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I. INTRODUCTION 

Two identical charged particles (electrons), being placed in a polar-Or ionic crys

tal, interact with the lattice vibrations which result5 in attractive forces between 

them. Under certain conditions a bound state can exist Which is constituted of two 

electrons surrounded by a common cloud of virtual·phondrts. Such a quasiparticle is 

referred to as a bipolaron. The interest in the bipolaron ptop"erties is renewed by a 

possibility of a bipolaron mechanism of high Tc supercotiductiVily. -It was supposed 

that bipolarons could act as charge boson undergoing the Bose--Einstein condensation 

in a real space. For large bipolarons such a mecha.Iiism was studied by:Vinetskii a.nd 

PashitskiP and then significantly developed by E1nin and Hillery2. For the rC'c:ent 

discussions see also papers by Verbist 1 Peeters and Devrecse3 and by Gatruulella, 

ladonisi and Ninno4 • 

The prerequisite of such theories is the very existence of bipolarons. As is known, 

the problem of hi polaron formation is studied attentively. People: investigate vari· 

ous hi polaron characteristics Such as its grou-nd-stat~ energy, effective- mass, radius, 

number of virtual phonons in a cloud (for the references see a review article5 ). The 

main conclusion of the majority of the published papers· is that bipoJarons ca.O exist 

at some critical values of coupling constants of the competing ·interactions: both 

electron-phonon attractive and Coulomb repulsive forces. It is clear that to let 

the bipolaron to be formed, the repulsive forces should be weak enough while the 

electron· phonon interaction has to be sufficiently strong to overcome that repulsion. 

To calculate the critical values of the coupling constaHts authors. used ·as a Tule 

different versions of variational upper estimates for the bipolaron energy. 'fhe ad

vantages of such an approach are obvious: these methods lead tO estimates of the 

bipolaron characteristics for the whole range of values of the electron-phonon cou· 

piing constant, especially for its intermediate values. Polaron effects are important 

for many polar dielectrics and semiconductors of the A111 nv and the A11 BVI groups. 

Indeed, the small and intermediate values of the electron-phonon coupling constant 

are usual for these materials. But the investigation of the bipolaroil characteristics 

in the limiting cases of the weak- and strong-coupling regimes is of use to prove the 

effectiveness of the approximations being made. 

Besides, there exist systems with anomaly high values of the electron-phonon 

coupling constant. Between those should be mentioned protein globules and solvated 

electrons in liquids (see, e.g., papers by Pushchino group6 ). Another reason is the 

existence of the excited states of the hi polaron which are not taken into account by 

variational calculations. The exact equation for single polaron led to the detailed_ 
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investigation of such states (see e.g. 7
). The analogous equations for the bipolaron 

could reveal also the richness of this system. The formation of the bipolaron and 

the existence of excited states of polarons. and bipolarons is important in processes 

of electron transfer of .excitations in a· broad variety of condensed matter. 

The goal of the present paper is to derive the exact equations for the bipolaron 

in the strong-coupling limit. The same limit for the single polaron was investigated 

in early papers8 by Pekar, Landau and Pekar, Bogolubov and Tyablikov. Numerical 

calculations for 3D (bulk) polarons have been performed by Miyake9 and for 2D (fiat) 

polarons- by Wu, Peeters and Devreese10• In a recent paper by Bogolubov11 the pro

cedure of deriving the strong-coupling equations was simplified. Here we generalize 

it to the case of the bipolaron and improve this approach to ~void divergencies. 

The modern art of creating new materials such as thin .films and quantum wires 

makes it possible to confine moving electrons in one or two dimensions .. That is why 

we consider bipolarons in a space with arbitrary number D of dimensions. Note, 

that at D = 2 the polaron effects are enlarged12
-

14
. 

The present paper is organized as follows. In Sec. 2 we derive the exact equations 

for the bipolaron characteristics in the strong-coupling limit. In Sec. 3 we study Lhe 

equation for the bipolaron ground-state energy and effective mass. Sec. 4 is devoted 

to the reduction of the results obtained to the one-dimensional_ case. 

