


I. INTRODUCTION

The one-dimensional polaron problem attracted attention because of its rele-
vance in semiconductor physics, where it becomes paossible to confine electrons in
one direction' (i.e., quantum wires), and in linear polymers®2. In the present paper
we will focus on large polarons considering an extreme case of complete confinement
into one dimension, Besides, there exist systems with anomaly high values of the
electron-phonon coupling constant. Between those should be mentioned, e.g.. pro-
tein globules? and solvated electrons in liquid ammonia®. This is why we consider
here the strong-coupling limit. _

In this limit the adiabatic approximation leads to a basic equation which de-
scribes the 1D polaron and is the known non-linear elfective Schrédinger cquation®
relevant to many problems of non-linear physics such as sell-trapping phenomena in
nonlinear optics, Langmuir waves in plasmas, Ginzburg-Landau theory of supercon-
ductivity etc. (see Ref. 7 and references quoted herein). Usually it is solved on an
infinite axis but in practice we never deal with systems of infinite size. Mast of the
numerical calculations use also a box with a large but finite length @ to approximate
the problem. So it is interesting to study the limit of an infinitely large box start-
ing from a box with finite length. On the other hand, in the limit of small boxes
one obtains the characteristics of a quantum dot which are the same as the oue of
a quantum particle in a box. Therefore we investigate the features of 1D polarons
confined to external potentials such as 1) a é-function potential (which imitates the
Coulomb interaction in ID}) and 2) an infinitely deep potential well with finite size
a.

Dealing with polarons in mentioned patentials we can find the so-called relaxed
excited states (RES), which are the sell-consistent solutions to the non-linear-cflective
Schrédinger equation. The ionic polarization is then adapted to the final clectronic
configuration. The ground state and cach RES penerate an effective potential weil
in which different excited states can exist. For those excited states the polarization
remains to the initial electronic configuration. The main goal of the present paper is
to find all these states and the corresponding energy levels for 1D polarons. Besides,
it could give us some estimates on polaron characteristics in 2D and 30D,

The paper is organized as follows. In Sec. I1I we obtained the characteristics of
the 1D polaron in a §-function potential using the results for the free 1D polaron
(Sec. IT). In Scc. IV we consider the excited states in the corresponding effective
potential. The ground state and excited states of the 1) polaron in an infinite deep

potential well are treated in Sec. V and Sec. VI, respectively.
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II. STRONG COUPLING LIMIT AND THE SOLUTION FOR A FREE
1D-POLARON

The Hamiltonian of a polaron confined in a one-dimensional structure is of the

form:

2
Y4 . ikz w t  —ikz 9 -
H= 2—m+h Ek wka,tak+U(z)+ Ek [Vkake" + Via.e ] (2.1)

Here z and p are the position and momentum operators of the electron, m is the
electron band mass and wy is the frequency of the phonons with a wave vector k.
In what follows we consider different external potentials {/(z). To start we choose
U(z) = U §(z) which corresponds to the conventional 3D Coulemb potential confined
to a one-dimensional structure.  Here we took its coupling constant {/ so that the
case I/ > 0 corresponds to a repulsive potential.

As is well known® a ground state in the strong coupling limit is described by the

Schrédinger equation

h* 9%¢(z)

+ Verr(2)(z) = E ¢(2) g (2.2)

T om 022
with the effective potential
Verg(2) = Us(2) + Z]VP“’"' Z & ~ i '*Z+pke“"’"] ,r (2.3)
where
P = /Z dz |p(2)|et*. (2.4)

In the case of an electron interacting with LO-phonons we have wy = w and

2 |k
— s == 2.
Vi thw ( V3 ) ) (2.5)

where o is the dimensionless electron-phonon coupling constant and L is a size of

the sample. It is convenient to introduce the dimensionless coupling constant {/”:

U:hw\/i U, - (2.6)
mo

as well as the ratio of the coupling constants

Ul’
9=?-

2

Performing the scaling

A =) (2 v
o ¥ mw’ ¢ aVmel "\ e #(2), (2.8)

we arrive at the Schrédinger equation in dimensionless units:

186°
-5 a¢(2 z) + Vegr(2)p(2) = e d{z), (2.9)
with
Ver(z) = 9}5(2) + ff dz [é(2)|* — O\fw (2.10)
and

¢ = E/luwa”. (2.11}

Equation (2.9) is the basic relation of the present paper. At ¢ = 0 it is known as the
time-independent non-linear Schrédinger equation®.

