


I. INTRODUCTION

Two identical charged particles (electrons), being placed in a polar or ionic crys-
tal, interact with the [attice vibrations which results in attractive forces belween
them. Under certain conditions a bound state can exist which is constituted of two
electrons surrounded by a common cloud of virtual phonorns. Such a quasiparticle is
referred to as a bipolaron. The interest in the bipolaren properties is renewed by a
possibility of a bipoleron mechanism of high T. supercotiductivity. Tt was supposed
that bipolarons could act as charge boson undergoing the Bose-Einstéin condensation
in a real space. For large bipolarons such a mechanism was studied by:Vinetskii and
Pashitskii’ and then significantly developed by Emin and Hillery®. For the recent
discussions see also papers by Verbist, Peeters and Devrecse® and by Gataudella,
Iadonisi and Ninno?, '

The prerequisite of such theories is the very existence of bipolarons. As is known,
the problem of bipolaron formation is studied attentively. People investigate vari-
ous bipolaron characteristics such as its ground-state energy, effective mass, radius,
number of virtual phonons in a cloud (for the references see a review article®). The
main conelusion of the majority of the published papers is that bipolarons can cxist
at some critical values of coupling constants of the competing interactions: both
electron-phonon attractive and Coulomb repulsive [orces. It is clear thal to let
the bipolaron to be formed, the repulsive forces should be weak enough while the
electron-phonon interaction has to be sufficiently strong Lo overcome that repulsion.

To calculate the critical values of the coupling constamts authors. used as a rule
different versions of variational upper estimates for the bipolaron energy. The ad-
vantages of such an approach are obvious: these methods lead to estimates of the
hipolaron characteristics for the whole range of values of the electron-phonon cou-
pling constant, especially for its intermediate values. Polaron eflects are important
for many polar dielectrics and semiconductors of the A/ BY and the AT/ BY! groups.
Indeed, the small and intermediate values of the electron-phonon coupling constant
are usual for these materials. But the investigation of the bipolaron characteristics
in the limiting cases of the weak- and strong-coupling regimes is of use to prove the
effectiveness of the approximations being made.

Besides, there exist systems with anomaly high values of the electron-phonon
coupling constant. Between those should be mentioned protein globules and solvated
electrons in liquids {see, e.g., papers by Pushchino group®). Another reason is the
existence of the excited states of the bipolaron which are not taken inte account by

variational calculations. The exact equation for single polaron led to the detailed
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investigation of such states (see e.g.”}. The analogous equations for the bipolaron
could reveal also the richness of this system. The formation of the bipolaron and
the existence of excited states of polarons and bipolarons is important in processes
of electron transfer of excitations in a broad variety of condensed matter.

The goal of the present paper is to derive the exact equations for the bipolaron
in the strong-coupling limit. The same limit for the single polaron was investigated
in early papers® by Pekar, Landau and Pekar, Bogolubov and Tyablikov. Numerical
calculations for 3D (bulk) polarons have been performed by Miyake® and for 2D (flat)
polarons - by Wu, Peeters and Devreese'. In a recent paper by Bogolubov!! the pro-
cedure of deriﬁing the strong-coupling equations was simplified. Here we generalize
it to the case of the bipolaron and improve this approach to aveid divergencies.

The modern art of creating new materials such as thin films and quantum wires
makes it possible to confine moving electrons in one or two dimensions. That is why
we consider bipolarons in a space with arbitrary number D of dimensions. Note,
that at D = 2 the polaron effects are enlarged'® ™,

The present paper is organized as follows. In Sec. 2 we derive the exact equations
for the bipolaron characteristics in the strong-coupling limit. In Sec. 3 we study Lhe
equation for the bipolaron ground-state energy and effective mass. Sec. 4 is devoted

to the reduction of the results obtained to the one-dimensional. case.