II. BASIC EQUATIONS 

The FrOhlich Hamiltonian for two electrons interacting with phonon field is writ

ten as follows 
""2 ""2 

H = EL + !2 + L nw;; a!a;; + U(l i', - ii I)+ 
2m 2m k k 

L [ ak vk ( eik-rl + eik-i''2) + a 1 vk~ ( e -ik-rl + e -ik-T2) J (2.1) 

k 

where T;(jJ;) are the positions (momenta) operators of the i-th electron, m is the 

electron band mass, ~1 (ak) are the creation {annihilation) operators of phonons 

with the wave vector k and the frequency wk. The potential U(l T1 - i'2 I) stands for 

the direct (Coulomb) interaction between electrons, the quantities\~~~ are the Fourier 

transforms of the electron-phonon interaction. The total momentum of the system 

is conserved: one can readily verify that the operator 

J3 = -iltV~1 - i1iV~2 + L lik a1ak 

k 

2 

(2.2) 

commutes with the Hamiltonian (2.1). So we can consider states with the total 

conserving momentum being a c-number ft. To realize this we use a Lagrange factor 

iJ in a conventional manner. Let us take instead of (2.1) a new Hamiltonian of the 

form 

H(VJ = H- ii. (ih + iH I: Af a~a,- P). (2.3) 
;; 

The physical meaning of the Lagrange factor V is quit-e ahviollS from t-he relation 

8H(V)/8P = ii, so ii is the average velocity ofthe system. ThOR .at small velocities 

one may define a bipolaron effective mass m* -as l..JSUal 

P = m" ii + O(ii'). (2.4) 

The first step to treat the Hamiltonian (2.3) is to apply the u~tary i,ransforma

tion: 

[ 
.i',+i'2 

U, = exp ~'2h · 

H'(V) = U1 H(ii) U;'. 

( 2mii- a~ Ttk a~a;;)] ; 

The operator (2.2) of the total momentum is transformed then as follows: 

fl• = u, P U;' = p, + p,+ 2mii +(I- a) L Ttk ~~aE. 
;; 

(2.5) 

(2.6) 

The goal of the transformation (2.5) is I) to reveal the motion i>f the center of mass of 

two electrons (which is not the same as the bipolaro-n center o) rriasS)' and 2) to take 

into account the recoil effects. The idea to use for this a parameter a was ·suggested 

in Ref.15 When a= 1 this part of the transformation gerleralizes the well-known Lee

Low-Pines transformation by using the c.m. coordinate of two electrons instead of a 

single electron coordinate, which makes it possible to work with the total momenta 

as with a c-number. 

With this transformation the Hamiltonian takes the form: 

"' ~2 
H '(ii) p, P2 + U(l ~ ~ I) ~ 2 ~ _, v = - +- r1 - r2 - mv + v · r + 

2m 2m 

( )

2 

t - a - a2 - t ~ a.a- [nw- -lik · ii- -lik · (ih + p2J] +- ~ lik a.a- + 
~ k k k 2m 4m L- k k 

k k 

I; [a;;V;;e_;.o.''i" (e;;;.,-, +e;>.;;) +h.c.]. (2.7) 

;; 
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Now we use the transformation 

u, = exp [ ~ (ci(v)a;;- c;;(v)an] , 

H"(v) = u, H'(v) u;' (2.8) 

to shift the phonon field operators a;; -+ a;;+ c;;(ii) by c-numbers c;(v). By this 

shifting one can describe a polaron in a strong coupling limit as an electron captured 

by a potential well generated by a large classical component of a phonon field. The 

resulting Hamiltonian can be split ted then into two parts: H"(v) = H0 (v) + H;,t(v). 
One of them contains the energy of the free phonon field and the energy of electrons 

moving in an effective potential: 