Let us first remind its solution at g = 0 (free 1D polaron in the strong coupling
limit). Eq. (2.9} is then of the form:

[

-

(8]
-

*%¢"+\/§B¢—2\/§¢J—c¢i:0 (2.

where
= fa’zqﬁ“{z)- _ (2.13)

Here we suppose ¢(z) being a real funciion keeping in mind that the solution is
defined up to the constant phase factor exp{iy). :
The first integral {the encrgy conservation) of Eq. (2.12) can be obtained readily;
L 1, .
ey o A Y- = K
49’5 +\/§¢ { ¢*) = C, (2.14)
where we used the notation

A:B—%- . (2.15)

The integration constant ' should he equal to zero because the wave function ¢lz)
and its first derivative should disappear at infinity. Note that
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0<¢%(z) < 4, (2.16)
The solution of Eq. (2.14) is then of the form

I S |
#e) = cosh [23/4\/Z(z - r)] ' (2.17)

where r is an arbitrary constant. Its presence here is related to the translation invari-
ance of the system, The integrals in the normalization condition and the definition
of the parameter B are calculated readily:

o0

N = f $*(z)dz = 2/4V/A,

o

B= [ #a)ds = Sotean, (218)

where from thé results for A, B and the ground state ¢ follows [see Eq. {(2.15)}:

—-!--, B= ﬁ, €= —~1-. (2.19)
Ng) 3 3

With Eq. (2.19) and Eq. (2.10} one can find the analytical expression for the effective
potential at g = 0: '

A=

vz = P2 (2.20)
< 3 cosh? [\/‘E(z — r)]
The result E = —hwa?/3 for the 1D polaron ground state energy was found hy

Gross® (see also Ref. 9. This is the unique solution under the discussed assump-
tions. One can search for excited states in the given potential (2.20). Except of the

continuous spectrum there is only a non-normalized kink-like solution
$ez(z) = D tanh{v2(z - r)] (2.21)
with a positive enefgy €ez = 2/3 which corresponds to the asymptotical value of the

effective potential (2.20).

III. POLARON IN A §-FUNCTION POTENTIAL

The solution of the previous Section for a free polaron can be used for regions
which include at least one of the infinitely distant points z = +oo. As an example
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we consider now the case g # 0. In the regions to the right and to the left from the
d-function potential we have the same equation (2.12). Because one of the infinitely
far points is included to each of these regions the integration constant € should be

equal to zero for the same reasons. Thus the solution can be represented in the form

$(z) = 0(z)dr(z) + 0{—2)du(2), ' (3.1)

where ¢r and ¢ are of an analogous form as Eq. (2.17), perhaps, with dilferent

constants r. The wave function should be continuous at the point z = 0

$r(0) = ¢.(0) = 4(0), | - (3.2)
and its first derivative has a jump .

$(0) - 41.(0) = 294(0). (33)

The wave function ¢(z) should be either a symmetrical or an antisymmetrical

function of z which determines the relation between the funclions ¢g and ¢
d(—z) = £¢(z) — ¢1{z) = L¢n(—2). (3.4)

Using Eq. (2.17) we arrive at the solution for the symmetrical wave function

#(z) = 2 : (3.5)

cosh [23/4\/E(I::| —-r)

Note that the continuity condition (3.2) is already satisfied. Note also that the anti-
symmetrical solution is trivial (¢ = 0). The constant A satisfies the same equation
{2.15), where from one can find the ground state energy e. But the constant r is
not arbitrary any more: both A and » have to be defined from the normalization
condition and the jump of the first derivative {3.3). The latter gives us the relation

tanh (23/4\'/]?):93/'?\/74' . o (36)

From the normalization condition using Eq. (3.6} we arrive at the result

VA = \/i“g

S 9<V2 : (3.7)

The expression for the constant r is then:

o _In(1-gv2)
2Av2—g)
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The integral defined as the constant B can then be. calculated and therefore also the

ground state energy:

2 2
_v2_e L 52 (3.9)

EE T 3 V2

With these results we obtain the effective potential

2_9 (V2-g)’ (3.10)
37 V2 cosh? [(VZ-g)lzl— 7))

where r is defined by Eq. {3.8).

