


L. INTRODUCTION

Two electrons in a polar or ionic crystal will interact with each other through:
1) the direct repulsive Coulomb interaction, and 2) an attractive interaction caused
by the polarization of the surrounding lattice. If the Coulomb interaction is suffi-
ciently screened by the lattice and if the polaron interaction is sufficiently strong a
bound state Between the two electrons and the surrounding common cloud of virtual
phonons may be formed. Such a composite quasi-particle is referred to as a bipolaron.
One dlstmgmshes the so-called small and large bipolarons, dependmg on whether the
correspondmg smgle polarons are in a localized state or are mobile, although with a
large effective mass.

Earlier papers of Vinetskii!, Mukhomorov?, Suprun and Moizhes® obtlained lar ge
sta.bzllty reglons for the bipolaron using a Coulombic type of wavefunction for each
electron. “Adamowskit“and later Bassani et al.¥ used alsé variational calculations
but compared the bipolaron ground state energy with more correct single polaron-
energies. Verbist, Smondyrev, Peeters and Devreese6 ¥ used Feynman path mtegral
techniques and obtained more accurate results. , e T =

The study of bipolarons can be relevant to examine the app]:ca.blhty of the bipo-
laton theory to high-T;, superconductivity {e.g. for high-T. superconductors®®, the
recént discovered fullerites’®' and the proposed Bose-Einstein-condensation of large

- blpolarons12 ).,

- It is interesting also to study relatwcly simple systems (for. which the numr.rlcal '
work is greatly symplified) such ds 1D bipolarons which could be relevant in quantum
wires!* and linear conjugated organic polymer conductors'® where charges move in
one dimension. In Ref. 16 it was recently proven that in the limit of a very strong
magnetic field the 3D bipolaron maps into a 1D bipolaron problem.

" The aim of the present paper is to present a more accurate and detailed treatment
of 1D bipolaron formation in the strong-coupling limit. In this limit the adiabatic
approximation leads to exact equations because the electron oscillations have a much
Iafger frequency than the lattice freqi:éncy w},a We will consider several character-
1st1cs of one 1D b:pola.ron ilke e.g. the stablhty regxon wh:ch is found to be much
larger m 1D tha,n in 2D or 3D. o Coet e SRS

With the Four:er series approach we aré aiso “able té mvest:gate the excited
states of the lD bipolaron. First of all, the relaxed exclted states (RES) which
are self-consistent solutions to the non-linear Schrodinger equatton The polariza-
tion is then adapted to the final electronic conﬁgurat:on 'On'the othér hand, we have
excited states which are the excited states in an effective potential well generated
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by one of those self-consistent solutions (ground state or RES). For those excited
states the polarization remains at the initial electronic configuration. The RES and
Franck-Condon states of single polarons in 3D were studied by Devreese, Evrard and
Kartheuser!”. For their role on the surface of 2 liquid-helium film see Ref. 18.

The paper is organized as follows. In Sec. II we introduce the non-linear
Schrodinger equation. for the 1D bipolaron. This integro-differential equation is
solved variationally in Sec. II and by a Fourier series expansion in Sec. IV. In
the latter also a comparison is made of estimates for the ground state energy, the
critical ratio 7, ..., calculated within the two approa.ches In Sec Vwe 1nvest1gate
the excited states of the 1D -bipolaron and in Sec. VI the conclusmns are gwen

II. STRONG-COUPLING LIMIT

The one—dlmensmnal blpola.ron Ha.m:ltoman, whlch is the Hamlltoma.n of two

electrons interacting with a phonon field, is given by .

H= Z +U(z1—z2)+Zhwkbbk+z>: kae""J-}-hc] (21

J—-l 2 J_.l 2 k

where 25 and p; are the posmon and momentum opera.tors of the J‘l‘ ]ectron (7=

1,2), m is the electron band mass and wy is the frequency of the phonons with

wavevector k.
In the case of an electron interacting with the LO-mode we have d1spersaon1ess

phonons wy, = wro and the interaction coefficients are

20:‘ k
L Qmw Lo

Vi = —zhw_r,o (2.2)
with L the iength of the system and o the coupling constant for the one-dirnensional
electron~phonon interaction (deﬁned in Ref. 19 and 20) -
I(D-1/2) R
- i , 2.3

Here a is the standa.rd dlmensmnless electron phonon oouplmg constant in 3D and
D the number of space dimensions. For D — 1 we have o = a/(D - 1) Indeed,
the polaron characteristics dwerge for D = 1 because of the Coulomb:c nature of
this problem: By using the renormalized couplmg constant o ra.ther t.han a, all
expressions are regularized and finite results are found for the energy and the mass

of a polaron or bipolaron in 1D,

The 3D Coulomb repulsion between the electrons is defined by

2 I‘( Df2) f dPk
T D obpes LD-1

T(D - 1)/2)
U‘/_ oT(D/2) (24)

exp[zkr],

with D ’= 3. In the limit D — 1 the corresponding Coulomb potential takes the
form 2U]8(z) — 22). This so-called contact potential is the natural generalization to
1D of the direct Coulomb repulsion between electrons in 3D. Therefore we have in

(2.1) Uz — 23) = 2U{8(21 — 23). 1t is convenient to introduce also the dimensionless
coupling constant I/

U — ﬁ . ) - L -t . e -
wro \/meo i , {25)
. and the ratio of the coupling constants -
9= =1 . o (2.6)

where 5 = €., /€0 With £.0(€0) the high frequency (static) dielectric constant.

Starting from the Hamiltonian (2.1) we obtain in the strong coupling limit using
the adiabatic approximation the non-linear effective Schrédinger equation of the one-
dimensional bipolaron (for more details see Ref. 21)

P: P '
{ + L + U(Z],ZQ, lI’())} \1’0(21,2’2) = EoWo(Z],Zg) (27)
with the effective potential

Uz, 22 0} = Iz, - z,] )+ 42 [Vil? iPk'

WAl ¢ o f ik s ity
2;H[Pk(eki+ek2)+0.c.], (2.8)

in which the Fourier transform of the electron dex.lsity is giﬁen by

<Eik:1) + (en‘kz;)
2 .

