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Summary 

The electron-phonon interaction in binary 
alloys is studied on the basis of a tight-bind
ing model Hamiltonian including diagonal and 
off-diagonal randomness due to substitutional 
and thermal disorder. The stochastic model 
specialized to the additive limit is treated 
within the adiabatic approach by using an 
extended coherent potential approximation. The 
random scattering potentials fluctuate thermally 
according to Gaussian distributions. A set of 
integral equations for the electronic self
energy is derived. The temperature dependence 
of the density of states is expressed in terms 
of four fluctuation parameters. 

1. INTRODUCTION 

The aspect of thermal disorder contribu
tes to a better understanding of the electro
nic properties in substitutionally disordered 
system such as binary alloys. Dealing with 
the effect of thermal fluctuations one 
usually starts considering the motion of th 
electron in the field of fluctuating poten
tials due to lattice vibrations. In oth:r 
words, it is necessary to investigate the 
behaviour of the electron influenced by tle 
combined effects of the randomness and th• 
electron-phonon interaction. The picture 
of a static random lattice seems to be reaso
nable within the scope of the adiabatic 
approximation. 

Such a problem was treated in the coherent 
potential approximation (CPA) by Chen et 
al./I/ and applied to calculate the electro
nic density of states and the d.c.conducti
vity. However, these calculations are rest
ricted to the case of diagonal (substitutio
nal and thermal) disorder in the tight-bind
ing model Hamiltonian. For a similar type 
of thermal disorder in the case of the exci
ton-phonon interaction, Sumi/~ proposec the 
CPA for studying the exciton density cf 
states and optical absorption spectra. The 
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small-polaron approach to the problem of 
electron-phonon interaction was u~ed by 
Bottger and Bryksin/3

/ to develop a theory of 
optical intraband absorption in disordered 
systems. Moreover, for example, Brenig et 
al. /4/ and Capek /S/ investigated the electron
phonon coupling in structurally disordered 
systems in the context of the phonon-assist
ed hopping conductivity. 

In this paper we start from a model Hamil
tonian with random diagonal and off-diagonal 
elements caused by substitutional and thermal 
disorder in the binary alloy. The type of 
disorder is specialized by assuming additive 
conditions for the transfer elements. In par
ticular, Fukuyama et al.~/ considered this 
additive limit in the absence of thermal 
disorder. 

Following ideas of /I/ , we can derive a 
set of self-consistency relations to deter
mine the momentum-dependent coherent poten
tial as a quadratic form of the lattice 
structure factor. The assumptions and appro
ximations we use correspond to a single site 
approach. The formalism obtained here in the 
presence of electron-phonon interaction can 
be regarded as a natural extension of the 
modified CPA which was represented in/7/ . 

2. MODEL FOR SUBSTITUTIONAL AND THERMAL 
DISORDER 

The treatment of the electron motion in 
substitutionally disordered AcBl-c alloys 
is based upon a tight-binding model includ
ing thermal disorder. The Hamiltonian is 
assumed to have the form 
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H = H 
e 

where 

H = ~ e 
n 

+ H eph ' 

f a +a 
n n n + ~ h a+a 

(nnf:) 
nm n m 

H = ~ ~ (y(s)b + (y(s) )*b+)a+a • 
eph nm s mn s n m n,m s 

( 1) 

( 2) 

( 3) 

Here a!(an) and h!(b
8

) are creation (anni
hilation) operators for an electron in the 
Wannier state at lattice site n and for a 
phonon with the quantum number s, respecti
vely. The s summation is extended over all 
3N normal modes of lattice vibrations, where 
N lattice sites are randomly occupied by atoms 
A or B. The atomic energies fn' the hopping 
integrals hnm as well as the matrix elements 
y~~ of the electron-phonon interaction are 
taken to be configuration dependent. This 
dependence is denoted by f ~ , h ~~ , y ~s )v ( for 

the diagonal element y {s)vv ) and y {s)v/1 or equi-
nn nm 

valently by f v, hv/1, y{s)v and y{s)v/1 ; here the 
superscript v(/1) refers to the atomic species 
( v , 11 = A, B ) 1 ocate d at site n ( m ) . 0 n 1 y 
nearest-neighbour (n.n.) transfer elements 
hnm and y~'&{ are considered. 

