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I. INTRODUCTION 

Two electrons in a polar or ionic crystal will interact with each other through: 

1) the direct repulsive Coulomb interaction, and 2) an attractive interaction caused 

by the polarization of the surrounding lattice. If the Coulomb interaction is suffi­

ciently screened by the lattice and if the polaron interaction is sufficiently strong a 

bound state between the two electrons and the surrounding cOmmon cloud of virtual 

phonons t:riay be formed. Such a composite quasi-particle is referred to as a bipolamn. 

One distinguishes the sco-called smali and large bipolarons, depending on whether the 

corresp:onding si~gle Polaroll{are in·a iocalized state or are mobiie, although With a 
large effective mass. 

Earlier pape:rs of VinetskiP, Mukhomoi·ov~; Suprun and ·Moizhes3 obtained large 

stability regions for the bipolaron using a Coulombic type of wavefunction for each 

el~ctrriD.'•·'A.daffiOWSki4"and later Ba.Ssani et al.~ Used aJS6 varicitiona!"calculations 

but compared the bipolaron groUnd: state eilergy with inore· C-orreCt single polaron· 

energies .. Verbist, Smondyrev, PeeterS and Devre~se6•7 used Feynman path· integral 
' ·' . . I . . . .. 

tech.hiques aDd obtained ·more accurate iesults.·. ~-~- · ·. · ·· · .I .:. 

The study of bipolarons can be relevant to examine the applicability of the bipo­

lai-on theorj\o. high· T~ superconductivity (e.g.· for high-Tc supercon_ductor~8•9\ the 

rece"n.t discOvkied fu11erites10•11 and tlie proposed Bose· Einstein ·condensation of large 
· bipolarons12•13). 

It iS interesting alsO to study relatively simple systems .(for .. which the num<.•t:ical 

work is greatly symplified) such· as 1D bipolarons which could be relevant in quantum 

wires14 and linear conjugated organic polymer conductors15 where charges move in 

one dimension. In Ref. 16 it was t~ecentlj" .. proven_that in the limit of a very strong 

magnetic field the 3D bipolaron maps i~to a 1 D .bipolaron-problem. 

The aim of the present paper is tO present a in ore accurate and detailed treatment 

of ID bipolaron formation in the strong-coupling limit. In this. limit. tpe.adiabatic 

approximation leads to exact equations because the electron oscillations have a much 

larger frequency than the lattice freqi;~ncy WLo- We will consider several character­

istics of one ID bipolaron, like e.g. the stability region which is found to be much 
l~rger in ID. th~n in 20 or 3D. ' . . 

With the, FOUi-ie~ 'series apProach .we are aiso~··~oie"tJ' investigate" the excited 

stat.S of the m' bipolaron. First Or all, the relaxed excited states (RES) which 

are self-COfisist~nt solutions tO the non~linear SchrOdfnger eq~itio~; The polariZa-· 

ti6n is· th~ll ad~J;ted tO the final electronic configuration.· On ·the .othCr hand, we have 

excited states which are the excited states in an effective pot'ential well ·genei-ated 
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by one of those self-consistent solutions (ground state or RES). For those excited 

states the polarization remains at the initial electronic configuration. The RES and 
Franck-Condon states of single polarons in 3D were studied by Devreese, Evrard and 

Kartheuser17• For their role on the surface of a liquid-helium film see Ref. 18. 

The paper is organized as follows. In Sec. II we introduce the non-linear 

Schrodinger equation. for the ID bipolaron. This integro-differential equation is 

s~lved v~riationally in S~c. I.II and by a Fourier series expansion in Sec. IV. In 
the 13tter also a comparison is made of estimates for the ground state e_nergy, the 

critical ratio f]c, •• . , calculated within the two approaches. In Sec._ V we iD.Vestigate . . ' - . . ~· . 

the excited states of the 1D bipolaron and in Sec. VI the conclusions are given. 

·· II. STRONG-COUPLING LHviiT 

The one-diniensi~nal bipolaron Hamiltonian, w~~ch_ i~.-~he :Hamiltpnian of, t~o 

electrons in~eracting y.rith a phonon field, is give~ by_: 
'2 .: .. ; . 

H = "E P; + u (z, - :Z,) + "E nw~blb; + L "E [V.b.e"'' + h.c.]_' (2.1) 
. 2m . · ·· 

J=1,'2 k J=1,2 k 
··i ,·, 

where· i; and P; are the position and momentum operators of the ph., electron (j = 
I, 2), m is the electron band mass and Wk is the frequency of the phonons with 

wavevector k. 
In the _case of ·an electron interacting with the 10-mode we have dispersionless 

phonons Wk = WLO. and the interaction coefficients are 

V. = -iliWLO 
2a' r-r­
LV~ 

(2.2) 

with L the length of the system and d the coupling constant for the one-dimensional 

electron-phonon interaction (defined in Ref. 19 and 20) 

f((D -1)/2) 
a'= a,fii 2f(D/2) 

(2.3) 

Here a is the standard dimensionless electron-phonon coupling constant in 3D and 

D the number of spi';ce dimensions. For D -> 1 wehave :,_, ,;,_ ~/(D- 1). Ind.ied, 

the polaron characteristics diverge for D = 1 beca~se of the .Coulombic nature of 

this problem; By using the re~ormalized coupling. consta.;t d rather' than a, all 

expressions ar~ regularized a!ld finite results are found for the energy and. t'~e mass 

of a polaron or bipolaron in 1D19
• 
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The 3D Coulomb repulsion between the electrons is defined by 

U , r(D/2) J dDk . 
; = Uv ,DI'+t kD-t exp[zkr], 

U[; = U,fiif((D- 1)/2) 
2f(D/2) {2.4) 

with D = 3. In the limit D -> I the corresponding Coulomb potential takes the 
form 2U{6(z,- z,). This so-called contact potential is the natural generalization to 

1D of the direct Coulomb repulsion between electrons in 3D. Therefore we have in 

(2.1) U(z1 - z,) = 2U{6(z,- z2). It is convenient to introduce also the dimensionless 
coupling constant U' 

, . v~, U, = "WLO --U 
ffiWLO 

and the ratio of the coupling constants 

U' ../2 
g=,=l-q' 

where q = c:~f<o with c:~(<o) the high frequency (static) dielectric constant. 

(2.5) 

(2.6) 

Starting from the Hamiltonian (2.1) we obtain in the strong coupling limit using 

the adiabatic approximation the n'on-linear effective SchrOdinger equation of the one­
dimensional bipolaron (for more details see Ref. 21) 

{ 
p' P' }. . 