II. BASIC EQUATIONS

The Frohlich Hamiltonian for two electrons interacting with phonon field is writ-
ten as follows

H__+__+Zﬁwkaak-l-U(|71—T2])+

2m
Z [G'E Vi (6“;'?‘ +e 'T"’) + RLVE (e"’”‘ + e""E'Fz)} . {2.1)

where 7;(p;) are the positions (momenta) operators of the i-th electron, m is the
electron band mass, :_1‘1. (ag) are the creation {annihilation) operators of phonons
with the wave vector k and the frequency w;. The potential U{| 71 — 73 |) stands for
the direct {Coulomb) interaction between electrons, the quantities V; are the Fourier
transforms of the electron-phonon interaction. The total momentum of the system

is conserved: one can readily verify that the operator

D

P = —ikV. —ihV., + Y §ik ala; 2.9
1 2 E Kk
i

commutes with the Hamiltonian (2.1). So we can consider states with the total
conserving momentum being a ¢-number P. To realize this we use a Lagrange factor
7 in a conventional manner. Let us take instead of (2.1} a new Hamiltonian of the

form

H@)=H-%. (p1+m+zhkaa - P). | (2.3)

The physical meaning of the Lagrange factor # is quite abvious from the relation
OH(7)/9P = ¥, so ¥ is the average velocity of the system. Then .at small velocities

one may define a bipolaron effective mass m* -as usual

P=m" i+ 0. T e
The first step to treat the Hamiltonian (2.3) is to apply the umtary Mansforma—
tion:
Uy =ex ‘—iF1+F2- 2mv — Zh.’;d' ) ;
1= P oh muv a d Ea;r H
i

H'(®) = U, HEH UL . (29)
The operator (2.2) of the total momentum is transformed then as follows: "

Fr= PU T =p+fh+2mi+(1- a)th a.a,c S (2.6)

The goal of the transformation (2.5) is 1) to reveal the motion of the centér of mass of
two electrons (which is not the same as the bipoleron center of miass) and 2) to take
into account the recoil effects. The idea to use for this a parameter @ was suggested
in Ref.1 When a = 1 this part of the transformation generalizes the well-known Lee-
Low-Pines transformation by using the c.m. coordinate of two electrons instead of a
single electron coordinate, which makes it possible to work with the total momenta
as with a enumber. ‘
With this transformation the Hamiltonian takes the form:
H'(v)= £+E§-+U(| ] — |)—m1}'2+17-15+
2m.  2m

2

Z aleg [hwk —hE-7- —hk (7 +p2)] y Z W alag | +

Z [ak Vpe ioF A (R g o) 4 h.c.] . (2.7)



Now we use the transfermation

Uy = exp [Z (c}(f;;)a,; - c;(ﬁ')a}z)] ,

k

HY() = U, H(5)Y U} (2.8)

to shift the phonon field operators a; — a; + ¢z(7) by c-numbers c(7). By this
shifting one can describe a polaron in a strong coupling limit as an electron captured
by a potential well generated by a large classical component of a phonon field. The
resulting Hamiltonian can be splitted then into two parts: H*(7) = Hp(¥) + Hini (7).
One of them contains the energy of the free phonon field and the energy of electrons
moving in an effective potential:

72

Ho(ff)——+ +U(|T|—?2|)—TI?.‘U +3-P+

2m

2
12 a? e T — a — a T 12
3 leg(®F {hwp + o (hk)* — Ak - (u+ 5 (Pt ) — — ; Kl jed )| )} +

E

k

2 2
1 v _sE o+ 2im 45y 2 T led TV
> alag |hwg + oo (hE)" — Bk (v+ 57 (P1+ P2) = 5— Zl: Al le{ )] )

Z [c;(ﬁ)l/';;e"'."r"ﬂ#z (e.';?-f, + e:‘E-F;) + h.c.] _ ) (2.9)
k

The other part H;,; of the Hamillonian (2.3) can be written in a normally ordered
form and contains terms playing no role in what follows.

Up to now bE(U) are arbitrary c-numbers. To fix them we average M (v) = Ho(v)+
Hii(¥) with Ho(¥) defined by Eq. {2.9) over a trial wave vector

| @z) = d3(F1.72) | 0).