The electron-phonon interaction Hamilto
n ian Heph is treated within the adiabatic 
approximation. Then it is possible to sup
press the ionic motion in (3), i.e., the 
electron-phonon scattering can be reduced to 
a random lattice problem. In other words, 
the electron-phonon interaction can be re-
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placed by an interaction of the electron 
with a time-independent c-number field with 
diagonal and off-diagonal randomness. This 
static approximation is equivalent to the 
condition of elastic electron-phonon 
scattering. 

In order to specialize the type of off
diagonal randomness in the one-electron Ha
miltonian He, we choose the additive condi
tion/6,7/ 

h AB= ..!_(hAA+ h BB ), 
2 

(4) 

where hv~ stands for the hopping energyhnm 
between the atom of type v located at Rn 
(position vector of si!e n) and the neighbou
ring atom of type~ at Rm. Analogously, the 
off-diagonal (nonlocal) matrix elements y(~ , nm 
which characterize the phonon scattering of 
the electron accompanied with simultaneous 
electron transfer, are assumed to satisfy 
the condition 

y(s)AB = l(y (s) AA+ y(s)BB). 
2 

( 5 ) 

This condition can be replaced in our follow
ing treatment by a weaker one. 

In the case (4) and (5) the general Hamil
tonian (1) can be rewritten as 

H = H ~ + l[(E n +® n)a ~an+ I (h n +On )(a! am+ ai;.a n)] 
n (m,fn~n.n.) 

H~+IVn, 
n 

( 6) 
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where H~ represents the one-electron Hamil
tonian (2) for a perfect B crystal. According 
to whether on A or B atom occupies the n-th 
site, the random part Vn is configuration 
dependent in the following way: 
1. The variable En takes one of two values 
(EA-cB) or zero. 
2. The operator ®n due to the local electron
phonon interaction has the form /I/ 

® v _ ~ ( (s)vb ( (s)v )*b +) 
-~Y s+Y s• (v=A,B) ( 7 ) 

s 

v v 
where ® means ®n · 
3. The variable hn is equal to either (hAB_h BB) 
or zero. 
4. The operator On, which results from the 
nonlocal electron-phonon coupling, is written 
as 

e v = 1.. I ( (s)w b 1 (s)vv )*b +) 
28 Y s+Y s' (v = A, B) ( 8 ) 

v v 
where e stands for en . 
In comparison with (5), the weaker assump
tion to derive the Hamiltonian (6) is 

eAB = l(eA + 0 B), 
2 

where 

AB (s)AB (s)AB + 
e = I ( y b.

8 
+ ( y )* b s). 

s 

( 9) 

(10) 

In addition, there is position dependence 
concerning ®n and On. The phonon operators 
®n and en depend on the phonon coordinates 
which are determined by the special set of 
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phonon modes associated with a particular 
alloy configuration. The 8n term' in (6) used 
in adiabatic approximation can be interpre
ted as adiabatic potential at site n due to 
local deformation of the lattice during ther
mal vibrations. Moreover, the phonon-assist
ed transition in ~ represents the change of 
the electron-hopping integral by lattice 
deformation. 

--> 
3. CPA WITH k-DEPENDENT SELF-ENERGY 

Introducing the one-particle Green opera-
tor 

G(z)= (z- H)- 1 , (11) 

we must average over all atomic distributions 
in order to find macroscopic properties of 
the disordered system. The adiabatic picture 
allows one to carry out successively two 
independent procedures of averaging /1/. In 
the first one, the average over all possible 
positions of the ions in a particular alloy 
configuration is performed (denoted by< ... >phl· 
In the second one, we average over all con-
f i g u rat ion s ( in d i cat e d by < ... > c ) . 