" .
- cl'kzl + eik:z
= ]dzldz2 (—2—'—"—) ‘1’5(21, 22)‘110(21,22) N . (29)

the Coulomb repulsion

Pk =



= .
U(IZ1 - 2’2') = ﬁwL01 ’ miro QU,(S(Z] - 2’2) (210)

and where the bipolaron wave function is normalized as follows
oo
j dz;ng‘?g(zl,zz) =1, (2.11)

To si.ﬁlplify'the féi'mﬁlas we perform the following scali;lg zi = Az, (i =1,2) with

' 1 k
- A== .
ped ool (2.12)
which scales also the wavefunction Y,
' 1
Uo{Az, Az} = X)_((Zh z) (2.13)
such that x'(zl, 22) is normalized to unity.
" Finally we introduce '
. Ey ‘
= Foroa? 214

which leads to_thé non—]iﬁea&’ effective Schrodinger equation (see Appendix A)
188 19
{_5621 7 2332 +U(zla22,X)} X(zh 32) = A X(Zl, 22) (2.15)
with
U (21,225 X) =

_ \/ffd:bldmgdm'z xz(z;',xg)xz(xl,x;)+\/2-/d:c;da:{dxg xHz1, 22 )X (2], 72) —
-0 o ’ . ’
2V [ dd [(er,8) 4 x0en, )] 2V [ i [00a4y )+ 20 )] +
—oo ~o0

208(21 — 22) +2v2 / dzidzidzs x* (71, z2)x (2], 71)- (2.16)

IIi. THE VARIATIONAL APPROACH

By multiplying both sides of (2.15) with x{z1, z2) and after integration over z
and z; the above integro-differential equation (2.15) can be rewritten as a variational
problem. The ground state energy can then be obtained from the minimalization of
the functional :

2
Flx] = —jdzld (ax z"z’)) /dz dz, (3"(2"22)) +
621
2g f dz Xz, z) 2\/-fdz1dz,dzg xQ(zl,zg)x (z,,zl) —
\/5] dzleQdZ; ,xa(zl, zg)xz(zl,:;’;) '- \/i] dzle;(iZQ xz(._zl-, zg)xz(z;,zz). (31)

with respect to x(z1,2;). o

Gross?? showed that the analogous strong coupling 1D polaron prob]em could be
solved exactly in the adiabatic approximation (see also Ref. 23). Therefore we can
obtain exact results if @ — oo0. In this case of the 1D pola.ron the energy functional,
in dimensionless units and analogue to (3.1),1s

SUURE ] (a‘ﬁ“) V3 f & ¢() BCE)

-0
and the exact ground state wave function was found to be

. 1 .
21/4 cosh V2z — z)

#(z) = (3.3)
with the exact binding energy E“’“‘ = —-1/3in units of hwroa®. Notice that this
result corresponds to the one of Ref. 22 when we apply the scaling z — 22 and do
not take into account the second term in Eq. (3.2) which equals 5/24 and shifts the
zero-point energy. When a Gaussian trial wave function ¥ = (2b/m)/% exp(—b2?) is
chosen®® the energy is E¥**** = —1/x’ with the variational parameter b = 1/r. -

To investigate the bipolaron energy it seems natural to use a superposition of
two 1D polaron wavefunctions. Thus the trial wave function is constructed as a
symmetrical (¢ = 1) or antlsymmetncal {e == —1) combination of two 1D poiaron
wave functions



Xo(b, d; 21, 22) =
2l [ 1 + < ] . (34)

2 lcoshb{z — z0) cosh bz — 220)  cosh b(zz — z10) cosh 8(z; — 220)

with the normalization N = 1/1/2(1 + ¢4/ sinh® d) and d = b(z10— 220) in which the
zjp are the polaron positions. Here b is a variational parameter which is a measure
of the inverse width of the individual electron wave functions and d is a variational
parameter which describes the separation or dist_anoe‘ between the two polarons.
Because of the translation invariance of the system all results will depend on the
relative average distance between the polarons rather than on the single polaron
positions 210 and 2. Inserting Eq. (3.4) into Eq. (3.1) and performing the scaling
z; = #zi{b, we obtain the following bipolaron energy : :

Alxo] = 8T - b(Uh - glh), ' ‘ (5.5)
with the kinetic term | ) ’
T= / derdzs (a"" a a‘ilz"z“')) . 69
the electron-phonon selfenergy
U =42 ]o dzidzadz X231, d5 23, 22)x3(1, ds 21, 25), (3.7)
A ‘

and the Coulomb repulsion
Up=2 f dz x3(1,d; z,.-).“ | (3.8)

Notice that the minimalization of Eq. (3.5) with respect to b becomes very simple

and leads to the energy

U 7 @
A= A2 | )
"with the variational parameter b = (U; — gU;)/2T and the physical f.onditiorq Uy -

gz =20 . : .
For a symmetrical bipolaron wave function the bipolaron energy functional A(d)
is shown in Fig. 1 as function of the relative distance d between the two electrons
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for different values of ¢ = U'/a/: the relative strength of the Coulomb repulsion
versus the electron-phonon coupling. Notice that A(d) is an even function of d
and therefore only the region d > 0 is shown. Furthermore, the physical region
corresponds to # > 0 which implies g = U'fe! > /2. For completness we have also
shown the curves for ¢ < /2 in Fig. 1. At large d, the bipolaron energy tends to
the limit An.e = —2/3, which is twice the energy of a single polaron as it should be,
In the absence of electron-electron repulsion, i.e. U = 0, the minimum is reached
at d = 0 and the energy is A(0) = —8/3. In the latier case the wave funchon (3 4)
takes the form ' -

cosh 2v/2(z ~ 2o) cosh 2v/2(z, — 25)"

which indeed is the solution of Eq. (2.15) for I’ = 0. In Fig. 2a the bipolaron
energy is shown as a function of g and Fig. 2b depicts the corresponding separation
d’,q between the two polarons. For g < g = 1.782 the minimum of the hipolaron
energy is reached at 2 finite value of d. However, for g > g, A(d) atains its minimum
energy for d = co which implies that the bipolaron state is unstable and two separate
polarons are formed. This critical value g, corresponds to 5 = 0.206.

For the antisymmetrical bipolaron wave function (¢ = ~1) we have A(d) >
Amax = ~2/3 for any value of d and g, which implies that the bipolaron state will
decompose into two separate polarons. In fact, even for g = 0 it was found that

A(d) obtains its maximum at d = 0 with A(0) = —416/735 &~ —0.56599, which is
15% larger than the energy of two separated polarons. This result seems Lo indicate
the mstablhty of the 1D bipolaron excited state, Obviously, an 1mproved variational
wavefunction may lead to a different conclusion.