2,:, + 2:, + U(z.,z,; lllo) lllo(z,,z,) = E0 1!10 (z.,z2 ) 

with the effective potential 

" IV.I'IP•I' U(z., z,; lllo) = U(lz, - z,l) + 4 ~ '-"n!:-"-.::.!... 
k Wk 

2 L ~~I' [Pk ( •"'' + e;.,,) + c. c.] ' 
k Wk 

in which the Fourier transform of the electron deusity is given by 

(•;"') + (•;"') 
P• = 2 

!~ (e; .. , + •;"') • = dz,dz, 
2 

ll1 0(z.,z,)l!lo(z,,z,), 
-~ 

the Coulomb repulsion 
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(2.7) 

(2.8). 
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U(iz,- z,l) = nwwJ n 2U'6(z1 - z2 ) 
ffiWLO 

and where the bipolaron wave function is normalized as follows 

~ 

j dz1 dz2 w~(z,z2) = 1, 

-~ 

(2.10) 

(2.11) 

To simplify the formulas we perform the following scaling z;.,... Az;, (i = 1,2) with 

>.-- --1~ -a' ffiWLO' 

which Sc.ales also _the wav:efunction Wo 

1 
Wo(>.z, >.z,) = >;X(Z" z,) ; 

such that x(z, z,) is normalized to unity. 
Finally ·we introduce 

A- Eo . 
- 1iwLoa'2 ' 

(2.12) 

(2.13) 

(2.14) 

which leads to the non-linear effective Schrodinger equation (see Appendix A) 

{
182 18;- } . 

-2 8zl - 28zi + U(z,, z,; x) x(z, z,) ~A x(z, z2 ) (2.15) 

with 

U(z"z,;x) = 
~ ~ 

../2 j dx,dx,dx; x'(x" x,)x'(x, x;) + ../2 j dx,dx; dx, x'(x, x,)x'(x;, x,) -
-~ -~ 

~ ~ 

2../2 J dx; [x'(z,x;) + x'(z,,x;)]- 2../2 J ax; [x'(x;,z,) + x'(x;,z,)] + 
-oo -oo 

~ 

2g6(z1 - z2 ) + 2../2 J dx 1dx;dx2 x'(x,x,)x'(x;, x,). (2.16) 

-oo 

• 

III. THE VARIATIONAL APPROACH 

By multiplying both sides of (2.15) with x(z,, z,) and after integration over z, 
and z2 the above integro~differential equation (2.15} can be rewritten as a variational 

problem. The ground state energy can then be obtained from the minimalization of 

the functional 

00 2 00 ' 2 

F [xl = !. j d d (ax(z" z,)) !. j d d (ax(z, z2)) 2 z, z, az, + 2 . z, z, az, + 
-oo -oo 

~ ~ 

2g J dz x2(~, z),-_ 2../2! a.:a.:;az, x'(z, z,)x'(z;;z,)-
-oo -oo 

00 00 

../2 j dz1dz2dz; x'(z" z2)x'(z, ;;) - V2J dz,dz;az, x'(z., z,)x'(z;, z,). (3.1) 

-oo -oo 

with respect to x(z"z,). . 
Gross22 showed that the analogous strong coupling 1D polaron problem could be 

solved exactly in the adiabatiC approximation (see also Ref .. 23). Therefore we can 
obtain exact results if a--+ oo. In this Case of the lD polaron the energy functional, 

in dimensionless units afid analogue to (3.1), is 

00 - 2 00 

F,[¢] = ~ j dz (8~~)) - ../2 jaz ¢4 (z). 
· -oo -oo 

(3.2) 

and the exact ground state wave function was found to be 

1 
¢(z) = 21/4 cosh .J2(z::: zo)' 

(3.3) 

with the exact binding ener~ Ef:cact = -1/3 in Units of hwLoci2. Noti<:e t?at this 

result corresponds to the one of Ref. 22 when we apply the scaling z .,... 2z and do 

not take into account the second term in Eq. (3.2) which equals 5/24 and shifts the 

zero-point energy. When a Gaussian trial wave function ljl = (2bj1r) 1i 4 exp( -bx2
) is 

chosen19 the energy is Efau6
, = -1/1r'witJ:t ihe variational parameter b = lj1r. 

To investigate the bipolaron energy it seems natural to use a superposition of 

t~o 1b polaroD. wavefunctions. Thus- the trial Wave function is constructe~ as a 

symmetrical ( e = 1) or antisymmetrical ( e = -1) combination of two 1 D polaron 

wave functions 
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xo(b, d; z, z,) = 

bN [ 1 
2 cosh b(z1 - z10) cosh b(z2 

+ < 
z,o) cosh b(z,- z,o) cosh b(z, - \] ' (3.4) 

with the normalization N = 11 ..j2(1 + < d' I sinh2 d) and d = b(z10 -z20 ) in which the 

Zio are the polaron positions. Here b is a variational parameter which is a measure 

of the inverse width.of the individual electron wave functions and dis a variational 

parameter which describes the separation or distance between the two polarons. 

Because of the translation invariance of the system all results will depend on the 

relative average distance between the polarons rather than on the single polaron 

positions z,o a.nd z,o. Inserting Eq. (3.4) into Eq. (3.1) and performing the scaling 

z, -+ z,Jb, we obtain the following bipolaron energy 

A(xo) = b'T- b(U1 - 9U2), (3.5) 

with the kinetic term 
~ . 

T = j dz,dz, (8xo(1, d; z, z2))' 

_

00 

8z1 
(3.6) 

the electron·phonon selfenergy 

~ 

u, = 4-./2 f dz,dz,az; xi(J,d;z,,z,)xi(J,d;z,,z;), (3.7) 

-~ 

and the Coulomb repulsion 

~ 

u, = 2 f dz x6(1,d;z,:).' (3.8) 

-~ 

Notice that the minimalization of Eq. (3.5) with respect to b becomes very simple 

and leads to the energy 

A( d)= 
(U1 - 9U,) 2 

4T 
(3.9) 

·with the variational parameter b = (U1 - 9U2)I2T and the physical condition U1 -

gU2 2: 0. 

For a symmetrical bipolaron wave function the bipolaron energy functional A(d) 
is shown in Fig. 1 as function of the relative distance d between the two electrons 
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for different values of g = U' f cl: the relative strength of the Coulomb repulsion 
versus the electron-phonon coupling. Notice that A(d) is an even function of d 

and therefore only the region d 2: 0 is shown. Furthermore, the physical region 

corresponds to q > 0 which implies9 = U' I oi > -./2. For completness we have also 
shown the curves for 9 < -./2 in Fig. 1. At large d, the bipolaron energy tends to 

the limit Amax = -213, which is twice the energy of a single polaron as it should be. 
In the absence of electron·eleCtron repulsion, i.e. U' = 0, the minimum is reached 

at d = 0 and the energy is A(O) = -813. In the latter case the wave function (3.4) 
takes the form 

(3.10) 
X - . . . 0

- cosh 2-./2(z1 - zo) cosh 2/2(z,- zo)' 
-12 

which indeed is the solution of Eq. (2.15) for U' = 0. In Fig. 2a the bipolaron 

energy is shown as a function of g an~ Fig. 2b depicts the corresponding separation 

d,9 between the two polarons. For 9 < 9, = 1.782 the minimum of the bipolaron 

energy is reached at a finite value of d. HoWever, for g >fie A( d) atains its minimum 

energy ford= oo which implies that the bipolaron state is unstable and two separate 
polarons are formed. This critical value 9c corresponds to TJ = 0.206. 