_, "' 
H ( "' p, p, U(l - - IJ _, - P-o v 1 = - + - + r1 - 1'2 - mv + v · + 

2m 2m 

I: lc;;(ii)l' [hw;; + .i...(t.k)2 
- hk. (v + ~ (p, + p,) - .i._ I: t.f lc,~ v)l')] + 

k 4m 2m ·4m t 

~ a1a;; [hw;;+ 4a~(hk)2 -hk· (ii+ 2: (jJ, +P,)- 2: 2( hllc~v)l')] + 

L C,t(V') V,t e-iak-~ eik-T1 + e•k-r2 + h.c .. 
[ 

- '+' ( - - ) l (2.9) 
k 

The other part Hint of the Hamiltonian (2.3) can be written in a normally ordered 

form and contains terms playing no role in what follows. 

Up to now c.dV') are arbitrary c-numbers. To fix them we average H("lj) = Ho(ii)+ 

H;,,(ii) with H0 (ii) defined by Eq. (2.9) over a trial wa-·e vector 

I <I> a)= ¢;;(r, J1J I OJ. 

The average< Hint(V) >= 0 is equal to zero so we consider the variational problem 

with the energy functional of the form 

.. 2 "'"2 

E[¢o] = (Ho(ii))- E ((<Pol<!>;;)- 1) = (
2
P' ) + (12) + (U(I i',- i', I))+ 
m 2m 

(¢•1 ,P;;) (v·P-mii')-
2
: (iJ, +iJ,) · I;nk [c,(ii)l'+ 

;; 

(¢• I ¢•) ~ lc;;( iiJI' ( nw, + 4"~ (lik)' - n"k. v + 4a~ !if. L, r.T lc~ v)l') + 

4 

2 I: [V;; c;;( ii) P;;( a) + v;; cf( v) p~( a) l + E ( ( q,. I M - 1) ' 
;; 

where the notations are used 

1 J - - -···-~ ( ;;;., ''"") . - - - -) P;;(a) = 2 dr,dr2 e ' e '+ e >/i0c(r, ,r,) ,P;;(r, ,r, . 

(2.10) 

(2.11) 

A parameter E in Eq. (2.10) is a Lagrange factor. A variation ·oVer E gives us 

the conventional normalization of the wave function: 

(ifJJ I q,,) = J di',di', ,P~(i', ,i',) ,P.(i',,i',) =I. (2.12) 

Note that the Hamiltonian (2.3) is symmetrical under perm~tations the places or the 

electrons. So the wave functions should be either symmetrical (para-hipolaron) or 

antisymmetrical ( ortho-bipolaron ): q,, ( i'1 , i',) = ±,P, ( i'2 , i'1 ). 

The variations of the functional E[,P;;] o[ Eq. (2.10) over c;;(v) and c~(v) lead to 

the solutions for these c-numbers: 

c;;(v) = 
2 V: p~(a) 

k k (2.1 :! ) --- 'l-- -· hw;;- nk · v-
2
';,. nk · (jJ, + jJ,) + ;m [2hk · 'Lr hi lc~v)l' + (t•k) 2

] 

The variation of the functional E[¢;;] o[ Eq. (2.1 OJ over v leadSto a li'nk o[ the 

average velocity with the total bipolaron momentum: 

- ~ - 2 P = 2mv + ~hk lc;;(ii)[ . 
f 

. . . 
(2.14) 

On the other hand, the averaging of the operator i)/f = u2P'u2-l with p, and u2 
being defined by Eq. (2.6) and E<i· (2.8), respectively gives us the result 

d"') =< P• + j}, > +2mii + (I - a) I: hk [c,( v)l'. 
k 

Comparing Eq. (2.14) and (2.15) we arrive at the relation 

< iJ, + p, >= a I; nk lc;;( iiJI', 
k 

which simplifies the expression for the coefficients ck(V): 

2 V: p'(a) 

c;;(ii) =- nw-- nk. v ~ (a 2 f4m)(hk)' 
k 
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and the expression (2.10) for the functional E[<l>.]. 