(3.10)

To improve the above variational estimates it is convenient to introduce the
center-of-mass coordinates

2+ = . y - L
Z=—'-“—,12_2; P=ptp, . T (3.11)

and the relative coordinates

Pr Pz
2

We use the notation x(z1,2;) = ¥(Z,2) and the symmetry [x{z1, z2)|* = |x(z2, 21 )|*
of the wave function. The variational problem (3.1} then takes the followmg form

AlY] = [dZd (?ia%z—) [dZd (‘N’(Z "'))

7

(3.12)

2= - 2, rp=



o . ) 0 i
2 dedzdz'w?(z, VHZ +2/2,7) + 2 /dzqﬂ(z, 0). (3.13)

It is well-known that in the asymptotical limit of the strong coupling limit the adia-
batic approximation becomes exact, and therefore we consider the following product-
wave function Ansatz

U(Z,2) = B(Z)p(z). | S (319
Following Ref. 7 we take for the center-of-mass wave function

wa?Z?

<I>(Z) [-—-—] eip(— ), o (3.15)

which Jeads to the following functlona.l
‘ 2
Afg] = f( ) dz +2\/_["S (0)

1 21+ 222\ o, o
- ] dzdz, exp( (—li-é-i) ¢* (z,)q&2 (zz)] . (8.16)
-0 . .

with w a variational parameter. The ground state bipolaron energy Eip (in units of
hwroa™) is then obtained by minimaliziﬁg the functional A[¢] with respect to w and
The b:po]aron can exist as a stable state when the binding energy | Eyi,] is larger
than twice the single polaron energy }E1}. In the strong coupling limit | Eyip| ~ ' and

|Ey} ~ &%, and as a consequence a’? can be factored out. The bipolaron formation is-

then exclusively determined by the physical parameter 3. It is found that a critical
value 7, exists below which a bipolaron state will be energetically more favorable
than a state with two single polarons. :

Of course the condition for blpolaron forsation w:]l depend on the value of B
(Eg=st or E{****) which we choose (see e.g. Ref. 7). The corresponding 1. will be
denoted by 55%¢t for By = E{™ = —1/3 and n2"** for By = ™" = —1/m. The

e¥¢ is a lower bound to 7., due to the fact that the obtained bipolaron energy is -

an upper bound to the exact energy. For 27" is it neither an upper bound nor a
Jower bound. Both 1 values are given in this paper. Normally, one should compair
the bipolaron energy with twice the energy of the single polaron obtained within the
same approximation. However, in this case the exact eingle polaron energy E{™°¢ is
available. Thexefore, we can obtain with E**¢ a lower bound to 7. .
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The dependence of the wave function on the relative coordinates is contained in
¢(z) for which we choose: ‘

1) $(z) = N(1 + Blz])exp(— d ’), | (3.172)
2) ¢(z)=N(1+B|z|+0z)exp(-%), . (3.175)
3) 4e) = (1+cz2)exp(——2—’-‘3) Ny )
) ¢(z)=N(1+0z2+Dz'*)exP(__gff), o (317d)
=N Blen-S0) BT
£ 6)-¢(z) = N(L + Ble] & O%) expl~ 24’) . T

where Nis the normahzatzon constant and B,C, D and v are vana,txona! parameters'

In contra.st to the 2D and 3D cases, the du‘ect Coulomb repulsmn in 1D is a
contact potentlal Wthh 1mphes tha,t for the 1D b1poia.ron ground sta.te a.) the
wave {unctmn ¢(2) i xs not zero for z' = D a.nd b) the ﬁrst derivative of qﬁ( ) can be
discontmuons at z= 0 Therefore, the constant term m the polynomial part of 95( 2)
is not. neghglble as it was in 2D and 3D (see Ref 7)

" In Fig. 3 the blpolaron groundstate energy, in. umts of ﬁw;,oa , I8 plotted a,s a
function of 7 for alt the above trial functmns These energy. vaIues are, also given in
Table I for a selectwe number of 7 values We observe that: a) the tnal functlon
(6) gives the best results (i.e. the lowest upper bound}, b) these results are close to
the results of trial function (5), c) the term B|z| in the wa.vefunchon turns out to
be very important as can be seen by comparing the results from trial wave funct:ons
(3) and (4) which do not contain this linear term in z, with the result of trial wave
function (5) and (6), and d) it is surprising that the exponential decreasing functions
(1) and (2) give smaller binding energies than the best Gaussian function (6). The
opposite is true for the single polaron case'®. . The two dashed hor;zont_a_l lines in Fig.
3 correspond to twice the single polaron energy. calculated using the asymptotical
exact wavefunction (3.3) and a Gaussian respectively. The crossings of the ground
state bipolaron energy curves with those straight lines determine the critical n.-value

~ at which bipolaron formation occurs. These values of 7. are listed in Table II for the

different variational wavefunctions, The trial function (6} gives the lowest bipolaron

ground state energy and eonsequently the largest 7. value. Because the nETec are
lower bounds to 7, is the largest 72*** obtained with trial function (6) the best lower

bound for 7. within the variational approach.
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The critical (minimal) value of the electron-phonon coupling constant o is de-
termined by the condition E*?(af, U’) = 2E%!(a’) that the bipolaron ground state
energy equals the ground state energy of two independent free polarons. Using
the Feynman path-integral technique this value was found to be o, = 6.8 for the
3D case®. It was proven that within this path-integral approach the polaron®*? and
bipolaron® ground state energies satisfy scaling relations such that the corresponding
energies in nl) can be obtained from the one in 3D. Applying these scaling relations
one obtains!® o/, = 2.3 in 1D. ) :

Earlier works®™" already indicated an enlargement of the stability region for bipo-
faron formation in low-dimensional systems as compared to 3D systems. From the
values for n2?7%, 557 and o (see Fig. 3 and Table 11I) we find that the bipolaron

q!akrhhr region ig even more & nnlnro‘nl‘ intha 1D cacs, in ‘""""“’TES_OH with the stabi!it‘!’:

stability regio 2, in compa
region in 2D or 3D.

