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Unusual properties of nonlinear sufrace waves propagating in plane layered 
structures and their application in nonlinear optical instruments gave rise to a 
great number of works devoted to their study (e.g., sec surveys [I [based on 108 
and 74 works respectively). But still the subject of surface wave propagation in 
nonlinear media with absorption has not been studied sufficiently.ln this work, 
we consider the properties of TE-polarizcd waves (E = (0, E , O); H = 
= (H , 0, H ), guided by the division boundary between two absortl'ing media. 

X Z 

One of the media (in which z < 0) is supposed bo be linear by its properties and 
is characterized by permittivity E 

1 
and conductivity a

1
• The other medium 

(z > 0) is nonlinear and complies with the Kerr law: 

'2 = '20+ a 1Eyl 2 

It is also supposed that this medium if self-focusing, i.e., a> 0. The sub
stance conductivity of this medium is equal to a

2
. Hereafter, the quantities per

taining to a linear medium will be denoted by index <<I», and those pertaining to 
a nonlinear medium, by index <<2». TE-polarized waves propagate along the axis 
x with Z-normal to the surface: 

] ; (flk x-wl) 
E(x,z,t)=-

2
E(z)e o , 

y y 

where k0= ~. w is frequency, cis velocity of light, f3 is effective refraction index 
c 

for guided waves [I J. From Maxwell's equations we can derive the following 
equation forE (z), which is true for medium 1: 

y 
d2Ef.l) 

----t-- k~ (y, + ib,) Ef,l) = 0, 
dz ) Y 

4na
1 2 

where s, = --;;;-· r, = f3 - '•· 

After solving eqaution (I), we have the following expression for tfy' >(z): 

E!y'> = E0 exp ((0.5y
1 
+ 0.5 (y;+ b;)o 5)05k0z) x 

0 2 2 0.5 xexp(t(-0.5y1+ .5(y
1
+b

1
) (z-z1)). (2) 



Here £
0 

and z 
1 

are constants. As follows from (2), Ey1
) ~ 0 as z ~ - oo. For non

linear medium II we shall have the following transport equation: 

d2 £!2) 
____)'__- (y - ib) £!2)+ i£!2)12 £!2) = 0 

dz2 2 2 y y y • 

where the following values arc introduced: 
4na

2 y2 = tP- <2 , b2=----;;;--- z = zk0 , £!2) = /;; IP). 
y y 

(3) 

We shall have an approximate finite solution of this equation as z ..... + oo, Let us 

present a complex quantity E~ as 

Ey2)= I Ey2) I ei<l(i") = S(z) cia(i") 

After inserting (4) into (3) we have the following system: 

S"- y 2S + S3
- SlJ12 = 0, 

SlJl' + 2S'lJ1 + h
2S = 0, 

(4) 

(5) 

where lJ1 = o', the stroke (') denotes a derivative from Z: If we denoteS'= u, 
then S" = u;;u, lJl'= '11 su. Now we can write down the system (5) as follows: 

u/;u- 11'2S- y 2S + S3= 0, 

lJ15uS + 2ulJ1 + b2S = 0. 

Now we shall successively introduce the following substitutes: 

and write down the system (6) as follows: 

~Vi -K -y2~ +e= 0, 

~ Ki Yv + K Yv + b2~ VK = 0. 

(6) 

Deriving the function K(~) from the first equation of the system (7) and substi
tuting it into the second equation of the system (7), we have the following equa
tion for V(~): 

b;g(Vi-y2+ ~) = V(~Vi$ + 2Vi- 2y2+ 3~)2 

2 

(8) 
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Equation (8) can be simplified by substituting W for V- yzi; + ~2 : 

hi~wi = ( w + Yi- ~2
2

) (~wii + 2w,l. <9> 

We shall search for the solution of equation !9) in the series 

( 10) 

We have taken into account the fact that deriving a soliton solution from 

equation (3) in this manner, where h2= 0 (nonabsorbing medium), leads to the 

condition c0
= 0. 

After substituting the series (I OJ into (9) we have the following: 

((c 1 + y2) ~ + (c2- 0.5) g2+ c
3
g3+ c

4
g4 + c~5 + ... ) x 

x {4c~+ 36ci~
2 + 144c;g4 + 400c;g"+ 900c;g8 + ... + 

+ 24c 1ci + 48ctc3e+ 80c4c11;'3+ 120c5c 1
g4 + l44c

2
c3

1;'3+ 240c2c4~4 + 

+ 360c2c~
5 + 480c3c41;'

5 + 720c3c~0+ l200c4c~7 + ... I= 

=hi/;' (c 1 +lei,+ 3c3~2 + 4c41;'3 + Sc~4 + .. . ). 