Introducing the notation M = 2mja2 we may represent the denominator of the 

expression (2.17) as follows: 

liw· -lik. ii + (1ik)
2 

= liw- + (Mii- nk)' _ Mii' 
' 2M ' 2M 2 ' 

(2.18) 

which describes the tfansition between a free moving particle with the momenta A1V 

and a state with one emitted phonon with the momenta lik. Thus, the parameter 

M should be close to the bipolarcn effective mass m• which is large in the strong 

coupling limit. That is, the parameter a is small in this Jimit, but if one takes a = 0 

one arrives_ at the expression for c;.;(V) whose denominator can be equal to zero no 

matter ?ow small value takes the velocity iJ. In theories without a cut-off this leads to 

divergencies which is the main theoretical disadvantage of the approach11 . With an 

electron recoil energy being taken into account we avoid this difficulty. The equation 

for the parameter a can be obtained by the variation of Eq. (2.10). The last of the 

variational equations 8E[4>v]/84>~ = 0 leads to the SchrOdinger equation for the wave 

function r/>v (T1 , T2) where the Lagrange factor E plays the role of the ground-state 

energy of the system. These two equations will be presented in the next Section. 

III. BIPOLARON GROUND STATE ENERGY AND EFFECTIVE MASS 

To come to the ground state energy and the effective mass one has to consider the 

limit of slowly moving bipolaron. At first we concentrate on the hi polaron effective 

mass. When iitends to zero one may to neglect terms of the order of o(V 2
). We denote 

by c/Jo the wave function t/>11 at V = 0 and all averages should be now performed over 

c/Jo rather than over 4>v- Expanding ck(V) of Eq. (2.17) in powers of iJ and substituting 

it into Eq. {2.14) we arrive at the equation for the bipolaron effective mass 

__ 2 IV,I'Ip,(a)i: 
m• =2m+ 8 ~ (n ·nk) [nw, + (a'/4m)(lik)']' 

k 

(3.1) 

where ii is a vector of unit length in a direction of the total momentum fi (or the 

average velocity iJ). For the isotropic electron-phonon interaction one may replace 

(ii · k) 2 by k 2 / D where D is the number of space dimensions. In this case Eq. (3.1) 

is simplified: 

8 - 2 I Vk I' I P;(a) I~ . 
m· =2m+ D ~(lik) [nwk +(a' /4m)(lik)'j3 

k 
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(3.2) 

Now we turn at the bipolaron ground state energy. At V = 0 we obtain from 

Eq. (2.10) the energy functional 

_, "' 
E[¢<>] = (-~L) + (l'L) + (U(I r1 - i', I))+ 

2m 2m 

2 [ a' - '] · (4>o 1 4>o) I; lc,l r.w, + 
4
m (hk) + 

k 

2 I: [V,c, P;(a) + v; c~ pj;(a)] + E ((~ Ho) -1), 
;; 

where it follows from Eq. (2.13) the expression for the-coefficients _c;~: 

2 v: Pi( a) 
' . . c;; = c,(o) =- nw; + (a'/4m)(lik) 2 

The equation for the parameter a takes the form 

~ [2::: .I v, I' I P>( a l I~ ]· = o. 
8a k liwk + (a2/4ni){lik) 2 

(3.3) 

(3.4) 

(3.5) 

Variating the functional E[ r/>0] over c/JO we arrive at the SchrOdinger ·equation for 

the bipolaron at rest: 

[_, _, l 
;,:, + ;,:, + U(r, , r,; 4>ol </>o( r, , r,) = Eo 4>o(:f"i, i',) 

with the effective potential 

I v, I' I P>(a) I' 
U(r1 , r,; t/>o) = U(l r,- r, I) +4 ~ nw, + (a'f4m)(lik)' 

k 

(3.6) 

-2 I: I v, I' [ .( l _,.,~ ( ,,.. ·;;,) ] 
;; nw, + (a'/4m)(1ik)' P;; a e ' e '' + e' ·' + c.c. . (3.7) 

Note the translation degeneracy of Eq. (3.6): if ¢0(r1 , i',) is a solution then ¢0(r1 + 
To, f2 + io) is also a solution to the same equation and the same energy with ariy 

vector To. Choosing some_ of these solution means to fix a point somewhere in a 

space. Afterwards Eq. {3.6) and its solutions are completely determined. 

