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I. INTRODUCTION 

The one~dimensional polaron problem attracted attention because of its rele­
vance in semiconductor physics, where it becomes possible to confine electrons in 
one direction1 (i.e., quantum wires), and in linear polymcrs2

•3 . In the present paper 
we will focus on large polarons considering an extreme case of complete confinenwnt 
into one dimension. Besides, there exist systems with anomaly high values of the 
electron~phonon coupling constant. Between those should be mentioned, e.g., pro­
tein globules4 and solvated electrons in liquid ammonia5

. This is why we consider 
here the strong-coupling limit. 

In this limit the adiabatic approximation leads to a basic equation whicb de­
scribes the lD polaron and is the known non-linear effective SchrOdinger cquation6 

relevant to many problems of BOB-linear physics such as self-trapping plwnoHH'II<I in 
nonlinear optics, Langmuir waves in plctsmas, Ginzburg- Landau the:;ry of SUJWITOH­
ductivity etc. (see Ref. 7 and references quoted herein). Usually it is soln·d (Jtt <Ul 

infinite axis but in practice we never deal with systems of infinite size. 1\fost uf the 
numerical calculations use also a box with a large but finite length a to <tpproxinwte 
the problem. So it is interesting to study the limit of an infinitely large box start­
ing from a box with finite length. On the other hand, in the limit of small boxes 
one obtains the characteristics of a. quantum dot whidt are the same as the orw of 
a quantum particle in a Lox. Therefore we iuvcstigate the features of IIJ pularuns 
confined to external potentials such as I) a b-fuuctiou potential (which imitates t.hc 
Coulomb interaction in ID) and 2) an infinitely deep potential well with finite size 
a. 

Dealing with polarons in meutioned potentials we can fiud the so-called relaxed 
excited states (HES), which are tlw se!f"consistent solutions to the non-linear effective 

·\ SchrOdinger equation. The ionic polarization is then adapted to the fi1tal electronic 
configuration. The ground state ami ('(\Cit n ES generate an effective potential well 
in which different excited states can exist. For tltosc excited states tlte polari?.cttion 
remains to the initial electronic configuration. The main goal of the present paper is 
to find all these states and the corresponding energy levels for lD polarons. Besides, 
it could give us some estimates on polaron characteristics in 2D and 3D. 

The paper is organized as follows. In Sec. III we obtained the characteristics of 
the lD polaron in a 0-function potential using the results for the free lD polaron 
(Sec. II). In Sec. IV we consider the excited states in the corresponding effective 
potential. The ground state and excited states of the 1 D polaron in an infinite deep 
potential well are treated in Sec. V and Sec. VI, respectively. 
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II. STRONG COUPLING LIMIT AND THE) SOLUTION FOR A FREE 

lD-POLARON 

The Hamiltonian of a polaron confined in a one-dimensioml.l structure is of the 

form: 
2 

H = :m + I(Lw•a!a· + U(z) + L [v,a,e'" + v;ale-ih]. 
k k 

(2.1) 

Here z and p are the position and momentum operators of the electron, m is the 

electron band mass and wk is the frequency of the phonons with a wave vector k. 

In what follows we consider different external potentials U(z). To start we choose 

U(z) = U 6(z) which corresponds to the conventional 3D Coulomb potential confined 

to a one-dimensional structure. Here we took its coupling constant U so that the 

case U > 0 corresponds to a repulsive potential. 

As is well known8 a ground state in the strong coupling limit is described by the 

SchrOdinger equation 

n2 8'4>(z) 
-

2
m&;"+ V,!f(z),P(z) = E,P(z) (2.2) 

with the effective potential 

V.!f(z) = U8(z) + L IV•I'IhP•I' - L I:'• I' [pZe"' + p,e-"'] ' 
k Wk k HWk 

(2.3) 

where 

Pk = 1: dz l4>(z)l'eik•. (2.4) 

In the case of an electron interacting with LO-phonons we have Wk = w and 

vk = -iliw - --(2a'~ L 2mw ' 
(2 .. 5) 

where a' is the dimensionless electron-phonon coupling constant and L is a size of 

the sample_ It is convenient to introduce the dimensionless coupling constant U': 

U=hw fliu', 
v~ 

as well as the ratio of the coupling constants 

U' 
9 =-. 

a' 

2 

(2.6) 

(2. 7.) 

I 
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Performing the scaling 

z _,!... [li 
a' V -:;:;;:; ' 4> ( z {li) _, (a' {li) I/2 ,P(z) 

o' V -;:;;:; V ~ ' 

we arrive at the SchrOdinger equation in dimensionless units: 

with 

and 

-~ 8
2

,P(z) + V,!f(z),P(z) = t,P(z), 
2 8z2 

00 

V.ff(z) = g8(z) + J2 j dz 14>(z)l4 - 2/21¢(z)l 2
, 

-oo 

c = Ej!iwo 12
• 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Equation (2.9) is the basic relation of the present paper. At g = 0 it is known <is the 

time-independent non-linear SchrOdinger cquation6 . 