Some analytical results we obtained are shown in Fig. 1-4. In Fig. 1 the polaron
ground state energy is plotted versus the coupling constant g. As it follows from
Eq. (3.8) the physical region is defined as g < 1/+/2, and the scaled energy reaches
the value € = —1/12 in this limiting point which corresponds also to the maximum
of e(g). Hg> 1/+/2 the repulsion potential becomes so strong that it destroys the
polaron state. The solution does not exist in this case. At large negative values of
the coupling constant the energy. behaves as O(—g?/2) that is as the energy of a
quantum-mechanical particle in an attractive §-function potential, which is strong
enough to dominate over the electron-phonon interaction'®.

Fig. 2 shows the dependence of the parameter 7 on the coupling constant g. At
positive values of g (repulsive potential) the constant r is positive [cfr. Eq. (3.8)].
It plays the role of the (dimensionless) distance between ‘two parts’ of the polaren
as is clear from expression (3.5} for the wave function. When the coupling constant
g reaches its limiting value 1/v/2 the parameter r becomes infinitely large. In the

opposite limiting case ¢ = 0 the parameter r also tends to zero. It becomes negative

Vial2) = 9 8(2) +

for the attractive potentials.

Atg > 0 the polaron, that is the electron surrounded by a cloud of virtual
phonons, can be found with the same probability on both sides of the §-function
potential. In this sense we can consider it as a quasi-bipolaron formed by two quasi-
polarons attracted via phonons exchange and repulsed by the potential. The limiting
case of infinitely separated quasi-polarons leads to the energy ¢ = —1/12, that is the
expression ¢, = —1/24 can be interpreted as the energy of a {ree quasi-polaron.
Then the ground state energy ¢ of the Eq. (3.9) can be considered as the energy
of a quasi-bipolaron. At g = 0, that is in the absence of the repulsion, it reaches
the value €, = —1/3. The same relation ¢; = 2% is valid also'! for the energies of
real free polarons and the energy of a real bipolaren when the Coulomb repulsion is
“switched off”. Thus the problem: of a polaron in a é-function potential indeed has

common features with the problem of a bipolaron formed of two real polarons.
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The effective potential for the case of the repulsion is shown in Fig. 3 for two
values of the coupling constant g. The ground state energy, which is very close to
—1/12 for both potentials, are shown also. When the absolute value of ¢ decreases
the barrier of this double well potential becomes lower and will disappear at ¢ = 0.

Fig. 4 represents the effective potential for the case of an a.ttr_acti\{:e 5—fun‘c.t3£‘)rn
potential. Again two different values of g are chosen and the corresponding grmi:id
state energies are shown, At large enough absolute values of g the polaron encrgy is
lower than the bottom of the nonsingular part of the potential — polaron “occupies”
the region of the é-function. ' o

Note that the effective potential is closely connected with the s.qﬁeu'c(li polaron
wave function [see Eq. (2.10)]. So, there is no need to plot the latter.

IV. FRANCK-CONDON STATE IN A §-FUNCTION POTENTIAL

Here we find excited states in the potential well (3.10). From symmetry prop-
erties it follows that symmetrical and antisyminetrical solutions can be represented
respectively, as o

$E = dallal), #12) = sgol=) 6m(laD), (1.1

where ¢gn(z) are solutions at z > 0. The coﬁtinuity conditions (3.2), (3.3) can be
written in terms of this function:

@r(0) = gdr(0) for symmetrical solutions, (1.9a)

or(0) =10 for antisymmetrical solutions, (4.2h)

A function ¢g(z) is a solution of the Schrédinger equation in a modified Poschl-
Teller potential well. Therefore it can be written as a superposition of two hasic
solutions (hypergeometric functions)*?. The wave function ¢g(z) should tend to zero
for z —+ co. The superposition where exponentially increasing tertns are canée]l.-e(]..is
as follows: | A

¢R(z) - N%r-[l -I»S?(z)] [Kgpi(l — g,l _‘,5’ %, _52(2))
R et B 10) | BN
with



5(z) = sinh{(V2 = g)(z = 7)] (4.4)

and where the ‘mean separation’ r is defined by Eq. (3.8) and the constant N is to
be defined from the normalization condition. A parameter & > 0 is related to the

energy through the equation

29 a(2-9 (4.5)
3 V2 2

As is seen the value & = 0 corresponds to the asymptotical value of the eflective

potential (3.10) at infinity (2/3 — g/v2) and the value & = 1 corresponds to the

ground state energy (3.9). Substituting Eq. {(4.3) into the continuity condition (4.2)

one finds the parameter & as a function of the coupling constant g and the suhsequent

energy levels if they exist. In what follows we will need the expression for 5(z) at

the point z = 0:

92 (1.6)
21 - g2

For the numerical calculations it is convenient to use the integral representations

of the hypergeometric functions in Iig. {4.3):

dr(z) = N1+ §%(z)] {sin “T" 1(z} + cos % Ig(z)} (4.7)
with
F s} = ldt 1—t\"? 1—432(z)t(1—:)'
1(2)—0] ( t ) [1+452(z)e(1 = 1)]*
-\ 4s(:) IO D)
Ig(z)zjdt(—t.__) [1+c1¢2( i (4.8)

Using those formulae we found the following results: There is only one symmetrical
solution which is obtained from Eq. {4.2a) at » = 1 and arbitrary coupling constant
g < 1/4/2. It coincides with the one described by Eq. (3.5), (3.7), (3.8). (3.9)
and corresponds to the ground state. Besides, at g > 0 (that is, for the repulsive
potential) there exists an antisymmetrical solution, which corresponds to the Franck-
Condon excited state. When g — 0 we have & — 0 and the antisymmetrical solution
tends to the kink-like solution (2.21) for a free particle. When g — 1/v/2 the two
potential wells are infinitely separated and the tunneiling between them becomes
impossible. The energy of the excited state tends to the same limit as the ground
state energy (that is, the level becomes twice degenerated). The energy of the Franck-

Condon excited state is also plotted in Fig. 1.
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V. POLARON IN AN INFINITE DEEP POTENTIAL WELL

In the preceding Section we exploit the solution for the 11 polaron on a half axis.
The main goal of this Section is to find symmetrical and antisyrinetrical solutions
¢*@)(z) of Eq. (2.12) for a free polaron on a finite segment which docs not include

infinitely distant poinis z = too. That is, we consider an infinitely deep potential
well of width [:

2| > 2

oo, |z| > =,
2 a h

Ule) = (=2 (5.1)

o ¥ mw
0, [z <

NJIR

In this potential we can’t consider the constant €' in Eq. (2.14} being cqual Lo zero,
which makes the solutions more complicated. We'll see that they can he represented
as different Jacobian elliptic functions [see Ref. 13, ch. 16].

Let us introduce the notations for new parameters:
\/§C:¢1¢2, A:@] '|‘¢’g (52)

Because of the symmetry we can always consider @, 2 &1, Then Fq. (2.14) can be
written in a form

= 23 () - B1) (@ — 84(2)) (5.3)
We have to distinguish the cases:

Case 1: US‘D](‘I’Q,
Case 2: ¢, = —|9,| <0. (5.4)
Let us consider first case 1. Evidently any solution takes its values between the
constants @; and @;. It follows then that the antisyinmetrical solution which is equal

to zero at z = 0 does not exist in this case. The integration of Eq. (5.3) gives us two
symmetrical sclutions

#1.(2) = /0, nd (2 @y 2 m), (5.5a)
H(2) = /@y dn(21/ @, 2 m), (5.5b)

o,
m=1-— e 0<m<L (5.5¢}
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The parameter m is the modulus of the Jacobian elliptic functions, and both wave
functions of Eq. (5.5a} and Eq. (5.5b} are periodical in z with a period 2Y/1K{m)/®3,
where K(m) is the complete elliptic integral of the first kind:

LIy

cm= |2
/ V1 —msinzs‘

The written functions can be obtained one from another by shifting with a half

(5.6)

period.
Let, us turn now Lo case 2. Then Eq. {5.2) can be written as follows:

¢(2) = 2V (¢*(2) + 1:]) (@2 = #°(2)) - (5.7)

Evidently any solution takes its values in the interval [~ @3, ®,]. There is a symmet-

rical solution

#3(2) = /@2 en(2¥1 /]2 + @22 |M),

o
M=—2— 0<M<lh 5.8
|®,] + &, (5:8)

This solution is periodical in z with a period equal to 25K (MY /|P1] + 2. Note
that the modulus of this elliptic function is equal now to M.
Shifting the solution (5.8) by a quarter of the period we arrive at the antisym-

metrical solution

o, |D
65() = =l 5y YV BT B2l
2

= /O cn (22 |®y | + Dy z + K(M) M) (5.