For the antisymmetrical bipolaron wave fu~ction ( < = -1) we have A( d) > 
Amax = -213 for any value of d and 9, which implies that the bipolaron state will . . 

decompose into two separate polarons .. I~ fact, even for. g = 0 it was found that 

A( d) obtains its maximum at d = 0 with A(O) = -416173-5 "" -0.56599, which is 
15% .larger than the energy of two separated polarons. This result seems to indicate 

the _instability of the 1D bipolaron excited state. Obviously, an !mproved variational 
wavefunction may lead to a different conclusion. 

To improve the above variational estimates it is convenient to _introduce the 
center·of-:mass coordinates 

Z=z1 +z2 

2. ' 

and the relative coordinates 

Z = ZI- Z2, 

P = P1 + p,, 

p=~ 
2 

(3.11) 

(3.12) 

We use the notation x(z,z2 ) = ljr(Z,z) and the symmetry lx(z,z,JI' = lx(z,,z,JI' 
of the wave function. The variational problem (3.1) then takes the following form 

oo· . . ~ ~ 2 

A(ljl) = ~ jdZdz (aljr~~,z)) + jdZdz (81j11~·z)) 
-~ . -oo 
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~ ~ 

4V2 jazdzdz''J12(Z,z)'J/ 2(Z + zf2,z') + 2g jaz'Ji'(Z,O). 
-~ 

(3.13) 

-~ 

It is well-known that in the asymptoticallimit of the strong coupling limit the adia­

batic approximation becomes exact, and therefore we consider the following product­

wave function Ansatz. 

'Ji(Z,z) = 4>(Z)4>(z). (3.14) 

Following Ref. 7 we take for the center-of-mass wave function 

·. rwci"l''4 
wd'Z

2 

4\(Z)= ,_ 2r. J exp(--4-), (3.15) 

which leads to the following functional 
. 00 - 2 - . 

A[4>)= ~+w j (~~) dz+2~[;~o~c. 
-oo . , 

(z; ::•)
2

) q,2 (z1) 4>2 (z•)] 
~ . 

; j dz1dz2 exp ( 

-~ 

(3.16) 

with w a variational parameter. The ground state bipolarOn energy Ebip (in units of 

nww0102 ) is then obtained by minimalizing the functional A[4>] with respect tow and 

q,. 
The bipolaron can· exist as a stable state when the binding energy )E,;.I is larger 

than twice the single polaron energy )E1 ). In the strong coupling limit )E~;.J~ "'"and 

IE1f- a'Z, and as a consequence a.12 can be factored out. The bipolaron form~tion is· 

then exclusively determined by the physical parameter~· It is found that a critical 

value q, exists below which a bipolaron state will be energetically more favorable 

than a state with two single polarons. 
Of course the condition for bipolaron formation will depend on the value of Et 

(Ei:act or Efo.u$") which we choose (see e.g. Ref. 7). The corresponding 1Jc will be 

denoted by 7J~:r:oct for E1 = Ei:&o.ct = -1/3 and 11~wro~ for Et = E:Ouu = -1/Tr. The 
'7~zoct is a lower bound to Tfc, due to the fact that the obtained bipolaron energy iS 

an upper bound to the exact energy. For .,;ppro~ is it neither an upper bound nor a 

lower bound. Both q, values are 5:ven in this paper. Normally, one should compair 

the bipolaron energy with twice the energy of the single polaron obtained within the 

same approximation. However, in this case the exact single polaron energy Ei,;act is 

available. Therefore, we can obtain with Ei~oct a lower bound to Tfc • 

8 

The dependence of the wave function on the relative coordinates is contained in 

4>( z) for which we choose: 

!) 4>(z) = N(1 + B)zl)exp(-v~zl), 

2) 4>(z) = N(l + B)z) + Cz2
) exp(- v~zi ), 

-. v2z2 
3). 4>(z) = N(l+ Cz2

) exp( -'""4 ), 
v2z2 

4) 4>(z) = N(l+ Cz2 + Dz4 )exp(--), ' . .. . ' '. . . . . 4 . 
' 2 2 

5) 4>(z) = N(1 + B)zl)exp(~~); 
... ' . ·• · .. ·' ' 4 ' .. ""·' 

J/:2 z2 
6) •4>(z) = N(1 +Biz!+ Cz2

) exp(~4),· '· · 

~--

(3.!7a) 

(3.17b) 

(3.17c) 

(3.l'id) 

(3.17eJ 

(3.17f) 

~~ere N. is the _normalization constant and, B? _ C, _I? and If _are ,l{~rifiii~~~l ~cir_~m_el~fs. 
Jnco~trast to the 20 and 3D cases, the. dire~t Co~lo~b repulsionin I Dis a 

conta~t pot~nti~l, whiclt implies th"at · fo~ the '10 bipol~~~n ground siate: a) th~ 
wave functidn </>( z) i; ~ot zer~ for z = o; and 1;) t\le fir~t d~rivative ()rq,(z) ca.n b~ 
disc~~tinuo~s at z ,;,; 0, Therefore,the c~nstantterm in th·~ polynomial part of 4>(z) 
is n~t ~egligible as.it ,;,~in 20 and ari (see Ref.,7). . . . 

I~ £_ig. 3 the bipolaron .. g~ou~dstate en~r-gj,_.inunfts Of 1i~Loa'2 , is PI~f.ted ·as a 

function of TJ_for ali the abov~ irial_.functio~s. Thes~ energy: ~alues-~re-:also given in 

Tablei{or a. selective numb.er of ~-~alues. We obser:.-e that: a). the tri~l f~nction 
(6) gives the best results (i.e. the lowest uppe_; bound), b) these resuit; are dose to 

the results of trial function (5), cj the term B)z) in the wavefunction __ turns out to 
be very important as can be seen by comparing the results from trial wave functions 

(3) and (4) which do not contain this linear term in z, with the result of trial wave 

function (5) and (6), and d) it is surprising that the exponential decreasing functions 

(1) and (2) give smaller binding energies than. th~ best Gaussian function (6). The 

opposite is true for the single polarqn case19 •. The two dashed horizont~l ~ines in ~ig. 

3 correspond to twice the single polaron el?-ergy. calculated_ using the asymptotical 

exact wavefunction (3.3) and a .Gaus~ian xespectiyely. The cr~ssings. of the ground 

state bipolaron energy curves ·with tho~~ straight Jines detern:t~ne t.he critical7]c-value 

at which bipolaron formation occurs. These values of~' are listed in Table II for the 

different variational wavefunctions. Thet_ri~l function (6) gives the lowest bipolaron 
ground state energy and ~~nseque~tly. the largest ~c valu"e. B~Cause the fJ~~ace are 

lower bounds to 1]c, is· the largest 1J~zact _obtained with trial function (6) the best lower . . 

bound for 1Jc within the.variational approach. 
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The critical (minimal) value of the electron-phonon coupling constant a~ is de­

termined by the condition E';'(a;, U') = 2E''1(a;) that the bipolaron ground state 

energy equals the ground state energy of two independent free polarons. Using 

the Feynman path-integral technique this value was found to be a, = 6.8 for the 

3D case6 • It was proven that ·within this path-integral approach the polaron24•2! and 

bipolaron6 ground state energies satisfy scaling relations such that the corresponding 

energies in nD can be obtained from the one in 30. Applying these scaling relations 

one obtains16 0: = 2.3 in !D. 
Earlier works5- 7 already indicated an enlargemeDt of the stability region for hi po­

laron formation in low-dimensional systems as compared to 3D systems. From the 

values for q;""'"', q~•" and a; (see Fig. 3 and T~ille III) we find that the bipolaron 

stability region ~seven more ~n!?~rged !n the !D case, in compa.ris_on ";•:ith the stability 
region in 2D or 3D. 