The equations derived can be formulated as the variational problem which is 

useful in numerical calculations. Really, the ground-state energy E0 can be defined 

.., minimum of the functional E[¢0 ] of Eq. (3.3). The average kinetic energies of 

both electrons are equal due to the symmetry so one arrives at the functional 
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E[.Po)=T+U, 

T = li' j di'1di", 1\71 .Po(Ti, i",)l', 
m -

- " IV;; I' I P;;(a) I' jd" d" U(l " - IJ I"(" -)I' (3 8) U = -4 ~ ... + r1 r2 r1 - r2 'f'O r1 , r2 . . 
;; liw; + (a2/4m)(lik) 2 

Now we specify the electron-phonon interaction for the case of the Pekar· FrOh

lich optical polarons for which the phonon frequency does not depend on the wave 

vector: wk = wn. According to the paper by Peeters, Wu and Devreese16 one has in 
D-dimensional space 

V;; = -iliwn ( V~~-1 J 2m~n (2jir)D-1 r(D; I)) 1/2 (3,9) 

where Vis the volume of a D-dimensional "Crystal 11
• The indices D are introduced 

in the notations for the electron-phonon coupling constant oo and LO-phonon fre

quency wv. At D = 3 one arrives at the standard electron-phonon interaction with 

conventional phonon frequency w3o = WLO and dimensionless electron-phonon cou

pling constant 

<>3o=<>=~ (L -;)}2/i:o' 

Here e is the electron charge and €00 (t:0 ) are the high frequency (static) dielectric 

constants. 

With the parametrization (3.9) one has 

" IV;; I' - e•>r = hwv <>vV'i J (~ /mWD), 7 liw;; + (a2 /4m)(lik)' a a V---;;;-
1 

J(i') = J dx [I - x'JID-31/> exp (-2x lfl ) . 
0 

(3.10) 

The function J(r) can be expressed as a sum of modi fled Bessel and Struve functions: 

,fi D- I I ~- 1 

J(i') = 2 r (-2-) ( -;:) [1~_ 1 t--z,·) + L~-d-2r)]. (:1.1 I) 

To describe the direct interaction of electrons we choose the Coulomb type po

tential 

U(l i'1-r,)) ~ nwn,- Uv- I /f!_ 
r1 - r2 V ;:;;z:;;; 
8 

(3.12) 

At D = 3 the dimensionless Coulomb coupli-ng -coi:t-stant takes the form 

U,o e
2 

vmWLQ 
liwLofoo Ti 

j2a 
1-<~/<o. 

From Eq. (3.10), (3.12) it follows then the concrete-realization of the Eq. (3.~) 
for the average potential energy of large bipo]aron: 

U- li { 4v'2an jd_d_d-'d"'l"-(- -)-1'1" (-' "')I' = wv --a- Tt r2 r 1 r 2 'YOrl,r2 'f'or 1,r 2 x 

[ fmWD (- -· - - -· ~· )' l J VT r1~r 1 _rt+r2~r 1 -r 2 + 

U [Ejd-d- I.Po(i',i",)l'} D r
1

r,
1 

__ 

1

, 

mwv r1-r2 

where we took into account the symmetry of the wave functions.· 

Note that at a~ 0 we have from Eq. (3.10) 

. I (') I hm-J - = -,1-1' a-o a a - r 

where from we obtain instead of Eq. (3.13) the average potential energy 

llo = liwn {h{-2V'ian jd171
dr,d,7'dr' I<Po(i'1,r,)l'l¢o(i1;,r;))' V ;:;;::;;; 1 , 1- ' I. + r1- r 1 

Un j di'
1
di', l¢oy1, ":ll'} 

I r 1 - r 2 1 · 

(3.13) 

(:3.14) 

(:J.J5) 

The energy functional (3.8) for 3D-bipolarons with the potential energy given by 

Eq. (3.15) appeared at first in the pioneering paper by Pekar and Ol'ga Tomasevich17 

as a starting point for the Pekar's adiabatic approach to the bipolaron problem. The 

very name bipolaron have been given to this quasiparticle in the cited paper albeit the 

authors made a wrong conclusion on a bipolaron unstability. Here we start from the 

FrOhlich type Hamiltonian and find the same functional as the leading approximation 

as is shown in the next Section. 