We ‘will now concentrate on’ the t.nal function (6), Eq. (3. 17f), which” gwes “thie
lowest b:pola.ron ground state energy of all trial wavefunctions. Thie results for the
energy could be fitted to the curve E = —1.07 + 0. 73713 0. 2731; wnthm 1.5% over
the range 5 € [0,0. 9} The ](ir(z)i‘z of the resulting wa\;é'f{xnctlon is shown in Fig. 4a
for different values of . We observe the increased separation of the two polarons with
increasing 7, i.e. increasing Coulomb repuls:on Notice also that: 1) with decreasing
value of 5 the electrons are on average much closer to each other, 2) |¢(z = 0)[* is
non-zero, and 3} 8¢(z)/8z is discontinuous at 2 -50 "This is different in 2D and 3D
where |¢{z = 0)|* ='0 and 8¢4(z)/8z are continuous at # = 0. In Fig. 4b we plot this
1¢(2)]? for 5 = 0.5 together with the corresponding function for the single p_oléfon.

The rms separation (in units of Vh/mwioa’) between the electrons is defined
by . _ ‘ .

T L (3.18)

where the averaging is performed over the trial wavefunctions of Eqgs. (3.17). The
evolution of R as a function of 5 is shown in Fig.'5 for the different trial functions,
Notice that R increases with increasing repulsion, n, as expected. For the “best”
trial wavefunctions this increase is a smooth function of . For the trial function (6),
Eq. (3.171}, we found R(r] 0) = 2.53 and R('q pemact = (), 764) =3.35. -

IV. THE FOURIER SERIES APPROACH

The power of the variational approach lies in the fact that the method provides
an upper bound to the bipolaron binding energy. This gives a criterium to judge
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which is the best bipolaron wavefunction. On the other hand, it is less clear how
to improve in a systematic way on a given variational wavefunction. In the vari-
ational approximation of Sec. III also an exponential form for the center-of-mass
wavefunction (3.15) was examined but it was found that this does not improve our
results. Another way is to include more terms in the series expansion.. But, the fact
that adding a term in the polynomial of Eq. (3.17e) does not lower substantially the
bipolaron energy (less than 0.4%) may be an indication that the resulting bipolaron
wavefunction, Eq. (3.17f), is close to the exact result. Because this is not a guarantee
that this is also the case, we will present below a different approach which mherently
allows for systematically improving the ‘bipolaron binding energy. Furthermore, this
method allows to calculate besides the ground state, also excited states. A second
advantage will be that we do not have to make the product ansatz approximation
(3.14). | T
Using the symmetry of the wave functlon IY('—'l,Zg ] ]\(22, z:,)l2 whxch a.]lows
as well the symmetric as the antisymmetric solution, we obtain for the non-linear
effective Schrédinger equation (2.15)
188 10 o
{—-55-2? 23 " +b(z|,22, x)}k(z,,zg)—Ax z;,zz) {4.1)

with

_ [}(2’1, zayx) = 4ﬁfdx1d:cgd:c'2x2(x1,xz)xe(;:h‘:c'z) -

4\/§/sz [x*z1,25) + j(’(zg,a:;)] + 2g6{z; '—722).'7 C (4'.2)

Next we interpret the potential (4. 2) as given and solve 4 (4.1) numerxca!ly In
order to do so we put our system in a square box with dimension [ L, L] and infinite
high wells. The blpola.ron wavefunction can now be wutten asa hnear combmatlon
of the bas:sfunctlons of this box

NM
x(z1,22) = E U $iN mr(zl; L) mw(;}:l- F) . (4.3)

Multiply both sides of equation (4.1) with X(z1, z3) and integrate over z and z;. The
resulting equation is an eigenvalue problem which provides us the binding energy and
the parameters a,., for a given potential . Because this potential I/ depends on the
wavefunction x in a non-linear way we consequently solve the problem iteratively by
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inserting the found wavefunction into {7 until convergence is obtained. In principle
this is an exact procedure when N = M = co. In practice, because of limite computer
memory, we have to limit ourselves to a finite number of terms in Eq. (4.3), typically
N = M = 15. By systematically increasing the number of terms we will find better
upper bounds to the bipolaron energy.

The resunlting nc*°** value for N = M = 15 is given in Table II. Using the
symmetry of the ground state in the program we had the possibility to calculate the
ground state bipolaron energies EFS for some discrete values of nwith N = M = 30.
They are tabulated in Table L

Notice that this method gives higher ground state energles, and thus lower bmdmg

energies, as compared to the best variational solution. Therefore we investigate the
of tha binalaran o:mm-gj on the qnn’:‘\br of Fonrier terms in gur eXpa.nSlOl’]

uepenuence i Wil JIpda Der ot rourier Lerm

{4.3). The result is shown in Fig. 6 for g = 0. 5. We found that the numerical
data (solid dots) could be well presented by the curve (sohd curve in Fig. 6) Eyp =

Ey — Bfn with Ey = —0.783 and- B = -0.965 for 7 = 0.5. This is a very slowly
convergmg series with n which explains why we found less accurate binding energies
as compared to the variational approacl_l. Therefore we used the fit By, = Eg— Bfn
in order to obtain then = N =M — resu]ts'of. the Fourier expansion which are
also given in Table I These ground state energies are also indicated in Fig. 3 by
stars which we were able to fit to the polynomial: £ = —1.176 + 1.062y — 0.5515°
with an aecurecy of 4% in the region 9 € [0,0.9]. We see that these energies £y

are lower than the variational results and go asymptotically to the energy of two ‘

single polarons. The prove of this statement is explained in the next section. The
corresponding - is in this case 1.0. Therefore, the ground state is-always stable
and will exist. :

In Fig. 7 the wavefunction x(z1,z2) together with its contourplot are shown for
7 =0.5 and N = M = 15. From this figure it is clear that the two electrons avoid
each othex- and that they ‘have the highest proba,blllty to be at a certain distance
from each other. In order to make a direct comparison between the best variational
wavefunction, Eq. (3.17f), and the one obtained with the Fourier series, Eq. (4.3),
we show in Fig. 8 for 3 = 0.5 the respective electron probabilities as function of: (a)
the relative position between the two electrons '

#(z) = f 42 XXz, 2) ; (4.4)

and (b) the center-of-mass coordinate of the two electron system. The latter is

defined similar as Eq. (4.4) but now we integrate over the relative coordinate z.
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Notice that: 1) in the variational approach the electron wavefunction for 7 = 0.5
falls off faster as compared to the Fourier series approach, and this both as a function
of the relative coordinate and as function of the center-of-mass coordinate; 2) the
electrons are on the average further from each other in the Fourier series method;
and 3) the translational motions are very close to each other.