Let us first remind its solution <tt g = 0 (free lD polaron in the strong coupling 

limit). Eq. (2.9) is then of the form: 

where 

-~4>" +J2Rq,- 2/21/- up= 0 
2 

00 

B = j dz 4>4(z). 
-00 

(2.12) 

(2.13) 

Here we suppose ¢(z) being a real function keeping in mind that the sOlution is 

defined up to the constant phase factor cxp(ix). 

The first integral (the energy conservation) of Eq. (2.12) can be obtained re<Hlily: 

-~4>' 2 + -1 
¢2 (A-¢')= C, 

1 V2 
where we used the notation 

t 
A= R- )2' 

(2.14) 

(2.!.5) 

The integration constant C should be equal to zero because the wave function c;b(z) 

and its first derivative should disappear at infinity. Note that 
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0 :0 ,P2(z) :0 A. (2.16) 

The solution of Eq. {2.14) is then of the form 

VA 
.P(z) =cosh [2'i'VA(z rJ]' (2.17) 

where r is an arbitrary constant. Its presence here is related to the translation invari­

ance of the system. The integrals in the normalization condition and the definition 

of the parameter B are calculated readily: 

~ 

N = J .P'(z)dz = 2114 VA, 
-~ 

~ 

J 2 
B = .p•(z)dz = 

3 
21/4A'i', (2.18) 

-oo 

where from the results for A, Band the ground state< follows [see Eq. (2.15)]: 

I 
A= ../2' B = ../2 

3 ' 

I 
'= -3. (2.19) 

With Eq. (2.19) and Eq. (2.10) one can find the analytical expression for the effective 

potential at g = 0: 

? 2 
V:~1 (z) = ~- cosh' [ v'2(z- r·J] 

(2.20) 

The result E = -liwcl2 /3 for the 1 D polaron ground state energy was found by 

Gross8 (see also Ref. 9. This is the unique solution under the discussed assump­

tions. One can search for excited states i-n the given potential (2.20'). Except of the 

continuous spectrum there is only a non-normalized- kink-like solution 

</J,.(z) = D tanh[v'2(z- r·)] (2.21) 

with a positive energy t:ex = 2/3 which corresponds to the asymptotical value of the 

effective potential {2.20). 

III. POLARON IN A 6-FUNCTION POTENTIAL 

The solution of the previous Section for a free polaron can be used for regions 

which include at least one of the infinitely distant points z = ±oo. As an example 

4 

we consider now the case g f:. 0. In the regions to the right and to the left from the 

8-function potential we have the same equation (2.12). Because one of the infinitely 

far points is included to each of these regions the integration constant C should be 

equal to zero for the same reasons. Thus the solution can be represented in the form 

</!(z) = O(z)</!R(z) + 0(-z)</!L(z), (3.1) 

where <PR and <PL are of an analogous form as Eq. (2.17), perhaps, with diff'('rl'nt 

constants r. The wave function should be continuous at the point z = 0 

¢R(O) = </>L{O) = </>(0), (3.2) 

and its first derivative has a jump 

¢>~(0)- ¢~(0) = 2g¢>(0). (:U) 

The wave function ~(z) should be either a symn1etrical or an antisymrnctrical 

function of z which determines the relation between the functions ¢R and ~L: 

1>(-z) = ±</!(z) ~ </!L(z) = ±</>n(-z). ( 3.4) 

Using Eq. (2.17) we arrive at the solution for tl1e symmetrical wave function 

¢>(z) = h [2'/<VA(iz]- 'l]. cos 

VA 
(:3.5) 

Note that the continuity condition (3.2) is already satisfied. Note also that the anti­

symmetrical solution is trivial(~= 0). The constant A satisfies the same equation 

{2.15), where from one can find the ground state energy L But the constant r is 

not arbitrary any more: both A and r have to be defined from the normalization 

condition and the jump of the first dcrivative_(3.3). The latter gives ~s the relation 

tanh (23/'.,//f,.) = --9-. 
23~"'VA 

From the normalization condition using Eq. (3.6) we arrive at the result 

VA- ../2-g 
A- 2'1' , g < .;2. 

The expression for the constant r is then: 

r= 
In(!- g../2) 

2( ../2- g) 

5 

(3.6) 

(3.7) 

(3.8) 
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The integral defined as the constant B can then be calculated and therefore also the 

ground state energy: 

,fi g 
s=--a-2· 

I g g' 
'- --+-- -. -3,fi2 

With these results we obtain the effective potential 

2 g ( ,fi- g)' ·- , 
v.,.(z) = g 6(z) + 3- ,fi- cosh' [( ,fi- g){lzl- r)] 

where r is defined by Eq. {3.8). 