Equating the coefficients at equal powers of g we have the following for c.: 
I 

c 1 = 0.5(- y2 + (yi+ bit5 ), 

c2= c~ (14c~+ l2c1- bi)- 1, 

, .... 

Let us analyze the expression for the coefficients c,. At b
2
= 0, all the coeffi

cients ci = 0, i.e., W"' 0. Then V = y2
1;' - 0.51;'2, which holds true for a nonab

sorbing medium. If b2 ~ 0, then "; ;;! 0 and W;;! 0. It follows from the ex pres-

3 



The condition for eigenvalues of the amplitude E0 looks like 

2 £1- El 

a Eo= 0 5 · . + c2 
(17) 

As c
2 

< 0.1, this condition does not differ much from the corresponding con

dition for nonabsorbing media a E~ = 2(•t- <
2

) even in the extreme case of 

b
2 
» y

2
. At b

2
= 0 the coefficient c

2
= 0, so the condition (17) becomes identical 

to the condition for eigenvalues £ 0 for nonabsorbing media. 

Besides (17), from (16) we also have the following additional condition: 

(18) 

At b
1 
= b

2
= 0 this condition changes into the identity 0 = 0 and docs not 

affect the solution of the problem. Considering the other extreme case of 
bi » Y; from the condition (18) we have b1 = b2• The condition where the value 

of b
1 

is close to that of b7 and there is a considerable difference between ' 1 and 

<
2 

seems to be quite possible [3]. In other cases, the identity {18) is the con-

dition for the quantity fJ at which the TE-polarized surface wave is realized in 
the system under consideration. 

So, when b.« y., from (18) we have the following expression: 
I I 

2 2 
2 b2<1- bl'2 

fJ = b2- b2 
2 I 

(19) 

The energy flux of guided surface waves is determined by the formula II 1: 
fJ +® 

P=-- fIE 12dz, 
2c,..0 -® Y 

(20) 

where flo- the medium magnetic permeability. Afler inserting experssions (2), 

(13) into (20) and taking into account(! 7) and the expression tanh (vz- vzo) = 

= 11 (derived from the boundary conditions), we have the following formula for 
the energy flux: 

[

,_, (c+y)o.s 
P=P {J I 2 (2 + 2 ( 2+b2)05)-05+ I 2 + 

0 0.5 + c
2 

y I y I I 0.5 - c
2 

(y 1 + (y~+ b~)oys J 
+ -.fi (0.5 - c

2
) ' 

(21) 
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whereP0 = (;~) (2a k0)-
1 andE0 is the electron constant. In particular, when 

y
1 

>> b
1 

and the quantities b
1 

and b
2 

arc of the same order, from expressions 
(19), <21) we have the following: 

P = 41'0 {1 ( ~~= :~ r5 

<22) 

Let us consider the frequency dependence P(w ). For metals and, under cer
tain conditions, for semiconductors we can write down the following [2,4 [: 

2 
wp 

E= 1--2---2' 
w +w0 

2 
w~o 

b = 2 2 ' 
(w + wo)w 

<23) 

where wp is the plasma of frequency, w
0

= +• r- time of fading. Taking into 

account (23), from expressions ( 19), (22) we have the following functional de
pendence of energy on frequency: 

If w 01 - w 02- w0 , then formula (24) is simplified as follows: 

where 

P- w+2 2' 
2 _ 161'~ [ Vw ] 

WO W + WO 

2 2 
WP!WP2 

v = 2 2 
WPI + WP2 

(24) 

(25) 

From formula (25) it follows that if the inequality V> Sw~ is satisfied, then the 

function P2(w) has the local maximum at frequency 
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Fig. The character of the dependence P

2(w) 

and the local minimum at frequency 
05 

( 
2 v 0 2 2 2 2 05) wmin= -wo+I+(. SV- Vwo) 

Thus, there exist 3 frequencies corresponding to one and the same energy 
flux value for P(w) :s P . This shows the possibility of choosing an optimum max 

frequency regime from 3 possible regimes at the given value of P. 
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