The average < H,(0) >= 0 is equal to zero so we consider the variational problem
with the energy functional of the form

Elgel = (Ho(@) ~ E (@ | @) 1) = (20 4 ( Py 4 i 7= 5 1) +
(B + 7o) - DBk leg(8) +
E

(¢3 | 3) (ﬁ-ﬁ—m62 -2

2m
(¢a|¢a>2|ck(6)1’( f—(ﬁk) ~ Rk v+—hk Zhllﬁvl)

4

23" [V; () pila) + V7 cH(7) pi(a)] +E((¢al¢u) ~1), (2.10)

E

where the notations are used
1 - g " -..’ i-. ik - — l—o - e
pE(a) = E f dndrg e iek J;’_Fl (E kA + e'f‘ﬁ) ¢;{(T‘1 ,T‘z) ¢ﬁ' (T] ,1"1) . (2] 1)

A parameter E in Eq. (2.10) is a2 Lagrange factor. A variation over E gives us
the conventional normalization of the wave function: - '

(b |6 = [ disdfs 6572 72) o) = 1. (212)

Note that the Hamiltonian (2.3) is symmetrical under permutations the places ol the
electrons. So the wave functions shoutd be either symmetrical (para-bipolaron) or
antisymmetrical {ortho-bipolaron): ¢z (7,7} = £éz(F, ™)

The variations of the functional E[¢g] of Eq. (2.10) over cz(¥) and () lead to

the solutions for these e-numbers:

e(?) =

2V p;(a)
hwg — hE -5 — 2 KE- (5 + 52) + & [2hk - Tp A Jed @ 12 +(hk)?]

(2.13)

The variation of the functional E[¢s] of Eq. (2.10) aver # leads'to a Tink of the

average velocity wilh the total bipolaron momentum:

P=2mi+ Y Ak le(@ - (2:14)
F : .

On the other hand, the averaging of the operator Pr = UL PUs* with £ and U,
being defined by Eq. (2.6) and Eq. (2.8), respectively gives us the result

(Bry =< fy + Fr > +2mT + (1 — a) 3 BF |eg(@)”. (2.15)
ik

Comparing Eq. (2.14) and (2.15) we arrive al the relation
<P +p >=aZﬁE leg(D)17, (2.16)
z ,
which simplifies the expression for the coefficients ¢z(¥):

2V2 pi(a)
() = — L . 2.17
“#(?) heg — RE - + (a3/4m) (1F)? (2.17)

5



and the expression (2.10) for the functional E[¢3].

Introducing the notation M = 2m/a? we may represent the denominator of the
expression (2.17) as follows:
(k)?

(M7 —RE)?  M3F?
2M

huy — B -7+ o 7

= hw; + (218)

which describes the transition between a free moving particle with the momenta Mv
and a state with one emitted phonon with the momenta k. Thus, the parameter
M should be close to the bipolaren effective mass m* which is large in the strong
coupling limit. That 1s, the parameter a is small in this limit, but if one takes a = 0
one arrives at the expression for cz(¥) whose denominator can be equal to zero no
matter how small value takes the velocity #. In theories without a cut-off this leads to
divergencies which is the main theoretical disadvantage of the approach!'. With an
electron recoil energy being taken into account we avoid this difficulty. The equation
for the parameter a can be obtained by the variation of Eq. {(2.10). The last of the
variational equations 6 E[¢5]/8¢% = 0 leads to the Schrédinger equation for the wave
function ¢g (7 ,72) where the Lagrange factor £ plays the role of the ground-state

energy of the system. These two equations will be presented in the next Section.