(3.9) 

(:l. I 0) 

Some analytical results we obtained are shown in Fig. 1-4. In Fig. 1 the polaron 

ground state energy is plotted versus the coupling constant g. As it follows from 

Eq. (3.8) the physical region is defined as g $ 1/ ,fi, and the scaled energy reaches 

the value t = -1/12 in this limiting point which corresponds also to the maximum 

of <(g). If g > 1/,fi the repulsion potential becomes so strong that it destroys the 

polaron state. The solution does not exist in this case. At large negative values of 

the coupling constant the energy behaves as 0( -g2 /2) that is as the energy of a 

quantum-mechanical particle in an attractive 5-function potential, which is strong 

enough to dominate over the electron-phonon interaction10
. 

Fig. 2 shows the dependence of the parameter ron the coupling constant g. At 

positive values of g {repulsive potential) the constant r is positive [cfr. Eq. (3.8)]. 

It plays the role of the (dimensionless) distance between 'two parts' of the polaron 

as is clear from expression (3.5} for the wave function. When the coupling constant 

g reaches its limiting value 1/../2 the parameter r becomes infinitely large. In the 

opposite limiting case g = 0 the parameter 7' arso tends to zero. It becomes negative 

for the attractive potentials. 

At g > 0 the pOlaron, that is the electrOn' surrounded by a cloud of virtual 

phonons, can be found with the same probability on both sides of the 5-function 

potential. In this sense we can consider it as a quasi-bipolaron formed by two quasi­

polarons attracted via phonons exchange and repulsed by the potential. The limiting 

case of infinitely separated quasi-polarons leads to the energy f = -1/12, that is the 

expression t 1 = -1/24 can be interpreted as the energy of a free quasi-polaron. 

Then the ground state energy f of the Eq. (3.9) can be considered as the energy 

of a quasi-bipolru:on. At g = 0, that is in the absence of the repulsion, it rea.ches 

the value t2 = -1/3. The same relation t 2 = 23 t 1 is valid also 11 for the energies of 

real free polarons and the energy of a real bipolaron when the Coulomb repulsion is 

"switched off". Thus the probletn of a polaron in a 6-function potential indeed has 

common features with the problem of a bipolaron formed of two real polarons. 

6 

The effective potential for the case of the repulsion is shown in Fig. 3 for two 

values of the coupling constant g. The ground state energy, which is very close to 

-1/12 for both potentials, are shown also. When the absolute value of g decreases 

the barrier of this double well potential becomes lower and will disappear at g .= Q. 

Fig. 4 represents the effective potential for the case of an attractive 6-function 

potential. Again two different values of g are chosen and the corresponding ground 

state energies are shown. At large enough absolute values of g the polaron energy is 

lower than the bottom of the nonsingular part of the potential-· polaron "occupies'' 

the region of the 5-function. 

Note that the effective potential is closely connected with the squared polaron 

wave function [see Eq. (2.10)]. So, there is no need to plot the latter. 

IV. FRANCK-CONDON STATE IN A 6-FUNCTION POTENTIAL 

Here we find excited states in the potential well (3.10}. From symmetry prop­

erties it follows that symmetrical and antisymmetrical solutions can be represented, 

respectively, as 

<f'(z) = <fn(lzl), ¢"(z) = sgn(z) <Pn(lzl), (1.1) 

where <fn(z) are solutions at z > 0. The continuity conditions (3.2), (3.3) can be 

written in terms of this function: 

<P~(O) = g <fR(O) for symmetrical solutions, (Ua) 

<fR(O) = 0 for antisymmetricai solutions. (•1.2b) 

A function <fR(z) is a solution of the SchrOJinger equation in a modified POschl­

Teller potential well. Therefore it can be written as a superposition of two basic 

solutions (hypergeometric functions) 12 . The wave function <fR(z) should tend tozero 

for z -t oo. The superposition wht.'re exponentially increasing terms are cancelled is 

as follows: 

7r [ ( K K] ) <fn(z) = N 2 [I+ S2 (z)] ,,F, I- 2, I+ 2; 2; -S2 (z) 

(
3-K 3+~ 3 )] 

+(1- ,')S(z) 21'] -
2
-,-

2
-; 2; -S'(z) (4.:3) 

with 
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S(z) ~ sinh[(J2- g)(z -1·)] ( 4 .4) 

and where the 'mean separation' 1' is defined by Eq. (3.8) and the constant N is to 

be defined from the normalization condition. A parameter K. > 0 is related to the 

energy through the equation 

2 9 2 (v'z-g)' 
l = - - - - K -'-'----::-=-

3 v'2 2 
(4.5) 

As is seen the value K = 0 corresponds to the asymptotical value of the effective 

potential (3.10) at infinity (2/3- gfv'z) and the value K ~ I corresponds to the 

ground state energy (3.9). Substituting Eq. ( 4.3) into the continuity condition ('!.2) 

one finds the parameter K as a function of the coupling constant 9 and the subsequent 

energy levels if they exist. In what follows we will need the expression for S(z) at 

the point z = 0: 