Tt has the same period in z as the solution presented by Eg. (5.8)
Now we remind the definitions of different Jacobian elliptic functions being used

A
=
—

in the present Section, They are given by the relations':
sn(ulm) = sin ¢, (5.10a)
en{ulm) = cos ¢, (5.10b)
dufulm) = (1 — msn*(ulm))'”?, (5.10¢)
nd(ulm) = (1 — m sa?(ufm))~"*, (5.104)
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sn(ulm)

(1—m rm?("ukm]}lf2 '

sd{ujm) = (5.10¢)

where the amplitude ¢ is defined by the relation

4
B -
_o \/lwmsingﬁ- (511)

We presented the complete set of solutions of Eq. (2.14) on a finite segment. They
describe so called cnoidal waves, that is, the periodical excitations which can be
found, e.g., in a book by Davydov'*. Ilere we use them to find the wave-functions in

an infinite deep potential well (5.1). Then one has to satisly the boundary conditious
${—af?)=¢{aj2)=0. {5.12)

Wave functions (5.5) do not satisfy these conditions. Tt follows from Eq. (5.12) and
solutions (5.8), (5.9) that the potential width should be equal to an integer number

of half waves {odd for the symmetrical and even [ the antisymmetrical solutions):

a/ 1B+ O, = n 2V K(M), n=1,2.... (5.13)

Then we use the normalization condition which can be represented in the form

[see Ref. 13, formulae (16.25), (16.26)]:

af2 e K(M)
9
de g2 () = 2220 /dz-2 M
[ 670 i [t
—af2 a
_ (D-JCL E{.JW) y
"M [K(M) M= 1] = (5:14)

Here we used Eq. (5.13) which allowed us to reduce the integration over the width
of the potential to that over a quarter of the pericd. The complete elliptic integral

of the second kind with modulus M is defined as (ollows:

/2
E{M) = / d0/1 — M sin® 9. {5.15)
0

Eq. (5.13) and (5.14) allow us to find the parameters |0,] and ©3 and to ohtain then
the parameter A = &, — |®;|. It is convenient to use as independent parameters M
[scc Eq. (5.8)] and ®,. Then |&| = &, (1 — M}/M and A= &, (2M — 1)/M.
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To obtain the energy € = vV2(53 — A) [see Eq. {2.15)] one has to calculate the
parameter B of Eq. (2.13) which can be done using Ref. 15, formula (5.131):

af2 oty K(M)
2
B*jdz M),y o 22T /dzcn (z| M)
%2 ( ) @ |+¢'2 |
-af2
¥ a E(M)
— 2% - — 1)t | 1
I [( MY(2 - 3M) +2(2M )K(M) {5.16)
Introducing the notation
2 .
£ = — (5.17)
a

and exploiting Eq. {5.13) to find ®; we arrive at the equation for the parameter M

as a function of z:
V2K M)[ M} _1] = j; (5.18)

In these notations the energy is represented via a universal function F

1 n? .
€y = ;z—ZF (-E") ) (5.19)
where the expression for F(x) follows [rom Eq. (5.16):
2
F(z) = £ (z K(M))? x [‘ZM(I - M)z K}M) - VZ(2M - 1). (.20}

The function F(z) is plotted in Fig. 5 as well as the dependence of the modulus A1 on
z. The solutions and energy levels can be calculated with the help of those functions.
Because the obtained solutions are self-consistent solutions of the non-linear effective
Schrodinger equation, we obtain here the ground state {n = 1) and the RES states
(n=2,3,..
well as the corresponding effective potentials are shown for the ground state and the

.) together with their energies. In Fig. 6,7 the energy levels (arrows) as

first two RES states for a box with length a = 6 and a = 25 respectively.

Let us discuss two limiting cases. When a is infinitely small, that is & — oo, we
obtain from Eq. (5.18) that 2 M — 4/2/x%. Tnserting this to Eq. (5.20) we arrive
at the result

wt
lim F(z) = —z*. (5.21)
T—ooo 2
Taking into account that the energy here is given in units of hwa'® and the width
of the potential | = GW we arrive at the result for the quantum-mechanical

particle in an infinitely deep potential:

12

2,2 2
6 = % = hg:;; . (5.22)
The interpretation of this limit is obvious: the interaction with the potential well is
so strong that the electron-phonon interaction can be neglected even in the strong-
coupling limit. The same is also true for higher excited states with large n > 1.
When z — 0 thal is the potential width becomes infinitely large, the paramcter

M tends to unity:

E(1)=1, KM "‘ll 16
()—': ( )M_,1~2l1 1T—am /)

) 2
M= 1-—léexp (—\/T‘) . (5.23)
It follows then that t K(M) — 1/v2. Eq. (5.20) provides us then
1‘ r‘ — 1 — _L 4 .')4
mPw=-gy =5 (5:20