III. BIPOLARON GROUND STATE ENERGY AND EFFECTIVE MASS

To come to the ground state energy and the effective mass one has to consider the
limit of slowly moving bipolaron. At first we concentrate on the bipolaron effective
mass. When 7 tends to zero one may to neglect terms of the order of o{%?). We denote
by ¢ the wave function ¢y at ¥ = 0 and all averages should be now performed over
$o rather than over ¢z. Expanding c;(¥) of Eq. (2.17) in powers of # and substituting

it into Eq. (2.14) we arrive at the equation for the bipolaron effective mass

| Ve |2 | ppla) |2
[hw; + (a2/4m)(RE)?]

m"=2m+8Y (- hk) (3.1)

where 7 is a vector of unit length in a direction of the total momentum P (or the
average velocity 7). For the isotropic electron-phonon interaction one may replace
(7 - ]-c‘)2 by £2/D where D is the number of space dimensions. In this case Eq. (3.1)
is simplified: :

c o Bz Vel leg(@) P
me =t 5 2 (1) [z + (a2/4m) (REY2] 32
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Now we turn at the bipolaron ground state energy. At # = 0 we obtain from
Eq. (2.10) the energy functional

Blg = (2o + Py (A A D+
02 - -
(do | o) Z legl? [hw,; + a“““)’].'*
22 V-ckpk(a)+V***(a)]+E((¢o|¢o>—1) S 63

where it follows from Eq. (2.13) the expression for the coefficients ,:é-:

= ee(0) = — 3 PE:(“—} ' .
% = <i(®) howg + (a2/4m)(RE)? - (3.4)

The equation for the parameter a takes the form

a VP lag@ | _, |
Oa Zﬁw,;+(a2/4m)(m€)z'"0' ' (358)

Variating the functional E[¢o] over ¢ we arrive at the Schradinger equation for
the bipolaron at rest:

2y = , .
[% + 2p_; +U{F, ™2 ¢u)] #o(y,72) = Eg dolFi, ) .7(3.6)

with the effective potential

. . | Ve )P | pg(a) [°
U(Fl,fa;¢o)=U(|T1—"2|)+4§: . = ~
= hwy + (a?/4m)(RE)?

hwp +

-22 L:4m)(m [p(a) R (Fr 4 ) tec]. @7

Note the translation degeneracy of Eq. (3.6): if ¢o(7 ,72) is a solution then ¢o(7 +
o,72 + 7o) is also a solution to the same equation and the same energy with any
vector 7p. Choosing some. of these solution means to fix a point somewhere in a
space. Afterwards Eq. (3.6) and its solutions are completely determined.

The equations derived can be formulated as the variational problem which is
useful in numerical calculations. Really, the ground-state energy Fo can be defined
as minimum of the functional E[¢o] of Eq. {(3.3). The average kinetic energies of

both electrons are equal due to the symmelry so one arrives at the functional
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E[¢D] =T+ (jv

R =

T= —/dFlsz IVI ¢O(Fl :FZ)IZ!
m .

|2

5~ 1%l o) N
42 (02/4m)(ﬁg)2 +jd 1R U(| AL~ 72 ) [do{r1,72)|°. (3.8)

I3 hw,;+

bl
I

Now we specify the electron-phonon interaction for the case of the Pekar-Fréh-
lich optical polarons for which the phonon frequency does not depend on the wave
vector: wy = wp. According to the paper by Peeters, Wu and Devreese!® one has in
D-dimensional space '

1/2
Vi = —ihwp (VLD 1,/ 2\/‘)D i 2=t )) , (3.9)

where V' is the volume of a P-dimensional “crystal”. The indices 2 are introduced
in the notations for the electron-phonon coupling constant ap and LO-phonon fre-
quency wp. At D = 3 one arrives al the standard electron-phenon interaction with
conventional phonon frequency wap = wio and dimensionless electron-phonon cou-
pling constant

o = & = e? ( 1 1 m
S T P Phuno
Here e is the electron charge and ey (ep) are the high frequency (static) dielectric

constants.
With the parametrization (3.9) one has

I VE |2 eiE-r‘_ aD\/_ mwp
ZE: fwg + (a?/dm)(RE)? heom (a V & ) ’

1
I = [dalt =PI exp(-22]7). (3.10)
a

The function J(7) can be expressed as a sum of modified Bessel and Struve functions:

J() = ‘/T’? r (#) (—l) o [1%_1 (~2r)+Lp_, (—'Zr)] . (3.11)

T

To describe the direct interaction of electrons we choose the Coulomb type po-

tential
Lo Up [ &
U(|r1—r2 I)i_thIFl—Fgl m—um. (3.12)

At D = 3 the dimensionless Coulomb coupling constant takes the form

e? mMwWLo Via
UaD - = i .
hwro€o A 1- foo/fo

From Eq. {3.10), (3.12) it follows then the concrete reahzatxon of the Eq. 3.3)7

for the average potential energy of large bipolaron:

- 4 2 - - - = ~f =f
7 = hwp {- ‘/;“D /drlclrgd 72 1do(Fa, )1 6ol 7o) X
mop (=T Rt R T
I [V 7 ( a 2 )] *
Up fd dr |¢0(r],7'2)| . L o (3.13)
V m I | o :

where we took into account the symmetry of the wave functions.
Note that at @ ~ 0 we have from Eq. (3.10)

1im1J(f)=-1— o (:3._14)

a—0 g a

where from we obtain instead of Eq. (3.13) the average potential energy

12 -'r =72
Up = ﬁwD1/ { 2\/'apfdﬂdﬁdf',dr*; |¢°(r"r|’r)l I?EI p7all
R ‘l_ 1

UD/drld" 19o(71. ) } (3.15)

[f =72}

The energy functional (3.8) for 3D-bipolarons with the potential energy given by
Eq. (3.15) appeared at first in the pioneering paper by Pekar and Ol'ga Tomasevich'”
as a starting point for the Pekar’s adiabatic approach to the bipolaron problem. The
very name bipolaron have been given to this quasiparticle in the cited paper albeit the
authors made a wrong conclusion on a bipolaron unstebiliy. Here we start from the
Frohlick type Hamiltonian and find the same functional as the leading approximation

as is shown in the next Section.

" IV. APPLICATIONS TO 1D-BIPOLARONS

In what follows we shall use a scaled electron-phonon coupling constant

ap = Gpﬁ—_—r[g?(g;;)ﬂ]- ‘ (4-17)
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In a similar way we define a scaled Coulomb coupling constant U/}, so that the ratio
Up/ap = Up /ol remains the same. At D = 3 we have a4 = asp and Uy = Usp,
but the rencrmalization (4.1) of the electron-phonon coupling constant is necessary
to obtain finite results when D — 1 (see Ref.’®). To derive the equation for the

strong-coupling limit in its final form it is convenient to perform a scaling
oy Y mwp’ g’

To preserve the normalization of the wave function one has to perform as well the
scaling

AR fm [ R . fmop\? . .
$o | = vk VAol Rl V1V ey do(F1,72) -

o ¥ rmwp o V mwp
The effective potential transforms then as follows:
U (71, 725 ¢o) — hwpal U7, 725 do) -

As the result one arrives instead of the Eq. (3.6) at the Schrodinger equation (p; =
—iVi):

2 + o5 + Ulr 72, ¢o)] $ol71 ,72) = €0 Pol1 ,72),

E
-, (4.2)

fo = —
hwpal}

where the potential of Eq. (3.7) takes now the form

aT(D/2) - {@ 1
VAL[(D ~1)/2] Lo |7y — 7

a = - = Y R
4\/§TD drydiadr i di'y (o1, 72) 7 | oy, 73)|% x

L L1 T
“p b 2o B
D

4v22R de'd o7

— = e~ ] |
J (ab‘r'z br‘l _ 1"1‘|"'n“226"':l"1 rz)]} (43)
D

and the average potential energy is as follows

U(Furz,(ﬁo

10

-

. r(D/2 - G
\/'I‘[(D—l)/2]{ 2 [ dn =l

R Rt AT R TG

J (a’D i . T i e Fi‘) } : (4.4)