2/1-9 J2 
S ~ S(O) ~ 

gJ2 ( 1.6) 

For the numerical calculations it is convenient to usc the integral representations 

of the hypergeometric functious in Eq. (4 .. 3): 

{ 
H KK } 

¢n(z) ~ N [I+ S'(z)] sin T 11(z) +cos 2/,(z) (4.7) 

with 
I 

I
1
(z) ~ Jdt ( 1 - 1)'

1
' 1-4S

2
(z)t(1-t) 

0 
t [1+4S2 (z)t(i-t)]'' 

I 

l 2(z) ~ Jdt ( ~i-~) '1',. 4 S(~~'~"" (-1.8) 

0 

Using those formulae we found the following r<~sults: There is only one symmct rica] 

solution which is obtained from Eq. (4.2a) at"::= 1 and arbitrary coupling constant 

g < 1/v'z. It coincides with the one described by Eq. (a.5), (3.7), (:3.8), (:3.9) 

and corresponds to the ground state. Besides, at 9 > 0 (that is, for the repulsive 

potential) there exists an antisymmetrical solution, which corresponds to the Franck­

Condon excited state. When 9 --jo 0 we have" --jo 0 and the antisyrnmetrical solution 

tends to the kink-like solution (2.21) for a. free particle. When 9 --lo I/J2 the two 

potential wells are infinitely separated and the tunnelling between them becornes 

impossible. The energy of the excited state tends to the same limit as the ground 

state energy (that is, the level becomes twice degenerated). The energy of the Franck­

Condon excited state is also plotted in Fig. 1. 
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V. POLARON IN AN INFINITE DEEP POTENTIAL WELL 

In the preceding Section we exploit the solution for the lD polaron on a half axis. 

The main goal of this Section is to find symmetrical and antisyrnmetrical solutions 

<!Js(a)(z) of Eq. (2.12) for a free polaron on a finite segment which docs not iuclude 

infinitely distant points z = ±oo. That is, we consider an infinitely deep potential 

well of width 1: 

I=, jzj > ~' 
U(z) ~ 

a 
0, jzj <:: 2' 

t~.'.'..fli 
a' V ;;z:; (G.!) 

In this potential we can't consider the wnstant C in Eq. (2.14) being equal to ;.ero, 

which makes the solutiOIJS more complicated. We'll see that they can he repn.·scr 1ted 

as different Jacobian elliptic functions [see Ref. 13, ch. 16]. 

Let us introduce the notations for new parameters: 

he= <11, "''' A~ <17, + <11, (5.2) 

Because of the symmetry we can alw<tys consider <1> 2 2 <1> 1. Theu Eq. (2.!-J) e<1n he 

written in a form 

¢'
2
(z) ~ 2J2 (</>2

(:)- <llt) (<17 2 - qi 2 (z)). 

VVe have to distinguish the cases: 

Case 1 : 0 :S <1>1 < <1>2, 

Case 2: <!11 ~ -j<l!tJ <:: 0. 

(5.3) 

( 5.4) 

Let us consider first case 1. Evidently any solution t<tkcs its values between the 

constants IP 1 and ¢ 2 . It follows then that the aHtisynunetrical solution which is equal 

to zero at z = 0 does not exist in this cctse. The integration of Eq. (5.3) gives us two 

symmetrical solutions 

¢;"(z) ~ ~ nd(23/·l~ z jm), 

q,;b(z) ~ ~ dn(23/·l~ z jm), 

"'I 
m = 1 - <1>2' O<rn:=;l. 

9 

(G.5a) 

(5.5b) 

(5.5c) 



The parameter m is the modulu~, of the Jacobian elliptic functions, and both wave 

functions ofEq. (5.5a) and Eq. (5.5b) are periodical in z with a period 211'1K(m)J4G, 

where K(m) is the complete elliptic integral of the first kind: 

•/2 

K(m) = . J dO 

V1-msin2 8 
0 

(5.6) 

The written functions can be obtained one from another by shifting with a half 

period. 

Let us turn now to case 2. Then Eq. (5.2) can be written as follows: 

4>'
2(z) = 2/2 (¢2(z) + l<l>d) (<!>, -¢2 (z)) · (.5. 7) 

Evidently any solution takes its values in the interval [-4>2 , 4>2 ]. There is a symmet­

rical solution 

,p;(z) = ~ cn(231'JI~d + <1>, z IM), 

M - <!>, 0 M < 
- l<l>d + <!>,, < I. 

(.5.8) 

This solution is periodical in z with. a period equal to 2514K(M)/ .Jf<ild + <1> 2 . Note 

that the modulus of this elliptic function is equal now to M. 

Shifting the solution (5.8) by a quarter of the period we arrive at the antisym-

metrical solution 

,p;(z) =- l<l>1l<l>2 sd(23/',ji<J>11 + <1> 2 z IMJ 
l<l>d + <!>, 

= ~ cn(2314 JI<I>d + <1>, z + K(M) IMJ. 