We ;;_.ill nowcoricentr ... te on the trial function (6), Eq. (3.171); which gives the 

lowest bipolaron ~ound state energy of all trial wavefunctions.' Tlie. results fo~ the 

energy could be fitted ,,; the curve E.= -1.07+ 0.73i'q- 0.273q2 , within 1.5% over 

the range q e (0,0.9]. The J¢(z)J2 of the resulting w~ve.function isshown in Fig. 4a 

for different values of~. w~ obser~e the increased sepa~aiion of.the iwo polarOn.s with 
increasing q, i.e. increasing Coulo~b iepul~i~~- Notice also that:. 1) with decre~ing 
value of q the electrons are on average much closer to each. other, 2) J¢(z = 0)[2 is 

non·zero, and 3) 8¢(z)f8z is discontinuous at z = 0. This is 'different in 2D and 3D 

where J~(z = O)J' =·0 and 8¢(z)f8z a~e continuous at i = 0. In Fig. 4b we plot this 

J¢(z)J2 for q = o:s together with the corresponding function for the single polaron. 

The rms separation (in units of v'nfmwwa") between the electrons is defi1ied 

by 

R = [(z2
)]

1i 2
, (3.18) 

where the averaging is performed over the trial wavefunctions of Eqs. (3.17). The 

evolution of R as a function of q is shown in Fig. 5 for the different trial functions. 

Notice that R increases with increasing repulsion, q, as expected. For the "best" 

trial wavefunctions this increase is a smooth function of q. For the trial function (6), 

Eq. (3.171), we found R(q = 0) = 2.53 and R(q = qi'"" = 0.764) = 3.35. 

IV. THE FOURIER SERIES APPROACH 

The power of the variational approach lies in the fact that the method provides 

·an upper bound to the bipolaron binding energy. -This gives a criterium to judge 
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which is the best bipolaron wavefunction. On the other hand, it is less clear how 

to improve in a systematic way on a given variational wavefunction. In the vari­

ational approximation of Sec. III a1so an exponential form for the center-of-mass 

wavefunction (3.15) was examined but it was found that this does not improve our 

results. Another way is to include more terms in the series expansi~n .. But, the fact 

that adding a term in the polynomial of Eq. {3.17e) does not lower substantially the 

bipolaron energy (less than 0.4%) may be an indication that the resulting bipolaron 

wavefunction, Eq. (3.17£), is close to the exact result. Because_ this is not a guarante~ 
that this is also the case, we will present below a different appr_oach which inherently 

.allows for systematically i~proving the_bip~laron binding energy. F1:1rt~ermore, this 

method allows to calculate besides the ground state, a1so excited states. __ ~- s~co~d 
adyantage will be that we do_ not have to make the product ansatz approxirl)ation 
(3.14). 

Using the symmetry of the wave function Jx(z,, z,)J2 = Jx(z,, z1 W. which allows 

as well the symmetric as the antisymmetric solution, we obtain for ~he non~-1inear 
effective Schrodinger equation (2.15) 

{
182 182

• } 
-2 8zi - 2 az~ + U(z, z,; X) x(z, z,) = Ax(z, z2 ) ( 4.1) 

with 

~ 

U(z., z,; x) = 4../2 jax,dx,dx;x'(x., x2 )x2(x., x;) - .. 
-~ 

~ 

4-l2jax; [x'(z,x;) + x'(z,,x;l] + 2g6(z,- z,). {4.2) 
-~ 

Next we interpret the potential (4.2) as given and solve (4.1) numerically. In 

order to do so we put our system in a square box with dimension (-L, L] and infinite 

h)gh wells. The bipol~ron wav_efu_~ction c~n now be v,_rritten as a _linear combi~a:tion 
of the basisfunctions of this box 

N,M ( . ( 
( ) ~ .n1l'z1 +L).m11'z2 +L) 

XZt,Z2=L-anmSin 
2
£ SID_ 

2
L 

n,m 
(4.3) 

Multiply both sides of equation (4.1) with x(z., z2) and integrate over z1 and z
2

• The 

resulting equation is an eigenvalue problem which provides us the binding energy and 

the parameters anm for a given potential U. Because this potential {r depends on the 

wavefunction X in a non-linear way we consequently solve the probl_em iteratively ~y 

II 



inserting the found wavefunction into {; until convergence is obtained. In principle 
this is an exact procedure when N = A1 = oo. In practice, because of limite computer 
memory, we have to limit ourselves to a finite number of terms in Eq. {4.3), typically 
N = M = 15. By systematically increasing the number of terms we will find better 
upper bounds to the bipolaron energy. 

The resulting ~~·~" value for N = M = 15 is given in Table II. Using the 
symmetry of the ground state in the program we had the possibility to calculate the 
ground state bipolaron energies EFS for some discrete values of~ with N = M = 30. 
They are tabulated in Table I. 

Notice that this method gives higher ground state energies, and thus lower binding 
energies, as conipared to the best variational solution. Therefore we investigate the 
dependence of t~e bipol&!"cn. energy en the number of Fourier terms !n our expansion 
( 4.3). The .result is shown in Fig. 6 for ~ = 0.5. We found that the nu.merical 
data (solid dots) could be well presented by the curve {solid'curve in Fig. 6) E"• = 
Eo - B Jn with Eo = -0.783 and B == -0.965 for ~ = 0;5. This is a very slowly 
converging series with n which explains why we foun9. less accurate binding energies 
;,. compared to the variational approach. Therefore we used the fit E,;, = Eo - B fn 
in Order. to obtain the n = N = M -+ 6o results· of the Fourier expansion which are 
also given iil Table I. These ground state energies are ~lso indicated in Fig. 3 by 
stars which we were able to .fit to the polynomial: E = -1.176 + 1.0621)- 0.551~2 

with an accuracy of 4% in the region ~ E [0, 0.9]. We see that these energies E?s 
are lower than the variational results and go asymptotically to the energy of two 
single polarons. The prove Of this statement is explained in the next section. The 
corresponding fJ!zoct is in this case 1.0.- T~erefore, the ground state is ·alWays stable 

and will exist. 
In Fig. 7 the wavefunction x(z, z2) together with its contourplot are shown for 

~ = 0.5. and N = M = 15. From this figure it is cl~ar that the two electrons avoid 
each other and that they have the highest probability to be at a certain distance 
from ~ach other .. In order to make a direct comparison between the .best variational 
wavefunction, Eq. (3.17f), and the one obtained with the Fourier series, .Eq. (4.3), 
we show in Fig. 8 for ~ = 0.5 the respective electron probabilities as function of: (a) 
the relative position between the two electrons . 