Thus, we obtained energy levels with a Coulomb like dependence on the quantum
number n. The parameter &, — 0 in this limit so we are dealing with the frontier
When the modulus M — 1 the period
of the wave functions which is proportional to K(Af) becomes infinitely large. The
solution ¢ of Eq. (5.8) for the ground state (n = 1) then takes the form (note that
¢, = A)

value between cascs 1 and 2 of Eq. (5.4}

VA

{2 VA ) = ——————.
VAm@/VA 1) cosh(23/4V/A z)

(5.25)
This is the solution of the free 1D-polaron on an infinite axis with the energy ¢, =
—1/3, which is reproduced by Eq. (5.24). For a large box with length e the solutions
(5.8) and (5.9) with n # 1 can be considered as a superposition of n solutions of the

type of Eq. (2.17) being infinitely separated from each other:

e (=0
= . 5.26
¢2(Z) n21/4 ; COSh[lr@(ni + % _ !)] ( )

The limiting energy €, = —1/(3n?) corresponding to the functions of Eq. (5.26)
can be obtained from the known ground state solution in the single well by the
following arguments. The normalization condition N = 1 {see Eq. (2.18)] has to be
replaced by n N = 1 where from A — A, = 1/(+/2n?) which is in agrecment with
Eq. (5.26). In a similar way the parameter B of Eq. (2.18) has to be replaced by

13



Br=n214%2 (3 = \/2/(3n?). Using A, and B, instcad of the values of Eq. {2.19)
leads us to the energics described by Eq. (5.24). Thus, these energics correspond to
the ground state encrgies in a potential constructed of n independent Pdschl-Teller
wells. ' _

Note, that these solutions look like n quasi-particles. For example, the antisym-
mefrical solution at n = 2 reproduces in this limit the solution for the §-funciion
potential with a coupling constant g = 1//2. The energy is in both cases ¢ = —1/12.
These solutions did not appear in Sec. 2 while considering the free 1D-polaron on
an infinite axis due to the boundary conditions. But taking into account that, in
practice, we never deal with infinite sizes we can conclude that the encrgy levels
(5.24) have physical meaning,

Comparing Fig. § and Fig. 7 we see that in Fig. 7 the energy levels for a box
length a = 25 are already very good approaching the above result of Fq. {5.24),
while they do nol in Fig. 6 for « = 6. Therefore, a box with « = 25 can already be
considered as a large box,

Applying the scaling relation1617
Esple) = 3 Eip(a/f3), (5.27)

we can estimate the subsequent encrgy levels (or three-dimensional polarons (& = o
in 3D case). Then we obtain from BEq. (5.24) and Eq. (5.27) for the 3D-polarons:
, 2 1 .
Gpe = Eypa /e = ———. (5.28)
] 9n?
These values can be compared with the numerical calculations performed by the
Pushchino-Dubna collaboration [see, e.g., Rel. 18]. From Table I we can see that, the
presented numerical values are rather close to each other which reveals the origin of
the excited states reported in Ref. 18. For the completeness we estimate also the

energy levels of the two-dimensional polaren (o = a7 /2) in this case):

- 2, 3r
Bap(a) == - 1oy (“1—0) s

3
.2 ...
P IR 15 )
€20m = I—QD,n/h‘&'ﬂ ~= _m = _71—2' (JQQ)
The direct calculation of the ground state energy gives the result' e;p, = —0.1047,

which differs from our estimate by 1.6% only.
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VI. THE COMPLETE SET QF EXCITED STATES IN AN INFINITE
DEEF POTENTIAL WELL

To obtain the complete set of possible excited states for the 1D polaron confined
to a box with length a, we should also investigate the excited states in the potential
generated, e.g., by the ground state. In what follows we use the quantum number
n' > 1 to enumerate those excited states, therefore enn will be the energy of the n'-
th :tate in a potential generated by the n-th solution corres_ponding to the quantum

number n, found in the preceding Section.
To obtain those excited states numerical calculations are used. We expand the

wave function in a Fourler series with unknown parameters a;:

K ¢ .
. km{z 4+ af2) (6.1)
$(z) = Z agsin ———
k=1
restricting ourselves to [ terms. Using this expansion and the Hamiltonian of
Eq. (2.9) we calculate the Hamilton-mattix

af?