It has the same period in z as the solution presented by Eq. (5.8) 

(5.9) 

Now we remind the definitions of different Jacobian elliptic functions being used 

in the present Section. They are given by the relations13: 

sn(ulm) =sin¢, (5.10a) 

cn(ulm) =cos</>, (5.10b) 

2 ) 1/2 
dn(ulmJ = (1- msn (ulm) , (5. 10c) 

nd(·ulm) = (1- msn2 (ulm)f
112 , (5.10d) 

10 

• 

sd(ulm) = sn(nlrnJ 
(1- msn'(ulm))1/2' 

(5.1 Oe) 

where the amplitude¢ is defined by the relation 

• 
u = f v'1- :sin28. 

0 

(5. ll) 

We presented the comple"te set of solutions of Eq. (2.14) on a finite segment. They 

describe so called cnoidal waves, tha.t is, the periodical excitations which can be 

found, e.g., in a book by Davydov 14
• II ere we use them to find the wave-functions in 

an infinite deep potential well (.5.1). Then one ltas to satisfy the bounJary conditious 

¢(-a/2) = ¢(a/2) = 0. (0.12) 

Wave functions (5.5) do not satisfy these conditions. It follows from Eq. (5.12) and 

solutions (5.8), (5.9) that the potential width should be equal to an integer munber 

of half waves (odd for the symmetrical and even hr the antisymmetrical solutions): 

av'l<1>11-i-~=n2 1 /4 K(M), n~ 1,2,. (0.13) 

Then we use the normalization condition which c<:u1 be represented in the form 

[see Ref. 13, formulae (16.25), (16.26)1: 

a/2 K(M) 

J •)1/4 <I> J 
dz ,p;(o)(z)

2 
= - 2 n dz cn 2 (ziM) 

v'l<l>d + <1>2 
-a/2 0 

=-
2
- ---+1\f-l =I <!>.a [ E(M) l 

M K(M) . . I 0. 11 l 

Here we used Eq. (5.13) which allowed l!S to reduce the intcgraLicm over the width 

of the potential to that over a quarter of the period. The complete elliptic integral 

of the second kind with modulus M is ddined as follows: 

"/2 

E(M) = / dOVl- M sin' e. (5.15) 

0 

Eq. (5.13) and (5.14) allow us to flt1d the parameters j$d and lfl 2 and to obtain then 

the parameter A= 1> 2 - jQ'> 1 j. It is convenient to use as independent parameters IYf 

[see Eq. (5.8)] and <1> 2 . Theu l<l>d = <1> 2 (1- M)/!Vf and A= <1> 2 (2M- 1)/M. 

11 



To obtain the energy' = ,fi(B- A) [see Eq. (2.15)] one has to calculate the 

parameter B of Eq. (2.13) which can he done using Ref. 15, formula (5.131): 

"'' 
B = j dz .p;l•l(z)' = 2

1
/

4 
<!>J n 

-o/2 v'I<!>J[ + <!>2 

K(M) 

j dz cn4 (z[M) 

0 

<I>' a [ = 3~2 (I- M)(2- 3M)+ 2(2M _I) E(M) l K(M) . 

Introducing the notation 

n' 
x=­

a 

(5.16) 

(5.17) 

and exploiting Eq. (5.13) to find lll 2 we arrive at the equation for the paramett'r M 

as a function of x: 

V'iK'(M) [~\:\ + M -1] = ~· (5.18) 

In these notations the energy is represented via a universal function F: 

l ("') t:,1 = 2 F - , 
n a 

(5 19) 

where the expression for F(x) follows from Eq. {5.16): 

V2 
F(x) = 3 (xK(M)) 2 x [2M(l- Al)1K2(M)- V'i(2M -1)]. (!i.10) 

The function F(x) is plotted in Fig. 5 as well as the dependence of the modulus M on 

x. The solutions and energy levels can be calculated with the help of those functions. 

Because the obtained solutions are self-consistent solutions of the non-linear effective 

SchrOdinger equation, we obtain here the ground state (n = 1) and the RES states 

(n = 2,3, ... ) together with their energies. In Fig. 6, 7 the energy levels (arrows) as 

well as the corresponding effective potentials are shown for the ground state and the 

first two RES states for a. box with length a = 6 and a = 25 respectively. 

Let us discuss two limiting cases. When a is infinitely small, that is J: ----t oo, we 

obtain from Eq. (5.18) that x M ___, 4/2/~2 . Inserting this to Eq. (5.20) we arrive 

at the result 
~2 

lim F(x) = -x2 

x-oo 2 
(5.21) 

Taking into account that the energy here is given in units of hwa12 and the width 

of the potential I = aJ!ijmwc/2 we anive at the result for the quantum-mechanical 

particle in an infinitely deep potential: 

12 

.t 
J 

J 
J 

7!'2 n2 

fn= 2a2' 
E - h21!'2n2 

n - 2m[2 · (!i.22) 

The interpretation of this limit is obvious: the interaction with the potential well is 

so strong that the electron-phonon interaction can be neglected even in the strong­

coupling limit. The same is also true for higher excited states with large u >> I. 