IV. APPLICATIONS TO lD-BIPOLARONS 

In what follows we shall use a scaled electron-phonon coupling constant 

r[(D- 1)/2) 
a;, = <>nV'i 2r(D /2) 

9 
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In a similar way we define a scaled Coulomb coupling constant UD so that the ratio 

Unfcr.n = U[;fcr.D remains the same. At D = 3 we have cr.~0 = cr.3o and U~0 = U3o, 

but the renormalization (4.1) of the electron~ phonon coupling constant is necessary 

to obtain finite results when D --+ ·1 (see Ref. 18). To derive the equation for the 

strong-coupling limit in its final form it is convenient to perform a scaling 

• i'; [£ 
Ti--+ -, --, 

cr.n mwn 
b 

a=~, 
CiD 

To preserve the normalization of the wave function one has to perform as well the 

scaling 

("[£ "[£) ( fflD r 1 n r2 n 1 mwn ... ... 
4>o - --,- -- ~ aD -- .Po(r1,r2). 

ab mwv ab mwv n 

The effective potential transforms then as fo1lows: 

u (fi, i',; .Po) ~ liwDaZ U(r,, i',; .Po). 

As the result one arrives instead of the Eq. (3.6) at the SchrOdinger equation (Pi = 

-iV;): 

[1 + ~ + U(i', ,i', ;¢o)]4>o(i', ,i',) = <o ¢o(i', ,i',), 

Eo 
Eo=~, 

nwvav 

where the potential of Eq. (3.7) takes now the form 

• • 2f(D/2) { U[, 1 
U(r,,r,;,Po) = JirT[(D 1)/2] ar, li',-i',l+ 

4v'2af j dfidi',di';ai'; l¢o(i', ,i',)l'l¢o(i'; ,>7 ;)1' x 

J 1 r1-r 1 r1+r2-r 1 -r 2 ( 
. ., . . ., ., ) 

aD---- -
b 2a~ 

4v'2 ar j a•; ar; I<Pa(r; J;)]' [J ( "" r; ~ ,.,; _ "~+ \::; - r;) + 

( 
• ., • + • ., ., ) l } J 1 r 2 - r 1 _ r 1 r 2 - r 1 - r 2 

av b 2a.l 
D 

and the average potential energy is as follows 

10 

( 4.2) 

(4.3) 

,, 

~ 

U= 2f(D/2) {Ubjra· l4>o(i',,i',)l' 
v'iiT[(D-1)/2] <>v r, r, lfi-i',l 

aL, j ... ... ... , ... 1 .... ... 2 ... , ... , 2 - 4J2b dr1dr,dr 1dr 2 1Mr,,r,)l 14>o(r 1 ,r 2)\ x 

( . ., . . ., .• , ) } J 1 r 1 - r 1 _ r1 + r2 -. r 1 - r 2 

av b 2a1 • 
D 

(4.4) 

The average kinetic energy is the same as in Eq. (3.8) e;><cept of the factor li.2 /m. 

Eq. (3.2) for the bipolaron effective mass together with Eq. (3.9) and the same 

strong-coupling scaling leads at the expression 

m• _ ,. 4J2 r(D/2) J ik k'lp~(bja)})l' 
-;;;- - 2 +a D ,t+D/> kD-t [1 + (bf4alJ k'J'. 