00 

4>2(z) = j dZ x2(z, Z); (4.4) 

-oo 
and (b) the center-of-mass coordinate of the two electron system. The latter is 
defined similar as Eq. (4.4) but now we integrate over the relative coordinate z. 
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Notice that: 1) in the variational approach the electron wavefunction for TJ = 0.5 
falls off faster as compared to the Fourier series approach, and this both as a function 
of the relative coordinate and as function of the center·of·mass coordinat_e; 2) the 
electrons are on the average further from each other in the Fourier series method; 
and 3) the translational motions are very close to each other. 

The rms separation R (3.18) between the two electrons is also shown in Fig. 5. 
for the Fourier series approach (stars). Notice that for~ < 0.35 the Fourier series 
approach predicts that the electrons are less far separated as compared to the best 
variational approach. For TJ > 0.35 the ?PPOSite is true and the difference between 
the two approaches increases·. with increasing '1 {see also Fig. 8). 

Within the strong coupling limit the effective bipolaron mass is given by {see Ref. 
21) 

\ " :· ;~.; 

. m*· .. ·. tn .. /oo . . . [ {). ; .·· l [ {) 2( ')] -;;;- ,;, 2 + 8v :a« dz, dz2d~~ Bz, X( z, z:) oz, X z, Z2 : (4.5) 
-oo 

In Fig. ~ the results of the electron-phonon· correction to the bipolaron mass 
tlm* fm ,;,.m~ fm- 2 is shown for the b;st variationaJ wavefunction (dashed curve) 
and for the Fo11rier series approach (points)with N = M = 15 and ~ = 0.5 .. We 
observ~ that in the limit ~f large 1] the_ variaiio~al approa~h repro?u~es almost. the 
correct asymptotical value of two separated lD polarons (dashed line). From this 
figure we also can conclude that -the Fourier series approa~ is not ac~urate ~nough 
to. obtain good estimates for the .e~~rgy and the ~ffective ~~s: ·.As J"!len~~qne.d ea~~ 
lier, for the energy we can_extrapolate_~:n accurate result, bu~ fo~_th.~ wave function 
we. can't do this. Therefore the effective mass which is calculated. with this wave 
function is nqt so accurate within the Fourier s_eri~s approach." 

Another important quantity of interest is the effective bipolaron potential {4.2) 
which we consider without the constant term and- the O·function· term. This 8-
f~nction ter111- only would cause a disc~ntil"l:uous value .at ~ ~ 0 a:nd the cons:t~nt 
term only determines the zero·point energy level._ The effectiye bip~laron potential 
is shown in Fig. 10 as function qf the relatiye pos~tion z ::== __ z1 - z2 -~:,£ the two 
electrons for the best varia~i~nal functi~n {dashed c~rve) al!df0r the Fourier seri~s 
approach (solid curve). Notice that: 1) the potential becomes zero for large lzl 
which is a consequence of the fact tl~at _the effect of. the interaction between the 
electron.s vanishes for large distances, 2) the e;ffective potential within the va.riatic_:mal 
approach is more localized and deeper _than the one of the Fourier series approach, 
3) the derivative of the considered potential is discontinuous at z = 0 which is a 
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consequence of the 8-function repulsion at z = 0, and 4) the potential has two local 
minima which correspond to the average·separation between the two electrons. 

In the numerical scheme of the Fourier series approach the energy converges 
much faster than the wave function. Because of this and the limitations in computer 
time the wave function did not converge yet in the numerical calculations with N = 
M = 30. Therefore, we used in the calculations of the rms separation, the effective 
mass and the effective potential (in which calculations we use the wave function) the 

Fourier series approach with N = M = 15. 

V. THE EXCITED STATES 

With the Fourier series approach we are. also able to investigate the excited 
states of the ID bipolaron, namely: the relaxed excited states (RES) which aro self­
consistent solutions to the nOn-linear Sc~rOdinger equation and tl~e excite~ __ states in 
an effective potential well generated by one of the. ~elf-~onsistent solutions. In what 
follows we use the quantum number n ~ 1 to enumerate the 'self-consistent soluti~ns 
and n' ?: 1 to enumerate the .ex~ited stateS iO an effective potential wel1 gene~ated 
by one of the self-consistent solutions. Therefofe, en,n' will be the energy of the'n'-th 
state in the effective potential generated by the n-th self-consistent solution. 

In Table IV the energies <n,n' are listed for n = I·H and n' = I·H for a hipolaron 
in a box with length 2£ = 7. Those energies are calculated with N = M = 15. The 
diagonal elements <n,n in Table IV are the energies of the groundstatc (n = I) and 
of the first, second and third RES states (n = 2,3,4). They correspond to the 
self-consistent solutions for which the polarization is adapted to the final elcct;·onic 
configuration. Indeed, in the case of a RES with quantum number n the effoctive 
potential is calculated every iteration with the eigen-function corresponding to the 

nth eigenvalue obtained in the iteration before. 
If we consider the energies of the excited states in an effective potential well 

generated by e.g. the first RES, namely t2.n'' a1ld confined to a box with le-ngth 
2L = 7, we see from Table IV that the state with n' < n = 2, namely n = 2 
and n' = I, has a ~nsiderably lower energy than the energy·"'·' of the RES. This 
phenomenon is even more clear for n = 3 (see Table IV). We have then two states 
with lower energies as the RES. The reason for this behaviour are the symmetry 
properties of those states. The first RES, for instance, has an antisy"mmetric wave 
function which is a self-consistent solution to the SchrOdinger equation. In this case 
the effective potential is generated by the RES itself. In the latter potential we can 
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look for excited states. The first one (n = n' = 2) corresponds then to the RES. It 
is indeed antisymmetric. The ground state in this potential ( n = 2 and n' = 1) is 
however symmetric and has therefore a lower energy. Even more, from the ground 
state energy E.,, = -0.332 of the lD polaron26 in a box with length 2£ = 7, and 
from the value <2,1 = -0.679 (see Table IV), we can conclude that this state is stable 
and will exist for certain values of the box length 2£ and~ (see also later). Higher 
excited states have, of course, larger energies (see Table IV). 