The rms separation R (3.18) between the two electrons is also shown in Fig. 5.
for the Fourier series approach {stars). Notice that for'n < 0.35 the Fourier series
approach predicts that the electrons are less far separated as compared to the best
variational approach. For 4 > 0.35 the opposite is true and the difference between
the two approaches increases with increasing 7 (see also Fig. 8).

Within the strong coupling limit the effective bipolaron mass is given by {see Ref.
21)7 B P .- - -

% = 2 +8\/— o't ] dzldz;;zz [V—xl‘(zl,z‘z)] {—a“x (21;22)] :7 (45}

In F:g 9 the results of the e]ectron phonon correctlon to the blpo]aron mass
Am*fm=m"fm -2is shown for the best varla.t:onal wavefunctlon (da.shed curve)
and for the Fourier series approach (pomts) with N M =15 and =0 5. We
observe that in the limit of large i the variational approa.ch reproduces almost the
correct asymptotical value of two separated 1D polarons (da.shed line). From this
figure we also can conclude that the Fourier series approach is not accurate enough
to obtain good estimates for the energy and the effective mass. As mentioned ear-
her, for the energy we can extrapolate an accurate result, but for the wave functlon
we can’t do this, Therefore the eﬁ'ectwe mass which is caIculated ,with this wave
functmn is not so accurate within the Fourier series approach ‘

Another important quantity of interest is the effective bapolaron potentla] (4 2)
which we consider without the constant term and the é- function’ term. This -
function term only would cause a .discontinuous value at z = 0 and the const_a,nt
term only determines the zero-point energy level. The effective bipolaron potential
is shown in Fig. 10 as function of the reletive position z = 2z — z; of the two
electrons for the best variational functlon (dashed curve) and for the Four1e1 series
approach (solid curve).. Notice that: 1) the potential becomes zero for large |z|
which is a consequence of the fact that the effect of the interaction between the
electrons vanishes for large distances, 2) the effective potential within the variational
approach is more localized and deeper than the one of the Fourier series approach,
3) the derivative of the considered potential is discontinuous at z = 0 which is a
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consequence of the §-function repulsion at z = 0, and 4) the potential has two local
minima which correspond to the average separation between the two electrons,

In the numerical scheme of the Fourier series approach the energy converges
much faster than the wave function. Because of this and the limitations in computer
time the wave function did not converge yet in the numerical calculations with N =
M = 30. Therefore, we used in the calculations of the rms separation, the effective
mass and the effective potential (in which calculations we use the wave function) the

Fourier series approach with N = M = 15.

V. THE EXCITED STATES

With the Fourler series approa.ch we are a,]so able to investigate the excited
states of the 1D bipolaron, namely: the relaxed excited states {RES) which are self-
consistent solutions to the non-lincar Schridinger equatlon and the excited states in
an effective potential well genera.ted by one of the self- consistent solutrons In what
follows we use the quantum number n > 1 to enumerate the self-consistent solutions
and n' > 1 to enumerate the excited statés in an effective potential well genérated
by one of the self-consistent solutions. Therefore, €, s Will be the energy of the'n'-th
state in the effective potential generated by the n-th self-consistent solution.

In Table IV the energies £, s are listed for n = 1--4 and n’ = 1-+4 for a bipolaron
in a box with length 2L = 7. Those energies are calculated with N = M = 15. The’
diagonal elements &, in Table IV are the energies of the groundstate (n = 1} and
of the first, second and third RES states {(n = 2,3,4). They correspond to the
self-consistent solutions for which the polarization is adapted to the final electronic
configuration. Indeed, in the case of a RES with quantum number n the effective
potential is calculated every iteration with the eigen-function corresponding to the
n't eigenvalue obtained in the iteration before.

If we consider the energies of the excited states in an effective potential well
generated by e.g. the first RES, namely £;,., and confined to a box with length
2L = 17, we see from Table IV that the state with n’ < n = 2, namely n = 2
and n’ = 1, has a considerably lower energy than the energy €22 of the RES. This
phenomenon is even more clear for n = 3 (see Table IV}, We have then two states
with lower energies as the RES. The reason for this behaviour are the symmetry
properties of those states. The first RES, for instance, ha.s"an antisymmelric wave
function which is a self-consistent solution to the Schrodinger equation. In this case
the effective potential is generated by the RES itself. In the latter potential we can
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look for excited states. The first one {n = n’ = 2) corresponds then to the RES. It
is indeed antisymmetric. The ground state in this potential (n = 2 and n’ = 1) is
however symmetric and has therefore a lower energy. Even more, from the ground
state energy Epor = —0.332 of the 1D polaron® in a box with length 2L = 7, and
from the value £2; = —0.679 (see Table IV), we can conclude that this state is stable

" and will exist for certain values of the box length 2L and 5 (see also later). Higher

excited states have, of course, larger energies (see Table IV).

For the energies of the excited states as function of the box length 2L we have
practlcally t.he same behaviour as in t‘ne case of the 1D-polaron in'a box*. Indeed,
the energies of the excited states Ennf “with o’ < n all converge to the energy Enn Of
the RES when we increase the box length 2L. Neverthe]%s there is an important
dlﬂ'erence In the limit of an mﬁm're'lv larwe box we found that the excifed states
are grouped ‘bécaiise of symmetry reasons “Therefore,’ we obtam e. g for the statés

'm the potent:al well generated by the first RES groups exrstmg ‘of two enéigy ldvels
l(see th 11) Apparently, ‘the £, ¢ consist of groups ofn+1 energy levels if n = 3,

and of 1 énergy levels if n = 2. In Fig. 12 'we plot the ¢ energy spectram forn < 3
andn’'Sn+l{n=3orn <nn=12) For n = 3 it gives the first part of

- the spectrum of the bipolaron i in the potential generated by the second RES. The
‘energies £, for n' < 4 as function of the box length 2L show us that in the limit of

an infinitely large box the energy levels indeed combine to groups as discussed ahove
and that in this limit all these energies g3, (n' < 4) tend to the energy Erpss = €33
of the second RES. This energy level is then 4 fold degenera.ted This degeneracy

of the RES energy ‘at large box length is caused by the possible symmetry of the

wave functions in that case. In Fig. 13 we plot those wave functions for n =3,
n' < 4 and 2L = 19. They correspond to the energies £3; (a), €32 (b); £33 (¢)
and e34 (d). We see the four symmetries obtained by combinating the symmetry
relations x(z1, #) = ®£x{22,21) and x(z1, 72} = £x(~21, —22) which are allowed by
the integro-differential equation (2.15). ..