When x --+ 0 that is the potential width becomes infinitely large, the param<'ler 

M tends to unity: 

l ( 16 ) 
E(l) =I, K(M)M-1 ""z-ln 1-M ' 

( V2) M"" 1- ltiexp ---;- · 

It follows then that x K(M) ___, lj/'i. Eq. (5.20) provides us then 

l 
lim F(x) = -3, ·-o tn = - 3n2 

(5.23) 

(5.14) 

Thus, we obtained energy levels with a Coulomb like dependence on the quantum 

number n. The parameter 11> 1 ----t Q in this limit so we are dealing with the frontier 

value between cases 1 and 2 of Eq. (.).tJ). When the modulus /H ----t 1 the pcriod 

of the wave functions which is proportioual to K(Af) becomes infinitely large. The 

solution ¢2 of Eq. (5.8)'for tile ground state (n = 1) tilen takes the form (note tl1at 

<1>, ___,A) 

v'A 
v'Acn(2

31
''VAo[l) = cosh(23/4VAz) (5.25) 

This is the solution of the free 1 D-polaron on <tn infinite axis with the energy t 1 = 

-1/3, which is reproduced by Eq. (.1.24). For a large box with length a the solutions 

(5.8) and (5.9) with n # l can be considered as a superposition of n solutions of the 

type of Eq. (2.17) being infinitely separated from each other: 

] n-1 (-1)' 

q),(z) = n21/ 4 ~ cosh[~(n~ + "; 1 -I)] 
(,).26) 

The limiting energy En= -l/(3n 2) corresponding to the functions of Eq. (5.26) 

can be obtained from the known ground state solution in the single well by the 

following arguments. The normalization condition N = l [see Eq. (2.18)] has to he 

replaced by n N = 1 where from A ----t An = 1/( v'2n 2
) which is in agreement with 

Eq. (5.26). In a similar way the parameter B of Eq. (2.18) has to be replaced by 
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Bn = n2
5
i'A3/2j3 = v'2/(3n

2
). Using An and B,. instead of the values of Eq. (2.19) 

leads us to the energies described Ly Eq. {5.21). Thus, these energies correspond to 

the ground state energies in a potential coustructed of n independent POsch\- Teller 

wells. 

Note, that these solutions look liken quasi-particles. For example, the anti:o,ym­

metrical solution at n = 2 reproducef.l in this limit the solution for the 5-function 

potential with a coupling constant g = 1//2. The energy is in both cases t
2 

= -1/12. 

These solutions did not appear in Sec. 2 while considering the free 1 D-polaron on 

an infinite axis due to the boundary conditions. But taking into account t!Jat, in 

practice, we never deal with infinite sizes we can conclude that the energy levels 

{5.24) have physical meaning;. 

Comparing Fig. 6 and Fig. 7 we sec that in Fig. 7 the energy levels for a box 

length a = 25 are a.lrcaJy very gooJ <:tpproaching the above result of Eq. (.5.2:1), 

while they do uot in fig. 6 for Ct = 6. Therefore, a box with a = 2.5 can already be 

considered as a large box. 

Applying the scaling relatiou16•17 

£3D(o) "'3 Ew(ofJ), (.5.27) 

we can estimate the subsequcut energy levels for three-dimensional polarons ( o = a' 

in 3D case). Then we obt<-tiu from Eq. (5.24) and Eq. (.5.27) for the :JD-polarons: 

C3JJ,u = 8Ju,."/fi.wn
2 
=- g~:~· (5.28) 

These values can be compared with the numerical calculations performed by the 

Pushchino-Dubna collaboration [sec, e.g., Ref. 18]. From Table I we can see that the 

presented numerical values are rather dose to each other which reveals the origin of 

the excited states reported in [-lef. 18. For the completeness we estimate cdso the 

energy levels of the two-dimensional polaron (cl = n(n"/2) in this case): 

E20 (cY)"" ~ '"· (:h ) 
3 

LJJJ --n 
. 'j ' 

I ' 2 
C2D,n = -~2D,n/hv.n:r2 ~ __ IT_ _ OA 112 

21Jn2- 11 2 (o.29) 

The direct calculation of the grotmd state energy gives the rcsult 16 c
2
D,l = -O.r1047, 

which differs from our estimate by 1.6% onlv. 

14 

VI. THE COMPLETE SET OF EXCITED STATES IN AN INFINITE 

DEEP POTENTIAL WELL 

To obtain the complete set of possible excited states for the l D polaron confined 

to a box with length a, we should also investigate the excited states in the potential 

generated, e.g., by the ground state. In what follows we use the quantum number 

n' ~ 1 to enumerate those excited states, therefore fn,n' will be the energy of then'­

th state in a potential generated by the n-th solution corresponding to the quanttun 

number n, found in the preceding Section. 