For the energies of the excited states as function of the box length 2£ we have 
practically the same behaviour as in the case of the ID-polaron in·a box26 • Indeed, 
ihe e~~~gieS. ofthe_ e~~ited states en,~/ with n1 :5 n all converge t~ the energy en,n of 
the RES wh;n W~ increase 'the boX l~n-gth 2L. Neveftheless, there is -a~ import~~i 
difFe~ence: iA the limit of an infinitely large bOX. we found that -the excited· st?~teS 
·~f~··g~~"UPed 'bkia~·~~ o(sy~ffieir'Y teasO'~i"~ Therefon~:'"\Ve·obt~i~'e.g·: To'i~· the ~statbS 
i~ th~ pbt~niial well g~rierated by th~ fi~st RES'gro'ups ~xistinf~r tw;, energy le~els 
(s~ Fiil. ilr Apparently .. the <n,n' consist of groups- of n +I energy levels if. n = 3, 
and ~f ,{energy levels if n = 2: In Fig. 12 we plot the energfspectr<mi forn :53 
and n' :5 n +I (n = 3) or n' :5 n (n = I, 2). For n = 3 if. gives the first part of 
the spe2trum of the' hi polaron in the.' potential gener~ted by the .second RES, The 

·energies £3:,n' for n' :54 as function of the bOx length 2L show US that iit-the limit of 
an infinitely Iarge b~x the energy levels indeed combine to groups· as discuSSed abOVe 
and that in this limit all these energies e3,n; (n' :54) tend to the energy Enes2 = <3,3 

of the second RES. This energy level is then 4 fold degenerated. This degeneracy 
.of iheRES energy.:afl~rge box lengtli iS: caused by the possible symmetry of the 
wave functions in that case. in" Fig. 13 :we plot those waVe functions for ti = -3, 
n' :5 4 and 2£ = 19. They correspond to the energies <3,1 (a), <3,2 (b); <3.3 (c) 
and i 3 ,< (d). We see the four symmetries obtained by combinating the symmetry 
relations x(z, z2 ) = ±x(z2 , z,) and x(z,, z,) = ±x( -z" -z,) which are allowed by 
the integro-differential equation (2.15) .. 

For the excited states in the potential generated by the first RES the symmetry 
re}citions aie restricted to tbt;: twO COmbinations: :\(Zit z2) = X(Z2 1 zl) it.nd X(Zh Z2) = 
x(-z1; -z,), and x(z, z2 ) =·-x(z,,z,) and x(z, z2 ) = -x( -zr, -z,). This explains 
the. grouping seen in Fig. U and 12. 

With ~ = 0.2 the numerical results for the energies of the ground state and 
the first three RES states in the limit of an infi~itely large box and an infinite 
number of terms in the Fourier series (N =··M --t oo) are respectively: £1,1 = 
-0.986, t2,2 = -0.667, <3,3 = -0.442 and <<,< = -0.416. The <n,n with n even 
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correspond to an antisymmetrical wave function. In this case th~ 6-function does not 

contribute because the wave function is zero at Zt = z2. However, for the RES states 

with odd n the 6-function will play an important role. To understand better the 

structure of the bipolaron RES states we added in Appendix B a discussion about 

the r~Iation between the ID bipolaron and the single ID polaron characteristics, 

especially concerni_ng. the energies a~d the symmetr~es of the corresponding wave 

functionS. 
In the same limits as for the above RES states the energies of the ground state, 

the first RES and the ground state in the potential of the first RES are shown in Fig. 

14 as a function of TJ· The 1D bipolaron g~ound st~te is always stable and will exist. ... . . . . . .· ;, -

The first RES however has a constant energy ERRS! = -0.66j'which corresponds to 

twice the_ single polaron energy. Because o(this energy_ value for the first RES Vfe see 

that the energy of the ground. st* (within the same limits) should b~ io.;er _than 

th\s v,j~~ .:9-?67~ 1 T~ing in\o ac~o~nt. th~t the_ grou~d · ~t~t~. ;~~;gy incr~ases ~ith 
increaslng 'l.<tnd th~t the nu;,ericOJly. ~bt~in.ed ~pperboun-d (;.ithin th~~~irielimits 
as above) ten<\sto the same val~e foq = l,O;we"can conclude that inthe~iimit of 
an infini~e large b~x '1~:ror:t =-l.o. _. . . . ;. . -· -~ ·. 

In .the potential generated by this fir~t RES the ground state has a l~w'er energy 

e2,1 which goes .;,ymptotically to ERESI when '1 _;! (i-nfinitely separated ele~trons). 
Therefore, this state will be stable except in the case of an infinite high 6-function 

{ '1 -> !). Nevertheless, because the energy. of the flrst RES equals twice the single 

pola;:on energy, the probability of finding ,two electrons in this first RES will be very ' . ' -. . . -... _., .- . - . . - . . 
small. To obtain the ground state in the potential generated by the first RES the 

electrons need tobe situated firstly i~-th~ fi;st RES itseii fr~m where this grou~d 
state can. be reached. Th~refore the probability t~ obtain this ground state in the 

potential generated by the first RES will also be very small despite of being stable. 

VI. CONCLUSIONS 

The lD hi polaron ground· state has been treated, in the limit Of strong ~lectron­

phonon coupling. We obtairied the critical -..:alue a~ of the_ effective electron-phonon 

coupling constant and lower bounds for the critical r~_tio 1Jc of the dielec_tric const~nts 

which determine the phase diagram for bipqlaron formation at zero temperature. 

From those values we conclude that the stability region for bipolaron foqnation is 

much larger in !D than in 2D and 3D. The most important characteristics of the 1 D 

bipolaron, like the root mean squared distance between the electrons, the bipolaron 
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mass and the effective potential were calc~lated. 

Within the Fourier series approach it is straigthforward to obtain the possible 

excited states of the bipolaron. We found that the ground state will be bound and 

the first RES has an energy which equals the energy of two single polarons. The 

ground state in the potential generated by the first RES is however stable. Because 

of symmetry reasons the higher excited states combine to groups with the same 

energy when we consider the limit of an infinitely large box. 
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APPENDIX A 

' The integra-differential· equation {2.15) is central to the present paper and is 

obtained from {2.7). In the present paper we will give the intermediate steps to 

go from Eq. {2.8) to Eq. {2.15). When we consider only the optical phonons and 

. substitute the expression for Vk into Eq. {2.8) we obtain 

4 L IV. I' IP•I' = 2oili V21iww joo dkiP•I'· 
k liwk , 1r ??Z 

. -oo 

(A!) 

Next we substitute Pk, as given by Eq. (2.9), in the integral, which results into 

00 00 J dkiP•I' = ~ J dx,dx,dx; dx; >JI~(x;, x,)>JI~(x;, x;) 
-oo -oo 

00 • 

x ·j dk_ ( eik.(=~-:r~) + eik(:r~-=2l + eik(=-2-=~> + ~ik(~2 -=2l] 
-oo 
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00 

= 21r jdx1 dx2dx~iJ!~(x,x2 )iJ!~(x,x~). (A2) 

-oo 

where we used also the symmetry iJ15(x, x2 ) = w5(x2 , x,). For the other term in Eq. 

(2.8} we have 

E IV. I' [P> (•'"• + i•••) + P• (•-'"• + .-'"•)] 
• liw• 

00 

2a'liww 1 j dk [p• (•'.,, + ~i•.,)· +P• (•-'"• + .-'"•)] 
../2mli.Ww 21r • 

-00: 
_ .. _._ cio'' 

= a' .,f2hww ·1 dk(pk(i"• + e'•") + Pk (e_,.,, +_ .-lh')]: 
2" m. · . 

-oo 

As an exampl~ we caic~J~te one integral of this expre!)siOn~ . 

00 00 00 

fak P>•' .. = ~/ dx,dx, wMx,,:",) J dk [i•!•-•>l + e1•(•-••l] . 
-oo -oo -oo 

00 

=" J dx,dx, iJI~(x,x2)[6(z- x,) + 6(z- x,)] 
-oo 

00 00 

=" J dx, iJ!~(z,x2 ) +" J dx, iJI~(x,z) .. 
-oo -oo 

· (A3J 

(A4) 

The other integrals in Eq. (A3) are calculated in a similar way. Substitute these 

results in Eq. (2.7), perform the scaling (2.12) and we obtain the integro·differential 

equation (2.15). 