For the excited states in the potential generated by the first RES the symmetry
relations are restricted to the two combinations: az, 22) = x(22, m) and x(21,22) =
x(—#1;~22), and x(z1, 22) —'—x(z@,z;) and x(z1,22) = —x(—2r, —22). This explains
the grouping seen in Fig. 11 and 12. S ,

Witk 7 = 0.2 the numerical results for the energies of the ground state and '
the first three RES states in the limit of an infinitely large box and an infinite

number of terms in the Fourier series (N =M — o0) are respectively: €;; =

—0.986, £22 = —0.667, €33 = —0.442 and £44 = ~0.416. The £,, with n even
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correspond to an antisymmetrical wave function. In this case the §-function does not
contribute because the wave function is zere at z; = z,. However, for the RES states
with odd 7 the &-function will play an important role. To understand better the
structure of the bipolaron RES states we added in Appendix B a discussion about
the relation between the 1D bapolaron and the single 1D polaron characteristics,
especially concerning the energies and the symmetries of the corresponding wave
functions. ,

In the same limits as for the above RES states the energres of the ground state,
the first RES and the ground state in the potential of the first RES are shown in Fig.
14 as a function of 7. The 1D bipolaron ground state i is always stable a.nd w111 exist.
The ﬁrst RES however has a constant energy ERng ; —0 667 whrch corresponds to
twice the srngle pola.ron energy. Because of, thrs energy value for the ﬁrst RES we see
that the energy of the ground state (w1th1n the same hmlts) should be lower than
this value -0. 667 Ta.klng into account that. the ground state energy mcreases w1th
increasing 7 and that the numenca]ly obtalned upperbound (wrthm the ,same l1m1ts
as above) ténds to the same value for n = 1, 0, we can conclude that in the llrmt of
an infinite large box n‘“"" =10. . _

- In the potential generated by thls first RES the ground state has a lower energy
£23 which goes asymptotically to ERESl when 5 — 1 (mﬁmtely separated electrons)

Therefore, this state will be stable except in the ¢ case of an mﬁmte hrgh & function
(g — 1) Nevertheless, because the energy. of the ﬁrst RES equals twice the smgle
polaron energy, the probability of ﬁndmg two electlons in this first RES w111 be very
small. To obtain the ground sta.te in the potentla,l generated by the ﬁrst RES the
electrons need to be situated ﬁrstly in the first, RES itself from where thxs ground
state can_be reached. Therefore the probability to obtain this ground state in the
potential generated by the ﬁrst RES will also be very small despite of being stable.

VI CONCLUSIONS

The 1D bipolaron ground state has been treated in the limit of strong electron-
phonon coupling. We obtained the critical value o of the eflective electron- phonon
coupling constant and lower bounds for the critical ratio 5. of the dielectric constants
which determine the phase diagram for bipolaron formation at zero temperaiure.
From those values we conclude that the stability region for bipolaron formation is
much larger in 1D than in'2D and 3D. The mest important characteristics of the 1D
bipolaron, like the root mean squared distance between the electrons, the bipolaron
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mass and the effective potential were calculated.

Within the Fourier series approach it is straigthforward to obtain the possible
excited states of the bipolaron. We found that the ground state will be bound and
the first RES has an energy which equals the energy of two single polarons. The
ground state in the potential generated by the first RES is however stable. Because
of symmetry reasons the higher excited states combine to groups w1th the same
energy when we consider the limit of an infinitely large box.
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APPENDIX A

" The integro-differential equation (2.15) is’ central to the present paper and is
obtained from (2.7). In the present paper we will give the intermediate steps to
go from Eq. (2.8) to- Eq. (2.15). When we consider only the optical phonons and

_ substitute the expression for Vi into Eq. (2.8) we obtain

IVel? | pklz 2a'h 2?iw1,o
DI el [ aklpul” (A1)

Rl

Next we substiture P, as given by Eq. (2.9), in the integral, which results into

17 e
/dklpka =3 j dz dz,drydely, Bi(zy, 22) 22}, z5)

oo .
X / dk [efk(z'l—xi) + ct'k(ﬂ-‘:-!l‘;] + eik(zz—n:;) 4 cik(zz—z;)]
EA 5 ne
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oS
= QWfdzldmgdz'g\Ilg(z,,xg)\l'g(:rhz;). (A2)

where we used also the symmetry $3(z, z2) = ¥3(z2, z,). For the other term in Eq.
(2.8} we have

“fklz 03 :'k;'l ikzy —ikzy —ikzy
L + +
5 ) e )

2o'hwro 1T [ o f ik "".‘-'-"7 "-.'.z —ikz
=ﬁm§jdk [pk(ek‘+ek")+p;,(e k2 4 e "’)]
-__ ;_ﬂ‘/znf*’w f dk (eukzl + elklz) + 2% (e =ik + e-—tkzz)] ' } (A3)

As an example we calcu!ate one integra[ of i.his expression' '

[dk P- ckz_, »jdzldxg u(xl,fz)fdk [eck(z—zl)_*_etk(z—z:)]

00

=7 f dzidzs W3(2y, 22) [6(2 — 1) + 8(z — 22)]

-

== f dzy Vi(z,z2) + 7 ] dey U3(zy,2). - (Ad)

‘The other integrals in Eq. (A3) are czlculated in a similar way. Substitute these
results in Eq. (2.7), perform the scalmg (2.12) and we obtain the integro-differential
equation {2.15).

