processes~; cau lw <'XJ.H'ctcd in Jl<'ariy 2-d turbulence 

[12] perhaps supports t.hf' idea of t.lw alt.l'rnatiw and "int.<T('Sf ing, ac>sociat ion of iiiV<'T"S<' 

cascade mechanisms with description ( 17). This aspf'ct, which is din·d cons(·qtl<'tH"(' 

of inclusion of more couplings and condition that. 2-d st.ocbastic !VlHD should lw 

multiplieatively renormalizabl<', is absent in traditional fornmlatiun of tlw stochastic 

hydrodynamics. 
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