To obtain those excited states numerical calculations are used. We expand the 

wave function in a Fourier series with unknown parameters ak: 

K 

¢(z) = L aksin h(z + a/2) 
k=! ' 

(6. j) 

restricting ourselves to /( terms. Using this expansion and the Hamiltonian of 

Eq. (2.9) we calculate the Hamilton-matrix 

o/2 

11·· _ J d . i1r(z + a/2) · . j1r(z + a/2) 
1] - z Sill H Sill ~~-_c.__!. 

a a 
(6.2) 

-a/2 

The diagonalization of this matrix to the parameters ak delivers us the eigcn-energies 

and {after normalization) the correspondi"ng wave functions of the ground state and 

K- 1 excited states. The larger is ]{ the more accurate solutions will be obtained. 

The wavefunction of the ground state or RES by which the effective potential is 

generated can be compared with the analytical result of the same expansion (6.1) 

using formulae 16.23 of Ref. 13 for the wavefunctions in Eq. (5.8) and Eq. (5.9). The 

coefficients ak (up to the common sign) are 

an{21+l) = (-l)/2
5

/
4
7rn ql+l/2 

a 1 + q'')L' 
(6.3) 

with 

( 
K(J-M)) 

q = exp -7r K(M) . (6.4) 

Here n is the same number as in Eq. (5.13). All other akin the expansion (6.1) are 

equal to zero. Thus 1 an exact expansion for the wave function corresponding to the 

quantum number n is of the form: 

15 



25/4 I 1/' 
<P = anrr 2) -1)'. q + .,2. sin n(21 + l);r(z + a/2). ( 6.5) 

1?::0 

With nand a being given we obtcLiu from Eq. (5.17), (5.18) the corresponding lvf 
which is used to calculate q. For example, we obtain for the ground state (n = l) 

q = 0.315 and q = 0. 75G for a = 6 and a = 25, respectively. The exact expamion 

shows us how fast the convergence of the series is. Therefore, we can calculate the 

Fourier series (6.5) and derive the number of terms needed to obtain results within 

a certain accuracy. 

In Table II we present, as an example, the energies En,n' for n = 1 +5 and n' = 1-:--5 
for a lD-polaron in a box with length a= 6. The diagonal elements Cn.n are nothing 

more than En of the preceding Section, three of which arc shown in Fig. 6. Indeed: 

let us consider the potential generated by the relaxed excited state corresponding 

to n. The corresponding wave function found in tltc preceding Section is "itself'' 

the solution to the effective SchrOdinger equation with this very potential. ft. has 

n- 1 zeros and corresponds therefore to the energy level with n' = n (tn,n)· Below 

it are the levels (11 ,1, f 11 ,1 1 ••• , t 11 , 11 _ 1 • Some of them could have a rather low C!ierg_y. 

For instance 1 one can see from Ta.blc 11 that the ground state energy ( n' = ! ) Mtd 

the first excited state {n' = 2) in a pot.eutia.l generated by the first relaxed excited 

state (n = 2) have lower caergies than the first excited state (n' = 2) in a potential 

generated by the ground state (11 =I). 

When the box size a becoJnes larger. the energy levels of the excited statt's in 

potentials generated by the grouiiCl stat(' ur a HES arc lwcollling less st>parat.cd. 

This is demonstrated in Fig. S for tit(' six cxcited states (n1 = I 7 6) in a pot.cnt.ial 

generated by the second RES (n = 3). Their energies are plotted vs. tlw size of the 

box in the range a= 5+90. \\le notice tlwt only two limiting energy levels exist for a 

large box1 namely: 1) the energy of the second excited state in this potential, wbich 

corresponds to the second relaxed excited state; all the underlying states converge 

to the same energy (therefore we have in this case a degeneracy of :.3); 2) the energy 

of the excited states above the second excited state are all tending to the energy 

of the kink-like solution, tbat is, to the asylllptotical value of the potential well 

( <ex,3 = -/'iB, = 2/27). 