The averaged Green operator (11) related 
to the Hamiltonian (6) is written as 

( B !.'-1 <<G>ph>c = z- He- 1 , (12) 

and has in Bloch representation the form 

· rv [ B BB --> --> -1 «G(z)»-->= 0 -->(z)= z-E -h s(k)-!.(k,z)] , 
k k 

(13) 

where the indices for the double average are 
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dropped. The nearest-neighbour structure 
factor of the lattice is defined by 

--> 

s (k) !. e 
m 

(moin:n.n.) 

-->--> --> 

ik(Rm- Rn) 
(14) 

The Green's function_, §r (z) and the elect
r on i c s e 1 f -en e r g y I (k , z ) in ( 1 3 ) r e f 1 e c t t he 
property of translational invariance due to 
the average. .... 

To calculate the self-energy !.(k, z), we 
use the technique developed in/7/ for the 
case of additive off-diagonal disorder. This 
case is given in the Hamiltonian (6) which 
is divided into the unperturbated part HB 

e 
and the random additive opera tor V = !.'Vn, 
where the single-site potentials vn arne not 
localized on the corresponding sites, i.e., 
the individual potentials are of finite 
range. .... 

The C P A s e 1 f - en e r g y !. (k , z ) 
by the ansatz 171 

is described 

... --> ... 
!.(k,z)=a0(z)+ 2a 1(z}s(k)+a

2 
(z}s 2 (k), (15) 

where ae(z) ( (f =0,1,2) are complex variab
les to be determined self-consistently. The 
--> . 
k -dependence of the self-energy lS caused 
by the off-diagonal disorder. 

Using the single-site approximation, the 
self -·consistency requirement resulting from 
the multiple scattering theory may be writ
ten in Bloch rep~esentation as 

--> --> 

« <k I T n I k '> » = 0, (16) 

where the Tn-operator related to the single 
scattering centre n is /8/ 

9 



-1 
T =(V -I )[1- «G»(V -I )J •· n n n n n (17) 

Here the single-site contributions of the po
tential in (6) are given by 

--> --> --> 

--> --> 1 -i(k-k')~ -> --> 
<k\V0\k'>= N e l(En+®n)+(hn+610 )[s(k)+s(k')]l.(l8) 

and the single-site self-energy will be 
chosen as 

--> --> --> 
--> --> 1 -i{k-k ') R -> --> -> -> 

<k\In(z)\k'>= Ne ~a0(z)+a 1 (z)[s(k)+s(k')] +a 2(z) s(k)s(k ')l 
(19) 

corresponding with (15) by the relation 
I=I In. From (17) we determine with (18) 

n 
and (19) the scattering matrix elements in 
the form 

-> -> --> 
--> --> 1 -i(k-k') R0 --> --> __. -> 

<k!Tn (z)\k'>= N e lt0n (z)+t10(z)[s(k)+s(k')J+t20(z)s(k)s(k')l, 

( 2 0) 

and under the constraint (16) the following 
CPA equations are found: 

a e (z) 
«te (z)>>=« n » =0, (f =0,1,2) (21) 

n 1 - D (z) 
n 

where 

2 
aOn (z)=(E n+®n-ao)+(hn+61n-a1) F2+(En+®n-aO)a2F2' 

( 2 2 ) 

a 1 n ( z ) = (h n + 61 n - a 1 , - (h n + 61 n - a 1 ) 2 F 1- (E n + 8 n - a o ) a 2 F 1 ' 

(23) 
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;I 
1 

:I 

a2n (z) =-a2 +(hn+61n -a1)2Fo+(En+®n -ao)a2F0,(24) 

and 

D n(z)= (En+®n -a
0
)F 0 + 2(hn+61n- a 1)F 1- a 2 F 2 -

2 2 (25) 
-[(hn+ On -a1) +(En+ ®0-ao)a2][F1- FoF2], 

with 

1 -- e F n ( z ) = - I- S --> ( z )[ s (k ) ] 
L N k k 

(f=0,1,2). ( 2 6) 