APPENDIXB 

To better understand the structure. of the hi polaron RES let us Consider an un­

physiCal situation when g = 0 tha.t is when the delta-function repulsion potential 

in Eq. (2.16) is not taken into account. Two particles interacting with the com­

mon phonon field tend to combine together. But the effective potential becomes 

separable and a bipolaron wave function can be represe:rited as a symmetrized or ·an 

antisymmetrized product of 'one-particle' wave fuilcti?ns: 

x(z, z,) = N[x,(z,) x,(z,) +"' x,(z,) x,(z,)], (B1) 

lll 

where 7 = 1 (-1) for symmetrical (antisymmetrical) states and the normalization 
constant in Eq. (B1) is defined by the relation: 

1 = 2N
2 [1+7 Vdzx,(z)x,(z))']. (B2) 

If both particles are in the same state, a bipolaron wave functiop is of the form;: 

x(~,·, z;) ,;, x(z,) x(z,). (B3) 

Note that such state is a syrilrr.u~td~al ODe under· a. Permutat"ion of particles z1 · ~ z2• 

Tn~R the effective pot.enti~i oi E·q. (2.16) takeS-the form: 
·i' .... 

ii(z,z2;x) '= U(z,) + U(z2 ).·•' ·· •., · 

-· . . . _L_.:( . ' ::.,- _.,. 

0(z) = 2v'2 Ja•x'(~)- ~v'2~'(z),. 
. . -L 

and--the equation for the Orie-particle wave ftillctions is as follows: 

1 - . A 
-2 x"(z) + U(z) x(z) = 2 x(z). 

. -~" ·• 

::~ 

:!'.. ,-·; ;j 

' 
c . (J34) 

(B5) 

If we perform a scaling z1(2) -+ z1(2)/2 and change the wave functions x(z/2) = 
v'2<fo(z) to preserve the normalization condition we obtain from Eq. (B5) 

2L 

- <P 
2 
z - 2v'2¢3 (z) + ¢(z)J2 dz<P'(i:),;, g<P(z). "() j A (B6) 

-2L 

The latter equation is nothing more than an analogous equation for a single polaron 

in a box of a double length ( -2L, 2L) so we can exploit the solutions found in Ref. 26 
with A/8 playing the role of a polaron energy <n, where n, is a number of a subsequent 

RES. The corresponding wave function of the RES (the so called cnoidal wave) has 

n1 equidistant peaks, located at the points z = L(2m-n1 -1)/n1 , m;, 1,2, ... ,n1• 

It is symmetrical under reflections (z H-z) for odd 11:1 and antisymmetrical for n1 
being even. Thus, the resulting bipolaron wave function constructed from the one­

particle RES wave functions have n~ peaks some of which are positive and others 
are negative. In the limit of an infinite large box L -. oo we've found for negative 

energies of a single polaron in a box the expression <n, = -1/ ( 3ni) from which follow 
results for the bipolaron energies 
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8 - ---,, An1,n1 - 3n
1 

~1 = 1, 2, ... {87) 

When the delta potential repulsion is switched on it contributes to the energy with 

a positive term so these levels will take higher values. 

In particular, the bipolaron ground state (n1 = 1) wave function at 9 = 0 has one 

peak at the point z1 = z2 = 0 and the ground state energy is A1,1 = -8/3 "' -2.667. 
Because of the repulsion it is split into two peaks at_ a short distance and symmetrical 

to the line z1 = z2 as is shown in Fig. 7. The groUnd s_tate energy becomes equal to 

E1,~ shown in Fig. 3. 

. The symmetrical combination of the one· polaron first RES { n, = 2) has two 

p~sitive peaks locat~d ~t the pohit~ z;· = z2 ~ ±Lj2 an.d tw~ negativep~~ks iqcat~d 
at the points z, = -z2 =. ±L/2: With th~ repul~ion tw~ peaks l~~~~~d~~- th~ 
line z, = z1 should split into 4 so that the total number of peaks wiii be equal to 

6. The energy of the state will be larger than it is at 9 = 0 (that is, larger than 
. . . . . ,~ 

A,,;= -2/3 ~ -0.667), so this state is unstable. · 
Remember that we deal for the moment with the bipolaron RES states, whose 

wave fun~tions are con~tructed _as (syfi.lmetrical) prod_ucts <?f ~he sa~~- on~ )?article 

RES wave functions. Inserting a general bipolaron wave function of Eq. (81) into 

Eq. (4.1), {4.2) we arrive at the equations: 

X>(z,) Dx,(z,) + x,(z,) Dx,(z,) + 

'"f [x,(z,) Dx,(z,) + x,(z,) Dx,(z,)] = 0, (88) 

where the operator D is defi_~e~ as follows: 

D ( ) . 1 "( ) Uoo- A ( ) Xi z = -2Xi z + 2 Xi z -

4J2N' [xi(z)+xl(z)+2n,(z)x,(z)ldz'x,(z')x,(z')l x;(z), (89) 

and the asymp~otical value Uoo of the effective potential (4.2) takes the form 

•Uoo = 4J2N
4 
{ldz [xi{z) + xl(z)]

2 
+ 41dz xi(z) xl(z) udz x 1(z) X>(z)) 

2 

+ 

L L } 
4'"1 ldz Xl(z) X,(z) [xi(z) + xl(z)) ldz X,(z) X,(z) : (810) 
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Solutions to Eq. {89) can be constructed with eigenvectors of the operator D: 

Dx;(z) = C, x;(z). (811) 

Insetting into Eq. {89) we obtain that 

c, + c, = 0. (812) 

The important case is when the wave functions Xh x2 have different symmetries 
under reflections~ Then the interception integral 

L . 

jazx,(z) x,(z) = 0 
-L 

and fo~mui~ (B2)~ (B9), (BlO} are '~im~l~fied~~:·Th~- s-am~ ()CC;~s iri th~ H~iiof an 
~~fini-te _large b~~:_._Wh~~- x~,,- X~- ,ha;e ~ealq; ·i,n-_di_ff~~~~·t_ ·;~~~~s~-- w~i~h ~t:~~ ~tc?u~Se, 
i~finitely. separated from ~ach ~t~~r, . . . - .. '"" . . .. ·' .. · .. 