APPENDIX B

To better understand the structure of the bipolaron RES let us consider an un-
physical situation when g = 0 that is when the delta-function repulsion potential
in Eq. (2.16) is not taken into account. Two particles interacting with the com-

mon phonon field tend to combine together. But the effective potential becomes
' separable and a bipolaron wave function can be represented as a symmetrized or an

antisymmetrized product of ‘one-particle’ wave fuilctic_ms:

x(21,z2) = Nxa(z1) x2(z2) + 7 xa(22) x2(1)); | (B1)

- AN

where v = 1 (=1) for symmetrical (antisymmetrical) states and the normalization
constant in Eq. (B1) is defined by the relation:

L 2
1=2N? |14+ (jdzx;(z)xg(z)) . {B2)
L ' '

If both particles are in the same state, a bipolaron wave function is of the form:;
x(zm) =x(z)xi=). . 7 ’tBS)

Note that such state is a symmetnca.l one under a permutatlon of partacles zl o 22
Then the enecnve potentxa! 01 Lq (2 16) takes the form: |

I T N

U(21,2’2, X) U(Zl) + U(Z2) A ;;-.‘,: Lol enem en -
U(z = 2\/_/dz ) - 4\/';8(2) Sy
and the equation for the one-particle wave functions is as follows:

XX = Sxe (85)

If we perform a scaling 213) — 21(9)/2 and change the wave functions x{z/2) =
V2 4(2) to preserve the normalization condition we obtain from Eq. (BS5)

"‘"(") 2f¢3(z)+¢(z)f/dz¢‘z —¢(2) - (B9

=L

The latter equation is nothing more than an analogous equation for 2 single polaron
in a box of a double length (—2L,2L) so we can exploit the solutions found in Ref. 26
with A/8 playing the role of a polaron energy e,, where n; is a number of a subsequent
RES. The corresponding wave function of the RES (the so called cnoidal wave) has
n; equidistant peaks, located at the points z = L(2m —ny —~1)/n;, m=1,2,...,n.
It is symmetrical under reflections {z «» —z) for odd n; and antisymmetrical for n;

" being even. Thus, the resulting bipolaron wave function constructed from the one-

particle RES wave functions have n? peaks some of which are positive and others
are negative. In the limit of an infinite large box L — oo we've found for negative
energies of a single polaron in a box the expression €,, = —1/(3n?) from which follow
results for the bipolaron energies
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Ay = —g%’ n=12.. (B7)
When the delta potential repulsion is switched on it contributes to the energy with
a positive term so these levels will take higher values.

In particular, the bipolaron ground state (ry = 1} wave function at g = 0 has one
peak at the point z; = 2, = 0 and the ground state energy is A1z = —8/3 ~ —2.667.
Because of the repulsion it is split into two peaks at a short distance and symmetrical
to the line z; = 2; as is shown in Flg 7. The ground state energy becomes equal to
€11 shown in Fig. 3. C

. The symmetrical combination of the one-polaron first RES (ny = 2) has two
p051t1ve peaks located at the pomts 2= 22 = £L{2 and two negatwe peaks located.
at the points zy = —zy = £L/2. Wlth the lepulsmn iwo nealxs located on the
line z; = # should split into 4 so that the total number of peaks will be equal to
6. The energy of the state will be larger than it is at ¢ = 0 (that is, larger than

Ay = —2/3 =~ —0.667), so this state is unstable ST
’ Remember that we deal for the moment with the bipolaron RES states, whose
wave functions are constructed as (symmetrical) products of the same one particle
RES wave functions. Inserting a general blpolaron wave functlon of Eq. (Bl) into

Eq. {4.1), (4.2) we arrive at the equations: -

x1(z1) Dx2(22) + xa{#) Dxa(21) +
v [x1{22) Dxa(21} + x2(21) Dxa{z2)] = 0, e (B8)

where the operator D is deﬂned as fol]ows: _
1 '
Dxi(z) = —3xi(= )+ o o A i) -
: L .
4\/51\” [xf(z}+x§(2)+27x:(2) X2(2) de’Xz(z’)Xz(Z')] xi(z);- - (BY)
and tiie asymﬁlt(bticai value U, Qf jt_.he effective potential (4.2) takes the form

2
4f N“ de{XI )+ x5 ()] +4 fd~x1 ) x3(2) (/d2X1(z)X2(Z))

-47deX1(Z)Xz(2) [xl(z)+xz(21/dzm(z))cz(Z)} - (B10)
. =L I
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Solutions to Eq. (B9) can be constructed with eigenvectors of the operator D:

Dxi(z) = C; xi(2). (B11)
Inserting into Eq. (B9) we obtain that
Ci4Cy=0,. (B12)

The important case is when the wave functions X1, X2 have different symmetries
under reflections: Then the interception integral

L .
7 './dz-X:(?') x2(2) = 0

an_d Fgrmnle_a ('R‘)\ [BO\ {

o (B 12} are s..upuueu ‘1e same occurs m t.ne lmut. oI an

mﬁn:te large box when x;, X2 have peaks in dxfferent p]aces, Whlch are, of course,
mﬁmtely separated from each ot.her

-~ FREE S

coincide in the limit of the mﬁmtely large box. Then we have N = 1/ \/5 and obtam
the following equations from Eq. (B9), (B10):

~5(0) + U te) = (54 01) (2,
3 + ﬁ(z) () = (-0 ale),

U(z) = 2\/" dz xi{z) - 4vV2x¥(z). | (B13)

=L
Performing the same scaling as in Eq. (B5) we conclude that we can choose as X2,
for example, the first RES of a single polaron, and as x1 — the excited polaron state
which is the ground state in the potential generated by x2. Indeed these functions
have the supposed symmetries under reflections and peaks at the points z = +£1/2
which are infinitely separated in the limit L — co. Thus we obtain from Eq. (B13):

4.0_.0

gty =ar
é__gl:__e(l) B
8 4 2,29 ( 14)

where ef: )’15 is the single polaron energy in a state with the mentioned quantum
numbers first of which is related to a RES and the second — to an excited state in
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the potentlal of that RES. From Eq. (B12) and (B14) we obtain the expresston for
the energy of this bipolaron state in the limit of a large box:
A=a(+dd)=-3. (B15)

The resulting bipolaron wave functions have two peaks (2 positive and a negative)
at the points 22 = 2 = +L/2 and zp = =~z = xL/2 for the symmetrical and
antisymmetrical states, respectively. Two possible peaks similar to that of the state
constructed earlier as a combination of RES states only are cancelled. Note that we
constructed a bipolaron RES fromn a single polaron RES and the ground state in the
potential generated by this RES. With the repulsion the peaks of the symmetrical
state will be sphtted and its energy takes a higher va.lue This state corresponds to
€33 (see Flg 13) The antxsymmetncal state is ot influenced by ihe aelna-mncuon
repulsion so its wave “function’ and the energy is ‘the same as "was descrlbed - It
corresponds to €z, and i is exa.ctly the same as we obtamed numencally

There are other blpola.ron RES states, but their energles are too hlgh and there-

{fore we do not consxder them hexe e
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TABLE L The numerically calculated bipolaron energies, in units of Awzgpa'?, for dif-
ferent values of 5. We give the results E(n) for the different trial functions (see Eq. (3.17))
and for the Fourier series approach Erg (N =M =30), EF: (N =M — o0).