(4.5) 

To apply the equations derived to lD~bipolarbns one has-to use the relation 

. f(D/2) 1 
B.':\ y'iir[(D -1)/2]17'1 = o(z)' 

( 4.6) 

where Tis a D-dimensional vector and z is its component along the direction of the 

easy motion of the bipo]aron. Besides it follows from Eq. (3.11) the expression 

. f(D/2) ( _ ~ _21, 1 ) 
B.':\ y'iir[(D -1)/2] J i')- 2 e · (

4·7 

With Eq. {4.6), {4.7) being inserted into Eq. (4.4) one arr.ives.atthe corresponding 

relations for the average potential energy in aID-space 

- u;o j ll' U = 2 -,- dz1 l¢o(z,, z, -
am 

4J2Cl~D jdz1dz2dz;dz; l¢o(z1 ,z2)l'l¢o(z;,z;)]' X 

( 12 
' Zj - z; Zj + z,- z; - z; I) 

exp - o:10---- , . 
b 0 10 

(4.8) 

Performing in succession changes of variables in the second term of Eq. (4.8) 

z~-+ z~ +z1, 
b/2a;D 

I 12 l z; --+ z 11 _ b/2aiD 
' z' zi-+z;+ 2-z2 

a~o 
( 4.9) 

we arrive at the following representation for [; 

U- u;o ja I ( )I' 2v'2 j ' ' I•' I , =2-,- Z1 1/Jo Z1,z1 - b/
2 

,2 dz1dz2dz 1dz 2 e 1 l¢0 (zt,z2)1 x 
o:m 1- am 

I ( , bf2a;0 ( , b/2a;'0 , ) I' 
q,, z, + z '1 - bf2a;'o + z' - z,) 1 - b/2a?o , z' (4.10) 
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Taking the limit o~0 ---+ oo in Eq. (4.10) we obtain a strong coupling expansion 

- - 1- (1) U = Uo + cl.2 U1 + o ----a , 
m O:'m 

where the linear term dissapeared because of the integration over z; and 00 , 

given by equations 

Vo = 2 u:o jaz, I<Po(z, , z,) I' - 4 v'2 jaz, dz,dz; I <Po( z, , z,) I' I <Po( z, , z ;)I' 
"m 

and 

V, = -./2 b' j az,dz,az; [a~, I<Poh , z,)l'] [a~, I<Po(z, , z ;)I']-

(U1) 

01 are 

{4.12) 

2-./2 b j dz,az,az;I<Po(z, , z,)l' [I<Po(z,, z ;)I' + (z; - z,) a~, I<Po(z, , z ;)I']· ( 4.13) 

Minimum of the potential energy is reached at some finite value of b as it follows 

from Eq. (4.13). Thus, the parameter M in Eq. (2.18) behaves at large a;
0 

as 

M :::::: O(o~"o). To calcuate the leading term of the strong coupling expa.nsion \YC 

may deal only with Oo. The corresponding effective potential obtained in the same 

manner from Eq. (3.6) is of the form 

U{z1 , z,; <;10 ) = 4/2 j dz 1dz,dz; ¢~( z1 , z2 ) ,P~(z 1 , z ;) -

4-l'ijdz; [¢~(Zt, z;) + jl~(z2, Z ;J] + 2[/!D o(zt- z,). 
"m 

("-14) 

The same limit D---+ 1 for the effective mass of Eq. (4.5) creates no problems. Using 

the symmetry of the wave-function ¢0 (.:1 , .:2 ) it can be written as follows: 

:: = 2+8-l'ia;'., j dz,dz,dz; [a:,I<Po(z, ,z,JI'] [a:,I<Po(z, ,z;)l']. (-1.1.)) 

We convince ourselves that the hi polaron effective mass and the parameter AI are 

both proportional to o;'b, that is, Af indeed is close tom"'. It is not equivalent to 

m• because we calculate the bipolaron energy only to a leading term of the strong 

coupling expansion. The same is valid for the spaces of dimensionalities D = 2, 3. 