As an example we suppOSJ'}hat x1 (z) is a symmetrical fu_nctioll, in { ~nil x2(z) is 
an ~ntisym~~tric-al f~n~tiO~~-·Suppose also that b~i-~g,~quared:_th~se_ f~~c-ti~~s yti_ll 

coincide in the limit of the infinitely large box. Then ;e have N = 1 f v'2 and obtain 
the foiiowing equations from Eq. {89), (810): 

1 .1' • (A ) -2 ,.,(z) + U(z) X,(z) = 2 + C, x 1(z), 

-~ x~(z) + U(z) x,(z) = ( 1-c,) x,(z), 

L 

U(z) = 2J2 Jazxf(z) -4hxi(z). (813) 
-L 

Performing the same scaling as in Eq. (85) we conclude that we can choose as x
2

, 

for example, the first RES of a single polaron, and as x1 -the excited polaron state 

which is the ground state in the potential generated by X2· Indeed these functions 

have the supposed symmetries under reflections and peaks at the points z = ±L/2 
which are infinitely separated in the limit L _, oo. Thus we obtain from Eq. (813): 

:i + c, - ,(1) 
8 4- 2,1' 

A c, (I) 
8-4 = f2,2! (814) 

where e~1) n' is the single polaron energy in a state with the mentioned quantum ,, ' 
numbers first of which is related to a RES and the second - to an excited state in 
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the potential of that RES. From Eq. (B!2) and (BI4) we obtain the expression for 
the energy of this bipolaron state in the limit of a large box: 

_ ( (I) (1)) __ 2 A- 4 <2,1 + <2,, - 3· (BI5) 

The resulting bipolaron wave functions have two peaks (a positive and a negative) 
at the points z2 = z1 = ±L/2 and z, = -z1 = ±L/2 for the symmetrical and 
antis)'mmetrical states, respectively. Two possible peaks similar to that of the state 
constructed earlier as a combination of RES states only are cancelled. Note that we 
constructed a bipolaron RES from a single polaron RES and the ground state in the 
potential generated by this RES. With the repulsion the peaks of the symmetrical 
state will be splitted and its energy takes a higher value. This state corresponds to 
fa,

3 
(s~ Fig~-13).: The antfSYinrri~t~ic~i ~tate iS n·ot i~fihenced· by" th~ deita~fUtictiOU 

. •• ~ •.. :· . . . . . ,.'1".: \., . . .. . . _. - . ., ' --. " - - _, repulsion' so its wave function- aild' the en~rgy is the same· as·_was descriJ?ed;-- It 
corresponds to f 2,2 and is exactly the same as we~ Obtained nurrieflCallY: -

. There are other bipolaiori RES states, but their:eriergies are too high and there-
fore We d.o. not COnsider thenl here. 
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TABLE I. The numerically calculated hi polaron energies, in units of liwLocl2, for dif­
ferent values ofq. We give the results E(n) for the different trial functions (see Eq. (3.17)) 
and for the Fourier series approach EFS (N = M = 30), E'f's (N =M-oo). 

q E(l) E(2) E(3) E(4) E(5) £(6) Eps E?s 
0.0 -1.008 -1.070 -0.935 -0.943 -1.067 -1.071 -1.071 -1.133 
0.1 -0.938 -1.003 -0.852 -0.866 -1.002 -1.005 -1.001 -1.060 
0.2 -0.868 -0.937 -0.777 -0.794 -0.938 -0.942 -0.932 -0.986 
0.3 -0.801 -0.873 -0.713 -0.728 -0.876 -0.880 -0.865 -0.913 
0.4 -0.738 -0.814 -0.665 -0.677 -0.820 -0.823 -0.805 -0.8•15 
0.5 -0.681 .-0.760 -0.641 -0.646 -0.769 -0.771 -0.751 -0.783 
0.6 -0.631 -0.712 -0.633 -0.636 -0.725 -0.726 -0.705 -0.727 
0.7 -0.587 -0.670 -0.627 -0.630 -0.688 -0.688 -0.67•1 -0.688 

-0.8 -0.550 -0.635 -0.622 -0.62-1 -0.656 -0.656 -0.656 -0.669 
0.9 -0.518 -0.520 -0.613 -0.619 -0.610 -0.620 -0.6-18 -0.667 

•'--• 

TABLE II. The critical '7c-valUes are given for all trial wavefunctions and for the ~ourier 
series expansion (FS) with N = M = 30 and the extrapolated result with N = M -.. oo. 

Trial function opproz 
'I< TJ~zocl 

I) 0.587 0 .. 527 
2) 0.796 0.710 
3) 0.551 0.393 
4) 0.595 0.424 

5)' 0.874 0.764 
6) 0.874 0.764 

FS (N=M=15) ----· 0.672 
FS(N=M-oo) --- 1.000 

TABLE III. The critical values o-~, TJ~pproz and TJ~:coct are given for 1D, 20 and 3D. In 
the case of lD we consider the TJc as obtained: 1) with the best variational wavefunction 
and 2) the Fourier series approach lFS). 

o' 
' 

TJ~'fl1'TO:t' TJ~:t'OCI 

3D 6.8 0.131 0.119 
20 2.9 0.158 0.136 

!D (var) 2.3 0.874 0.764 
!D (FS) 2.3 - 0.672 

lD (FS00
) 2.3 - 1.000 
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TABLE IV. The energy levels of the first four states (n' = 1+4) in potentials generated 

by the four first RES states (n_ = 1 -;- 4) for the 1 D bipolaron in a box of the size 2L = 7. 

The diagonal elements are the energies <:r.,n of the corresponding RES states. 

n \ n' 1 2 3 4 

1 -0.882 -0.324 0.294 0.502 

2 -0,679 -0.646 0.231 0.369 

3 -0.580 -0.405 -0.172 -0.082 

4 -0.507 -0.343 -0.164 -0.093" 

0 I I I -,-I I I I I I I I I I I g=1.782 I I I !. I I I I I~ 

~1 
t----:-:.._ 
.g=1.0 

1-
<( 

g=0.5 

t-
-2 

~ 
g=0.1 
--
-
g=O 

-3 I·, I I I I I I I I I I I I I I I I I I I I lid 

0 1 2 "3 4 
FIG. 1. Bipola.ron energy functional A(d) vs. the relative distance d between the 

electrons for the symmetrical trial wave function, Eq. (3.4) with t = 1, for different values 

of the direct Coulomb repulsion g = U'Jcl. The dashed curve corresponds to the lim~t_ing 

case g = V2 which divides the physical (g < ¥2) and the unphysical region (g > V2J. 
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FIG. 3. The hi polaron energy is plotted vs. 11 for tbe six trial functions and for the solu·-: 

tion of the integro·differential equation using the Fourier serie approach and extrapolating· 

then- oo limit (stars). The horizontal lines give the energy of two separate polarons 

E = 2Et Where: 1) E 1 is calculated \\.'ithin the Gaussian approach, and 2) Et is th~ <~xact 

result. The crossings of the curves with the straight lines determine the 1Jc values. 

FIG. 4. For the best trial function 6 (see Eq. ( 3.1 if)) we show: (a) tlw electron dl:'usity 

within the bipolaron j¢(z)j2 as function of the relative separation between the two electrons 

for several values of fJ, and (b) for fJ = 0.6 this function is shown together with the electron 

density in the case of a single polaron . 
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trial functions and for the wave function obtained by the Fourier series approach {stars). 
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FIG. 6. The convergence of the numerical results for the ground state energy within 

the Fourier series approach is shown for fJ = 0.5 as function of N = M = n, the number of 

Fourier series componeitts for each electron. The solid curve is given by Ebip =Eo- Bfn 

where Eo and B are determined by the n = 20 and n = 30 results. 
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tion. 
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