205,

The average kinetic energy is the same as in Eq. (3.8) except of the factor B /m.
Eq. (3.2) for the bipolaron effective mass together with Eq. (3.9) and the same
strong-coupling scaling leads at the expression
My Y20/ [ kK leg(b/eB)l"
mo D #ltD/z kD-1 1 +(b/4c¢ k23
To apply the equations derived to 1.D-bipolarons one has to use the relation
. T(D/2) 1 . ,
- —=§ 4.6
b 7o - na - 0 (49

where 7 is a D-dimensional vector and z is its component along the difection of the

(45)

easy motion of the bipolaron. Besides it follows from Eq. (3.11) the expression

r(D/2) loaa
fm - Y0 =2 (47

With Eq. (4.6), (4.7) being inserted into Eq. (4.4) one arrives.at the corresponding

relations for the average potential energy in a 1D-space

fdz1 lolzs )1 —

QlD

4\/59;—]3 ’/dzldzzdz’alz'2 |dolz1, 22))° |do(z} 20 x

e (- ). (48)

Performing in succession changes of variables in the second term of Eq. (4.8)

’ 1 ’
n—z; zl+22—71 Zy

b aofn.

}
2aqp

, b/ 2eip _ zh— 2z
21-—>z + =, 21—)21T_b/—]'2-, z;—»z;—{-—m -(4.9)
we arrive at the following representatlon for {7
7 — o Uip 2 i 2
U=2 — dZ]_ |¢o(2’1 ,.Z])l ’2 d..,]_ngdZ 1dZ e |¢o(zl ,z2)| X
ahp b/2

b/2am 2

b/2afh
O

+ (24 — 23)———22— 2}
)

11

(4.10)




Taking the limit o}, — oo in Eq. (4.10) we obtain a strong coupling expansion
_ - 1
U—Ug+ﬁU1+0(a_ﬁ;), (411)

where the linear term dissapeared because of the integration over z4 and 0y, U, are
given by equations

U
Ua = 2—-“—:" dZ[ |¢Q(21,2'1 | - 4\/§fd21d22d2; I()So(zl ,Zg)lz |¢0(21 ,2;)'2 (412)

and

0= VIV [ dndests, | Stdotor, 2| [l .z;w] -

2\/§b/d21d22d2‘2|¢0(21 ,z)[? [|¢’o(zl,z'2)|2 +{zy — 22) |¢50 (= ,zg)li] (4.13)

Minimum of the potential energy is reached at some finite value of b as it follows
from Eq. (4 13). Thus, the parameter M in Eq. (2.18) behaves at large o as
M = Ofaj}h). To calcuate the leading term of the strong coupling expansion we
may deal only with {§;. The corresponding eflective potential obtained in the same
manner from Eq. (3.6) is of the form

Ulzy,z2;d0) = 4\/§/dzld32dz'2 Bi(21, 22) Bi(z),25) —

4\/_fdz, ¢u(~1,-,)+¢0(~2.~1)]+2”D n—z).  (4.14)

The same limit D — 1 for the effective mass of . (4.5) creates no problems. Using
the symmetry of the wave-function ¢o(z;, 22) it can be written as follows:

rd ’ a
=2+ 8\/5“10 fdzld-’-'2d32 [a_zll%(-’l 132)|2] [%Wo(zl |‘~"‘2)|2] . (4.13)

We convince ourselves that the bipolaron effective mass and the parameter A are
both proportional to o/}, that is, M indeed is close to m*. It is not equivalent to
" because we calculate the bipolaron energy only to a leading term of the strong
coupling expansion. The same is valid for the spaces of dimensionalities D = 2, 3.
For instance, at D = 3 we have from Eq. (3.10) ‘

J(F) = %(1 —e ). (1.16)

At large agp the second term will not contribute and we arrive at the convenlional
potential energy (3.15).
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V. CONCLUSI&N

To conclude we presented the systematic study of the equ&tions describing large
bipolarons in a strong coupling regime in spaces of arbltrary dimensionality. Some
of these equations were used previously for 3D case. “The numerical restlts for 1D
case cbtained with these equations will be published elsewhere. - '
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