; . jr{z + a2
He: = / dz sinMHsinJ—(-—-u. (6.2)
ij o a
—af2
The diagonalization of this matrix to the parameters ax delivers us the eigen-energies
and {after normalization) the corresponding wave functions of the ground state and
K — 1 excited states. The larger is K the more accurate solutions will be obtained.
The wavefunction of the ground state or RES by which the effective potential is
generated can be compared with the analytical result of the same expansion (6.1)

using formulae 16.23 of Ref. 13 for the wavefunctions in Eq. (5.8) and Eq. (5.9). The

coeflicients ai (up to the common sign) are

_ 25 mn g'ti? (6.3)
An(zi+1) = (— a 1+ q‘lH-l
with
K(l— M)) (6.4)
q= exp (—WW

Here n is the same number as in Eq. (5.13). All other a) in the expansion (6.1) are

equal to zero. Thus, an exact expansion for the wave function corresponding to the

quantum number n is of the form:
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Plpr o, -, ¢V (24 Vr(z + a/2) 5
¢ = p Z(—.l) Tt g sin a . (6.5)
>0

With » and a being given we obtain from Eq. (5.17), {5.18) ihe corresponding A
which is used to calculate ¢. Tor example, we obtain for the ground state (n = 1)
g = 0.315 and ¢ = 0.756 for a = 6 and a = 25, respectively. The exact expausion
shows us how fast the convergence of the series is. Therefore, we can calculate the
Fourier series (6.5) and derive the number of terms needed to obtain results within
a certain accuracy.

In Table Il we present, as an example, the cnergies e, forn = 1 +5and n’ = 1+5
for & 1D-polaron in a box with length @ = 6. The diagonal elements ¢, ,, are nothing
more than €, of the preceding Section, three of which are shown in Fig, 6. Indeed,
let us consider the potential generated by the relaxed excited state corresponding
to n. The corresponding wave function found in the preceding Section is “itsel[”
the solution to the effective Schiddinger equation with this very potential. [t has
n — 1 zeros and corresponds Lherefore to the energy level with 7’ = n (¢,,). Below
it are the levels ¢,1, €,2,..., 62,1, Some of them could have a rather low energy.
For instance, one can see from Table [1 that the ground state energy (n' = 1) and
the first excited state (n' = 2) in a potential generated by the first relaxed excited
state (n = 2) have lower crergies than the first excited state (n = 2) in a polential
generated by the ground state (n = 1).

When the box size a becomes larger, the energy levels of the excited states in
potentials generated by the ground state or & RES are becoming less separated.
This is demonstrated in Fig. 8 for the six excited states (n = 1 = 6) in a poteatial
generated by the second RES (n = 3}. Their energies are plotted vs. the size of the
box in the range a = 5+90. We notice that only two limiting energy levels exist for a
large box, namely: 1) the energy of the second excited state in this potential, which
corresponds to the second relaxed cxcited state; all the underlying states converge
to the same energy (therefore we have in this case a degeneracy of 3); 2} the encrgy
of the excited states above the sccond excited state are all tending to the encrgy
of the kink-like solution, that is, to the asymptotical value of the potential well
(fez,a = \/EB.'; = 2/27).

These numerical results can he explained as follows. It was found that pn —
—1/3n® when the box is infinitely large. 1t was demonstrated also that the ground
state energy €, also tends to the same limit. Thus, when the box becomes infinitely
large all the states with 1 < n' < n tend to the same limiting energy —1/3n2. In

this case we deal with n infinitely separated wells without tunnelling between them.
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TABLES
n 1 2 3 4
€n - 0.1085 - 0.0206 - 0.0083 - 0.0045
€3Dm - 0.1111 - 0.0278 - 0.0123 - 0.0069
; - 0.0: - 0.025
cw,ﬂll - 0.4112 - 0.1028| 0.0457 0.0257

TABLE 1. Four first energy levels for 3D-polarons taken from Ref. 18 (1st row) and

estimated with the lLelp of the scaling relation (2nd row). The estimates for 2D polarons

are presented in the 3rd row.

n' 1 2 3 4 5
n
1 - 0.332 0.905 1.516 2.444 3.662
2 - 0.031 (.180 1.197 2.129 3.354
3 0.039 0.399 0.874 2.119 3.346
4 0.017 0.419 1.2 1.836 3.339
5 0.015 .125 1107 2.056 3.071

TABLE II. The five first energy levels (s =t 5) i potentials genervated by the five
first relaxed excited states (n = | =5} for a 11 polaron in a hox of the size ¢ = 6. Diagoual

elements are the energies €, , of the corresponding relaxed excited states.