These numerical results ca.u he explained as follows. It was fouud that tn.u ----> 

-1/3n2 when the box is infinitely large. It wa.s demonstrated also that the gruund 

state energy En,l also tends to the same limit. Thus, when the box becomes infinitely 

large all the states with 1 :S n'::; 11 tend to the same limiting enc::rgy -1j.'Jn 2 • In 

this case we deal with n infinitely scp<uated wells without tunnelling between them. 
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TABLES 

n I 2 J -1 

<n - 0.1085 - 0.0206 - 0.0083 . 0.00-15 

- 0.1111 - 0.0278 - 0.0123 - 0.0069 
E3D,n 

11<2D,nll - 0.41121 - 0.10281 - o.o4571 - o omjj 

TABLE I. Four first energy levels for 3D·polarons taken from Ref. 18 (1st row) a.nd 

estimated with the help of the scaling relation (2nd row). The estimates for 20 polarons 

are presented in the 3rd row. 

n' I 2 J •I :) 

n 

I - 0.332 0.905 1..)16 2.444 :UH)2 

2 - 0.031 0.180 1.197 2.129 :L:$.1)4 

3 0.039 0.399 0.874 2.11!) 3.:J:l6 

4 0.017 OA1!J 1.092 1.8:]6 :u39 

5 0.015 0.·12'> 1.107 "2.07"JG ;I.(J71 

TABLE II. The five first cn<'l"g_\· l(•vC'ls (t/:::: I..;- rJ) iu potC'utlats g '' ,, ,. 

first relaxed excited sta.tes { n. ::::: l...;. :J) for a I D polarou iu a box of the sizP a :::: G. Dia).!;ouaJ 

elements are the encrgics €n,n of tht• mrrespoudiug rPlax{'(l excited states. 

So the resulted energy level indeed will be n times degenerated. 
On the other hand, the only excited state in a single potential well is the k"mk­

like solution (2.21) with an energy equal to the asymptotical value of the effective 

potential. If we deal with n infinitely separated potential wells the only difference 

is the dependence of this asymptotics on n (cfr. the parameter Bn in the preceding 

Section). Thus, the energies of all excited states with n' > n should tend to the 

asymptotical value of tb.e effective potential at infinity, namely to Eex,n = v0.Bn :::::: 

2/(3n2
). 

To conclude
1 

we presented exact and numerical calculations for the l D poln.ron 1 

resp., in a 8-function potential and in an infinite deep potential well. We considered 
both relaxed excited states and excited states in the potentials generated by the 

ground state or a RES, and studied the limit of an infinitely large box. This limit 

demonstrates the existence of the whole set of energy levels which do not appear 

while solving t.he problem on an infinite axis. 
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FIG. 1. A polaron energy vs. the scaled coupling constant (a solid curve). The ph)·sical 

region is defined as g -:; 1/V'i ~ 0.7071, and tl1e scaled ground state energy reaclH-~s the 

value E :::::: -1/12 in the limiting point. The energy of the Franck-Condon excited state 

which exists at 0 < g < 1/v'2 is showu by the dashed curve. At g:::: 1/h it takes ihe 

same value as the ground state ener:gy. At g_ = 0 it re:Jches the asymptotic value 2/;3 of the 

effective potential The solid line shows this asymptutics at different values of g. 
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FIG. 2. A 'mean separation' of the polaron parts vs. the scaled coupling constallt. 

When g is positive the parameter ·r indeed plays a role of a distance between 'two p<l.rls' 

of a polaron. It becomes infinitely :.,rg~ at g:::: 1/J2 ~ .7071. When g < O'(a.tt.r:1..clive 

8-function potential) the parameter'!' hccOll\es negative. 
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g > 0 in the case of the repulsive 6-funciion. The arrows represent the energy levels. The 

ground state energies Ea a11d €b of the corresponding potentials are very dose to each other. 

For 9b::: 0.707 the energy t/, of the Franck- Condon excited state has almost the same value 

as the ground state energy Eb because [Jb approaches the critical value 1JJ2. 
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FIG. 4. Effective potentials for two Jifferent values ga and gb of the coupling constant 

g < 0 in the case of an attractive 0-functiou. The arrows represent the ground state euergy 

levels, one of which la.ys below the bottom of the non-singular part of the potential. In 

this state a particle is located in the 8-function well. 
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deep potential well, i:-:~ plotted vs. :r = uJja (solid line). At :r _____,. 0 which correliponds to 

the limit of a free polaron, it tcuds to tl1c valttc -ln. At large :r the asyntptotic behavior is 

described by the same par<J.bola which is char<l.ctcristic for a quantum-mcc!i<lllica[ partid('. 

The dependence of the parameter M on :1: is showu also ( d;tshed line). 
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FIG. 6. The effective potentials a.·re shown for the first three polaron sta.tes with 

n = 1 + 3 in a box with length a= G (re,~p. the solic:, the dashed and the dotted curve). 

The ground state energy (solid arrow) almost reaches its asymptotic value -1/3, the er1ergy 

of the first (dashed arrow) and seco11d (dotted arrow) relaxed excited states have positive 

energies and exceed their corresponding asymptotical va,lue. 
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FIG. 8. The en~rgies of the ground state (n' = 1) and of the five lowest excited states 

(n1 = 2 + 6) in the potential generated by the second relaxed excited state (n = 3) 

are plotted vs. the length of the box a The relevant numbers n' are printed near the 

corresponding curves. Three of them tend to the limiting value (3 ::::: -l/27, all othrrs to 

the asymptotical value (ex,J::::: 2/27 of tltc effective potential at infinity. 
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