For instance, at D = 3 we have from Eq. (3.10) 

J(T) = _!_(J- e-''). 
21' 

( 1.16) 

At large oao the second term will not contribute and we anive at the conventional 
potential energy (3.15). 
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"' 

V. CONCLUSION 

To conclude we presented the systematic study of the e,quation.s desqibing large 

bipolarons in a strong coupling regime in spaces of arbitrary dimensionality .. Some 

of these equations were used previously for· 3.iJ c~~. 'The numeik~l ;eslllts for I D 

case obtained with these equations will be published elsewhere. 
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npHHHM8CTCSI UOJlUHCKII H<l npenpHHTbl, C006W,CHHSI 06'bCAHHCHHOrO 

HHCTHTYT8 R,[lCpHbiX HCCJlCJJ,OBI.IHHii H «KpllTKHC C006UlCHHSl QH__Sll1.))o, 

YCT8HOBJICH8 CJlCJlYKHIJ,HSI CTOHMOCTh DO,llOHCKH HH 12 MCCSHJ,CB H8 H3)J,<lHHSl 

0J151J.1, BK.Jii01.13H nepeCbiJJKy, no OT,JJ;CJibHbiM TCM3Tl111CCUI.M KaTeropHHM: 

HHJJ,eKc TeMaTHKH 

1. 3KCDCpHMCHT3JibH8H ¢lH3UK8 BbiCOKHX 3HeprHH 

2. TeoperuqecKaSI <Pn3HKa BbJCOKHX 3HepruH 

3. 3KCDCpHMCHTaJI,bH3H HCHTpOHH3A <PH3HKa 

4. TeopeTHllecxaH '~u3KKa HH3KHX 3uepmH 

5. MaTeMaTHKa 

6. Sl.JJ;epuasr CneKTpOCKODHU H p<l,ll;HOXHMHSI 

7. <J>H3HK8 TSDKeJJbiX HOHOB 

8. KpuoreunKa 

9. YcKopnTenu 

I 0. ABTOM8TH3au;usr o6pa6oTKH 3KcnepuMeHTaJ1bHblX ,D;aHHblX 

I J. BhlllHCJIHTeJJ&uasr MaTeMaTHKa u Te)(HHKa 

12.XHMHR 

13. Texuuxa Q;>H3HlleCKoro 3KcnepnMeHTa 

Qeua UO,llDHCKH 

Ha roJI. 

915 p. 

2470 p. 

365p. 

735p. 

460 p. 

275 p. 

185 po 

185 p. 

460 p, 

560 p. 

560 p. 

90p. 

720 p. 

14. McCJie)loBaHHH TBep)lblX TeJI u :lKHAKOCTeH Sl)lepubiMH MeTOAaMu 460 p. 

15. 3KCOepHMCHTaTibH8Sl $H3HKa Sl,ll;CpHbiX peaKI..J;Hii 

npH HH3KHX 3HeprHSlX 

16. ,lJ,03HMCTpHS1 H $H3HKU 3Hlli,HTbl 

17. TeopHH KOH,ll;eHCHpOB8HHOro COCTOSIHHSI 

18. J1CDOJib3088HHC pC3Y!IbTUTOB 

H MCTO,ll;OB Q;>yH.JJ;aMeHTiUlbHbiX ¢JH3HlleCKHX HCCJJe,ll;OB3HUii 

B CMC:lKHbiX o6naCTSIX HayKH H TCXHHKH 

19. BHO$H3HK3 

«KpaTKne coo6meuHSI OMSIYI» (6 BhmycKos) 

no.JJ;nHcKa Mo:lKeT 6bn& o$opMneun c mo6oro Mecs:~u;a roAa. 

460 p. 

90 p. 

365 p. 

90p. 

185 p. 

560 p. 

flo BCeM BOOpOC8M ocpopM!ICHHSI DOADHCKH CJlCAYCT o6paut.8TbCSI 8 H3)l8-

TeJibCKTHif OTAeJI 0115111 no HApecy: 141980, r.Jly6ua, MocKOBCKoit. o6nacTH 