So the resulted energy level indeed will be n Limes degenerated.
On the other hand, the only excited state in a single potential well 1s.the kink-
like solution (2.21) with an energy equal to the asymptotical value of the effective

potential. If we deal with n infinitely separated potential wells the only difference

is the dependence of this asymptotics on n (cfr. the parameter B, in the preceding

Section). Thus, the energies of alt excited states with »’ > n should tend to the
asymptotical value of the effective potential at infinity, namely t0 € n = V2B, =
2/(3n?).

To conclude, we presented exact and numerical calculations for the 1D po-]a‘ron,
resp., in a §-function potential and in an infinite deep potential well, We considered
both relaxed excited states and excited states in the potentials generated hy the

ground state or a RES, and studied the limit of an infinitely large box. This limit

demonstrates the existence of the whole set of energy levels which do not appear

while solving the problem on an infinite axis.
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Distance, 2z ‘
FIG. 3. Effective potentials for two different values g, and gy of the coupling constant

g > 0 in the case of the repulsive é-function. The arrows represent the energy levels. The

Coupling constant, g .

FIG. 1. A polaron energy vs. the scaled coupling constant (asolid curve}. The physical
region is defined as g < 1/v2 = .U.TOTI, and the scaled ground state energy reaches the
value ¢ = —1/12 in the limiting point. The euérgy' of the Franck-Condon excited state
‘which exists al 0 < g < 1/v/2 is shown by Lhe-e' dashed curve. At g = 1/v/72 it takes the

same value as the ground state energy. At g = 0 il resches the asymptotic value 2/3 of the

ground state energies ¢, and ¢ of the corresponding potentials are very close to each other.
For ¢, = 0.707 the energy ¢} of the Franck-Condon excited state has almost the same value

as the ground state energy ¢, hecause gy approaches the critical value 1/V2.

effective potential. The solid line shows this asymptotics at different values of g.
4

g

"Separation”, r
Effective potential, V(2]

-2 —1 - 0 1 Distance, z .
Coupling constant, g FIG. 4. Effective poteutials for two different values g, and g of the coupling constant

T s ot H . . . o H— 4 N R
FIG. 2. A ‘mean separation’ of the polavon parts vs. the scaled coupling constant,. ¢ < 0in the case of an attractive 4-function. The arrows represent the ground state enesgy

When gis positive the parameter v indeed plays a role of a distance between “twé parts Jovels, one of which lays below the bottow of the non-singular part of the potential. In

of a polaren. Il becomes infinitely arge al ¢ = 1/v/2 = 7071, When ¢ < 0{altraclive

this state a particle is located in the d-function well,
d-function potential) the parameter » becomes negative.
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FIG. 5. The universal lunction £}, deseribing polaron crergy levels in a infinitely
deep potential well, is plotted vs. « = n”/a (solid line). At x — 0 which corresponds to
the limit of a free polaron, it teids to the value 173, At large @ the asymptotic behavior is
described by the same parabola whicl is characteristic for a quantum-mechanical particle.

The dependence of the patameter M on z is shown also (dashed line),
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15 L . e . | \ X . 1
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Distance, z
FIG. 6. The effective potentials are shown for the first three polaron states with
=1+ 3 in a box with length @ = 6 (resp. the solic, the dashed and the dotted curve).
The ground state energy {solid arrow) dlmost reaches its asymptotic value -1/3, the energy
of the first (dashed arrow) and secoud (dolted arrow) relaxed excited states have positive

energies and exceed their corresponding asymptotical value,
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FIG. 7. The effective potentials are shown in this figure for the same states as in Vig. 6
but for a = 25 (resp. the solid, the dasied and vhe dotted curve). VFor larger vulu'(-s ol ¢
more levels have negative encrgies approaching their asymptotical values —1/{3n%). All
three levels (see arrows) have negative energies and the first two of them practically colneide

with -1/3 and -1/12, respectively.

1 T T T
n=3 ]
- i
505
>
&
)
S -
. Eex.} ]
€5
0
1
| " n i " 1
20 40 60 30

Box size, a
FIG. 8. The encrgies of the ground state (v’ = 1} and of the five lowest excited states
. 8. > e
(v’ = 2+ 6) in the potential gencrated by the second relaxed excited ?tate (n )
The relevant numbers n' are printed near the

corresponding curves. Three of them tend to the limiting value ¢ = —1/27, all others to

the asymptotical value €ep3 = 2/27 of the effective potential at infinity.
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are plotted vs. the length of the box a .
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