For illustration, we shall use the notation 

t 0 (z)=t 0 (z;E ,h ;® ,61 ). Ln L n n n n 
( 2 7 ) 

4. AVERAGING PROCEDURE 

The phonon-average in (21) means the 
thermodynamical average over all states of 
the lattice motion described by the Hamilto
nian 

Hh=I-tiw (b+b + 
2
1

), 
p s s s s 

( 2 8 ) 

where W 5 are the phonon frequencies in a 
given configuration. Let us express the pho
non average of a_ny function f(®n,On) as 

<H® ,61 )> h = ryd 77 d(P (77 )P (()£(77 ,(), (29) 
n n p JJ n n 

which is defined at temperature T in terms 
of the single-site distribution function~ 
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p v (ry) = 
l .,2 

exp(- --), ( 3 0) 
..)2 rra v 2av 

v l '2 
P (tj = exp(- -), 

..; 2 rro v 2o v 
(31) 

with the mean-square amplitudes 

a v = ~ I y ( s )v 12 co th ( .fiw s ) ' 
s 2kT 

( 3 2) 

l ~ I ( s )vv 
1
2 h (-tlw s ) -.:.. y cot -- , 

4 s 2kT 
ov 

(v = A , B ) . ( 3 3 ) 

Here the superscriptv refers to the type of 
atom at lattice site n , i.e., pv and pv now 
stand for Pn and Pn, respectively. We note 
two properties of the phonon averaging pro
cedure: 
1. The appearance of the product of distribu

tion functions in (29) corresponds to 
the approximation that the correlation 
between the adiabatic potential en and the 
transfer quantity~ is neglected. 

2. The Gaussian distributions (30) and (31) 
related to the operators (7) and (8), res
pectively, can be derived from the Hamil
tonian (28) by using the method which has 
been applied /1/ to the thermal averaging 
of harmonic lattice vibrations withlinear 
electron-phonon interaction. 
In order to average over all configura

tions of the alloy, we have to consider the 
configurational dependence of the scattering 
c on t r i but ion s t f ( z ; En, h n; 8 n , () n ) , d e fin e d in 
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~ 

• 

(27). Using (29) it is possible to write the 
self-consistency relations (21) in the more 
explicit form (by averaging the arbitrary 
index n disappears) 

A -A A B l AA BB 
ffd1Jdt;';lcP (7J)P (t;';)tf(z;E -f , 2 (h -h );ry,t;';)+ 

B -s (34) 
+0-c)P (ry)P (t;';he(z;O,O;ry,t;';)I=O, (f=O,l,2) 

where Pv and P vare the Gaussian distributions 
from (30) and (31) determined now by averaged 
mean-square amplitudes av and ov (see below). 
Note that the distribution functions (30) and 
(31) in connection with (32) and (33) are 
only valid for a particular alloy configura
tion, i.e., for a special set of phonon mo
des. However, the formulation of (34) requi
res to average the distribution functions 
(30) and (31) over all configurations with 
an atom of the type vat site n . After having 
approximatively introduced the partially ave
raged distribution functions pv and pv in 
(34), the expressions (32) and (33) can be 
formally replaced by 

av=<~IY(s)vl 2 coth(i'iws)>lv, (35) 
s 2kT c 

v l ( s )v v 2 i'iw s I v ( ) 
8 = 4<~ IY I coth(

2
k

1
-)> c , v=A, B (36) 

where the supersc~ipt1~Hindicates the fixed 
v -atom at the n-th site. 

In this way, the CPA equations for the 
random lattice problemn/ are completed by 
the fact that the atomic levels and the 
hopping integrals fluctuate additionally 
with continuous distributions due to ther
mal vibrations of the lattice. 
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5. ELECTRONIC DENSITY OF STATES 

In order to evaluate the self-energy 
parts a 0 , apa2 satisfying (34), we use simple 
input quantities. The unperturbated densit~ 
of states of the pure B-band (related to He 
in (6)) is assumed to have the Hubbard 
form /8/ 

1..o-E11/2 i£ 1~ ~ 1, 

P !'FJ = I 
71 

(37) 

0 otherwise. 