n__ BQ) E@)  E() BE@4) EG5) E©) Eps  E%
0.0 -1.008 -1.070 -0.935  -0.943  -1.067 -1.071  -1.071  -1.143
0.1 0938 .1.003 -0.852 -0.866 -1.002 -1.005 -1.001  -1.060
02 -0868 0937 -0.777  -0.794  -0.938 . -0.942  -0.932  -0.986
0.3  -0.801 -0.873 -0.713 -0.728  -0.876  -0.880  -0.865  -0.913
04  -0.738 -0814 -0.665 -0.677 -0.820 -0.823 -0.805 -0.845
0.5 0681 0760 -0.641  -0.646 -0.769 -0.771  -0.751  -0.783
0.6  -0.631 -0.712 -0.633 0636 -0.725 -0.726  -0.705  -0.727
0.7 . -0.587  -0.670  -0.627  -0.630  .0.688  -0.688  -0.674  -0.688
0.8 . -0.550 -0.635 -0.622 -0.624 -0.656  -0.65  -0.656  -0.669
0.9 -0.518 .0.520 -0.613 -0.619  -0.610 -0.6200  -0.648  -0.667

TABLE IL The cnuca.l qc-values are gweu for all trial wavefunctions and for the Fourier
series expansion (FS) with N = M = 30 and the extrapolated result with N = M — o,

Trial function ’ gl ’ peTect
1) - 0.587 0.527
2) . 0.796 . 0.710
3) 0.551 - 0.393
4 0.595 - ' 0.424
5), 0.874 0.764
6) 10.874 T 0.764
FS (N=M=15) —— 0672
FS(N = M — o) — 1.000

TABLE III The critical values af, 7777°F and 5=t are given for 1D, 2D and 3D. In
the case of 1D we consider the 1. as obtained: 1) with the best variational wavefunction
and 2) the Fourier series approach (F$). )

az ncﬂP‘PFW«' - ng:mct
3D 6.8 L0431 ' ©0.119
2D . 2.9 0.158 " 0.136
1D (var) 2.3 ‘ 0.874 - 0.764
1D (FS) . 2.3 o~ 0.672
1D (F§$%) ‘ 2.3 . — 1.000
23



The diagonal elements are the energies ¢, , of the corresponding RES states,

TABLE IV. The energy levels of the first four states (n’ = 1 +4) in potentials generated
by the four first RES states {(n = 1 + 4} for the 1D bipolaron in a box of the size 2L = 7.

n\ n 1. 2 3 q

1 -0.882 -0.324 0.294 0.502
2 -0,679 -0.646 0.231 0.369
3 -0.580 -0.405 -0.172 -0.082
4 -0.507 -0.343 -0.164 -0.093

FIG. 1.

=3

Bipoi-a\‘ron”energy {unctional A(d) vs.

0

P W I Ko B
2 s 4

the relative distance d between the

electrons for the symmetrical trial wave function, Eq. (3.4} with ¢ = 1, for different values

of the direct Coulomb repulsxon ¢ = U'fa’. The dashed curve corresponds to the hm:t:ng'
case g = /2 which divides the physical (g < v/2) and the unph.\,slcal region {g > \/-)
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1.5

Ea;,/ﬁwLo.ﬁ'n as obtained- by m

‘(see Fig. 1) with respect to d vs. the dimensionless coupling constant g. At the critical value

0.5,

FIG. 2. (a) The bipolaron energy A

Ald)

inimizing

laron region from the

ipo

.

Ge =

1.782 the energy equals -2/3 which separates the stable b
unstable one where thg bipolaron will decay into two separate polarons; (b) The equilibrium

distance d,.; between the electrons as obtained by minimizing A(d} (see Fig. 1) with respect

to d is plotted vs. the coupling constant g.
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FIG. 3. The bipolaron energy is plotted vs. 7 for the six trial functions and for the solu-;
tion of the integro-differential equation using the Fourier serie approach and extrapolating:
the # —» oo limit (stars). The horizontal lines give the energy of two separate polarons
E =2F; where: 1) E1 is calculated within the Gaussian approach, and 2) Ey is the exact

result. The crossings of the curves with the straight lines determine the 7. values.
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FIG. 4. For the best trial function 6 (see Eq. {3.17f}) we show: (a) the electron density
within the bipolaron |¢(z)|? as function of the relative separation between the two electrons
for several values of 1, and (k) for % = 0.6 this function s shown together with the electron
density in the case of a single polaron.
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FIG. 5. The rms of the bipolaron R as a function of i is shown for all the considered
trial functions and for the wave function obtained by the Fourier series approach {stars}.
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FIG. 6. The convergence of the numerical results for the ground state energy within
the Fourier series approach is shown for 7 = 0.5 as function of N = M = n, the number of
Fourier series components for each electron. The solid curve is given by Ejip = Eo — Bfn
where Eg and B are determined by the n = 20 and n = 30 results.
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. | coordinate. We compare the results from the Fourier series approach (solid curves) and
FIG 7. (a) The bipolaron wavefunction ¢(~],32) for p = 0. 2 as obta.med w1thm the from the best variational wavefunction (dashed curves).
Fourler series approach. (b) The contour map corresponding to thls blpu]aron wavefunc-

tion.

28 o - 29



Am*/m x 107*

' I T I
— Fourier series ]

. — — - variational

0

0.2

FIG. 9." The electron-phonon correction to the effective mass as obiained within the
variational approach (dashed line) and within' the Fourier series approach (points). The
solid curve is only a fit true those numerical data. The horizontal line indicates the value

of two times the effective mass of a strongly coupled 1D polaron.

0

=T
n=0.2

LA R S

—— Fourier series

— — variational

N7 - 4
1 " i 1 1 L 1 " |
-4 =2 4 2 4
4

FIG. 10. The effective bipolaron potential U(z) as function of the relative electron
coordinate z = 2 — 2z for 7 = 0.2. The results are shown for the Fourier series approach

(solid curve) and for the best variational bipolaron wave function {dashed curve).
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FIG. 12, The energy levels e, v forn € 3and ' <ntl{n=3orn' <n(n= 1,'2).‘-

For increasing box length 2L we observe a grouping of energy levels which is a consequence

of the symmetry of the wave functions {calculated with N = M = 15).
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curves are guides to the eye,
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