Here the half-band width w is set equal to 

. . h h BB l . h f un1ty, l.e., we ave = 6 1n t e case o 

a simple cubic lattice. The origin of the 
energy is chosen as fB= 0 . The complex quan
tities Fe introduced by (26) can be now cal
culated analytically /9/ with (13) and (15) 
by using the residue method. This coherent 
Green's functions Fe are obtained as 

1 yl-z_t yl-z~ 
F0 =21---i . -i 1,(38) 

36a2 1 + 12a1+ 72a2 z+ l + l2a 1 + 72a2z_ 

(1 +12al) z +\./1- z}'. 
F = 121- ----i -i 

I (36a 2) 2 l+ 12a1 + 72 a2 z+ 

z_yl-z2 

1 + l2a + 72 I,( 3 9 ) 
1 a 2 z_ 

1 0+ 12a1) 
F = -I (z- a )F - F - ll 

2 a 2 0 0 F. 1 ' 
(4 0) 

with 
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t 

(1+12<7:1) r:;:_12q)
2 

z- a0 
---±../~ 2 + 

72a2 (72a2) 36a2 
(41) z± 

The special case a 2 = 0 leads to analogous 
expressions for Fe . 

The quantity of interest is the electro
nic density of states per atom defined by 

p (E) = - .lIm F 0 (E + iO). 
71 

( 4 2) 

The temperature dependence of a 0 , a 1 , a 2 and 
p is investigated on the basis of the pho

non parameters av and o v • To gain some 
insight into this dependence, we restrict the 
consideration to results obtainable without 
the exact knowledge of the phonon spectrum 
W 5 and without detailed y(s)v, y(s)vv • Note 
that a v and o v are both proportional to kT 

tiw
5 

at high temperatures, i.e., for -- < l. Let 
2kT 

us emphasize the simplest case which is 
defined by a= aA = aB and o =()A = oB under 
the assumption that the electron-phonon inter
action is independent of configurational 
disorder. 

The parameter a at high temperatures was 
roughly estimated by Chen et al. /1/ using 
the Lindemann melting criterion on the 
basis of the deformational-potential theory. 
It has been founrl that the fluctuation para
me t e r take s t he v a 1 u e s a "' 0. 02 T /T m for a 
nearly-free-electron model and a"' 0.075 T/Tm 
for a Ni-Cu alloy, where Tm is the melting 
point and the energy is expressed in units 
of the effective half-band width. On the 
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other hand, the change of the band width is 
also connected with thermal fluctuations 
related to the parameter o, Using the same 
arguments as Chen et al. the ratio of the 
fluctuation parameters can be roughly esti
mated as o/a "'2 · Hr 3 • In another way, it is 
possible to get this order of o~ for (35) 
and ( 3 6 ) by t he an sat z y ( s lw "' exp (- ,\ R ) wit h 
a suitable choice of the radius of locali
zation,\-! and of the interatomic (n.n.) 
distance R. Returning to the CPA problem, 
the integral equations (34) can be rewritten 
in the dimensionless form 

+oo -(ry2+,2) 
ff d 71 d' e I c t e( z ; (A ' 

-oo 
.!._(hAA_hBB );y2aAry,y2oA() + 
2 

( 4 3) 
B B 

+0-che(z;O,O;y2a ry,y2o ')I =0, (e =0,1,2) 

where the parameters are scaled by the half
band width w. 

The formulae (43) describe both the impu
rity and electron-phonon scattering simulta
neously and can be used to investigate the 
combined effect of these scattering mecha
nisms on the one-electron properties of the 
random system. In the static-alloy limit 
(i.e., a= 0, O= 0 ), the self-consistency 
relations take the algebraic form obtained 
in/7/. The solutions of (43) are characte
rized by seven parameters and can be found 
only numerically. Numerical results of this 
CPA model calculations will be reported in 
the subsequent paper. 
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